首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
American trypanosomiasis and leishmaniasis are caused by related hemoflagellate parasites, Trypanosoma cruzi and Leishmania spp., which share several common host species. Both zoonotic protozoans are endemic in the United States. Canines, including domestic and wild canids, are reservoir hosts for human infections with T. cruzi and Leishmania spp. The present study examined the seroprevalence of T. cruzi and Leishmania spp. in wild canids from North Carolina and Virginia. Wild canine species tested in this work included 49 gray foxes (Urocyon cinereoargenteus) and 5 red foxes (Vulpes vulpes). Overall, sera samples from 54 foxes (North Carolina = 43; Virginia = 11) were tested by immunochromatographic strip assays (ICT). Antibodies to T. cruzi were found in 4 (9%) gray foxes from North Carolina and 2 (18%) gray foxes from Virginia. Antibodies to Leishmania spp. were detected in 1 (2%) gray fox from North Carolina. Our results indicate that wild canids are exposed more frequently to T. cruzi in North Carolina than Leishmania spp. and only T. cruzi in Virginia.  相似文献   

3.
Most of the experimental studies of Leishmania spp. infection require the determination of the parasite load in different tissues. Quantification of parasites by microscopy is not very sensitive and is time consuming, whereas culture microtitrations remain laborious and can be jeopardized by microbial contamination. The aim of this study was to quantify Leishmania infantum parasites by real-time polymerase chain reaction (PCR) using specific DNA TaqMan probes and to compare the efficacy of detection of this technique with a PCR-enzyme-linked immunosorbent assay (ELISA). For this purpose, spleen and liver samples from L. infantum-infected mice were collected during a 3-mo longitudinal study and analyzed by both methods. PCR-ELISA failed to quantify Leishmania spp. DNA in samples with very low or very high numbers of parasites. Real-time PCR was more sensitive than PCR-ELISA, detecting down to a single parasite, and enabled the parasite quantification over a wide, 5-log range. In summary, this study developed a method for absolute quantification of L. infantum parasites in infected organs using real-time TaqMan PCR.  相似文献   

4.
A seminested PCR assay was developed in order to amplify the kinetoplast minicircle of Leishmania species from individual sand flies. The kinetoplast minicircle is an ideal target because it is present in 10,000 copies per cell and its sequence is known for most Leishmania species. The two-step PCR is carried out in a single tube using three primers, which were designed within the conserved area of the minicircle and contain conserved sequence blocks. The assay was able to detect as few as 3 parasites per individual sand fly and to amplify minicircle DNA from at least eight Leishmania species. This technique permits the processing of a large number of samples synchronously, as required for epidemiological studies, in order to study infection rates in sand fly populations and to identify potential insect vectors. Comparison of the sequences obtained from sand flies and mammal hosts will be crucial for developing hypotheses about the transmission cycles of Leishmania spp. in areas of endemicity.  相似文献   

5.
Leishmaniasis is considered by the World Health Organization to be the second most important disease caused by a protozoan parasite. Biochemical and molecular biology studies can help in the understanding of the biology of the Leishmania parasite. All protozoan parasites, including Leishmania, are unable to synthesize purines de novo, and nucleoside diphosphate kinases (NDK) are involved in the salvage pathway by which free purines are converted to nucleosides and subsequently to nucleotides. In this report, we describe the cloning of NDK coding-sequence from Leishmania major, the expression of the enzyme containing a His(6)-tag in Escherichia coli, and purification of the catalytically active native protein by affinity chromatography using Ni-NTA resin.  相似文献   

6.
Like many trypanosomatids, the cell surface coat of Leishmania spp. is responsible for mediating various host-parasite interactions as well as acting as a dense physical barrier. This confers protection to the parasites in the hostile environments of the sandfly midgut and the macrophage phagolysosome. The major components of the surface coat are tethered to the cell surface via glycosylphosphatidylinositol glycolipids, and the composition of this surface coat is exquisitely regulated during the course of the parasite life-cycle. In this paper, we review what is known about the composition, biosynthesis and function of these glycosylphosphatidylinositol-containing molecules found within the parasite surface coat.  相似文献   

7.
Certain kinetoplastid (Leishmania spp. and Tryapnosoma cruzi) and apicomplexan parasites (Plasmodium falciparum and Toxoplasma gondii) are capable of invading human cells as part of their pathology. These parasites appear to have evolved a relatively expanded or diverse complement of genes encoding molecular chaperones. The gene families encoding heat shock protein 90 (Hsp90) and heat shock protein 70 (Hsp70) chaperones show significant expansion and diversity (especially for Leishmania spp. and T. cruzi), and in particular the Hsp40 family appears to be an extreme example of phylogenetic radiation. In general, Hsp40 proteins act as co-chaperones of Hsp70 chaperones, forming protein folding pathways that integrate with Hsp90 to ensure proteostasis in the cell. It is tempting to speculate that the diverse environmental insults that these parasites endure have resulted in the evolutionary selection of a diverse and expanded chaperone network. Hsp90 is involved in development and growth of all of these intracellular parasites, and so far represents the strongest candidate as a target for chemotherapeutic interventions. While there have been some excellent studies on the molecular and cell biology of Hsp70 proteins, relatively little is known about the biological function of Hsp70-Hsp40 interactions in these intracellular parasites. This review focuses on intracellular protozoan parasites of humans, and provides a critique of the role of heat shock proteins in development and pathogenesis, especially the molecular chaperones Hsp90, Hsp70 and Hsp40.  相似文献   

8.
In the course of their existence, parasites develop several metabolic pathways that differ significantly from those of their hosts. Despite the fairly close evolutionary kinship between Leishmania donovani and Trypanosoma brucei, the forms that live in the insect vectors have evolved different strategies for the disposition of available food resources. In this brief review, Joseph Blum will focus on the data available from studies on Leishmania spp and will largely ignore the information available from Trypanosoma spp.  相似文献   

9.
Suicide prevention: disruption of apoptotic pathways by protozoan parasites   总被引:4,自引:0,他引:4  
The modulation of apoptosis has emerged as an important weapon in the pathogenic arsenal of multiple intracellular protozoan parasites. Cryptosporidium parvum, Leishmania spp., Trypanosoma cruzi, Theileria spp., Toxoplasma gondii and Plasmodium spp. have all been shown to inhibit the apoptotic response of their host cell. While the pathogen mediators responsible for this modulation are unknown, the parasites are interacting with multiple apoptotic regulatory systems to render their host cell refractory to apoptosis during critical phases of intracellular infection, including parasite invasion, establishment and replication. Additionally, emerging evidence suggests that the parasite life cycle stage impacts the modulation of apoptosis and possibly parasite differentiation. Dissection of the host-pathogen interactions involved in modulating apoptosis reveals a dynamic and complex interaction that recent studies are beginning to unravel.  相似文献   

10.
Intracellular parasites, such as Leishmania spp, must acquire suitable carbon sources from the host cell in order to replicate. Here we present evidence that intracellular amastigote stages of Leishmania exploit amino sugars in the phagolysosome of mammalian macrophages as a source of carbon and energy. L. major parasites are capable of using N-acetylglucosamine and glucosamine as primarily carbon sources and contain key enzymes required for conversion of these sugars to fructose-6-phosphate. The last step in this pathway is catalyzed by glucosamine-6-phosphate deaminase (GND), which was targeted to glycosomes via a canonical C-terminal targeting signal when expressed as a GFP fusion protein. Mutant parasites lacking GND were unable to grow in medium containing amino sugars as sole carbohydrate source and rapidly lost viability, concomitant with the hyper-accumulation of hexosamine-phosphates. Expression of native GND, but not a cytosolic form of GND, in Δgnd parasites restored hexosamine-dependent growth, indicating that toxicity is due to depletion of glycosomal pools of ATP. Non-lethal increases in hexosamine phosphate levels in both Δgnd and wild type parasites was associated with a defect in promastigote metacyclogenesis, suggesting that hexosamine phosphate levels may influence parasite differentiation. Promastigote and amastigote stages of the Δgnd mutant were unable to replicate within macrophages and were either completely cleared or exhibited reduced lesion development in highly susceptible Balb/c mice. Our results suggest that hexosamines are a major class of sugars in the macrophage phagolysosome and that catabolism of scavenged amino sugars is required to sustain essential metabolic pathways and prevent hexosamine toxicity.  相似文献   

11.
Characterization of infective metacyclic promastigotes of Leishmania spp can be an essential step in several experimental protocols. Metacyclic forms of all Leishmania species display a typical morphology with short, narrow cell body, and an elongated flagellum. This feature suggests that metacyclics can be distinguished from procyclic forms by non-fluorimetric flow cytometric parameters thus enabling the follow-up of their appearance and acquisition of specific properties, during metacyclogenesis in in vitro cultures. Here we describe the flow cytometric parameters of stage-specific promastigotes of Leishmania major, Leishmania donovani, Leishmania amazonensis, and Leishmania braziliensis. Our findings were validated by optical microscopy morphology and specific procyclic labeling with FITC-peanut agglutinin. Furthermore, we show that parasite's distribution in the plot during differentiation in culture is not species specific and that the parasites displaying low forward-angle light scatter (FSC(low)) are three times more infective than the FSC(high) ones. The method here described can be applied to the identification of metacyclics of different Leishmania spp within the whole stationary population.  相似文献   

12.
The present study demonstrates that axenic cultures of Leishmania (Viannia) lainsoni produce larger cell masses in NNN-LIT medium, as well as higher amounts of total proteins in cell extracts, than Leishmania (Leishmania) amazonensis. Antigenicity of L. (V.) lainsoni whole promastigotes is similar to that of L. (L.) amazonensis, as demonstrated by an indirect immunofluorescence diagnostic test using sera from human patients and dogs infected with visceral leishmaniasis. Infectivity of the L. (V.) lainsoni strain used in the present work was demonstrated by the detection by transmission-electron microscopy of tissue amastigotes in skin lesion samples from an experimentally infected hamster. Incubation of lesion fragments in NNN-LIT medium allowed us to obtain promastigote forms, which could be cultivated successfully in vitro. lsoenzyme analysis of such promastigotes confirmed the parasite strain as L. (V.) lainsoni, as compared to other Leishmania reference strains. Our data indicate that L. (V.) lainsoni is a useful alternative source for antigen production as well for use in assays that depend on large cell volumes of Leishmania spp. parasites.  相似文献   

13.
Characterization and role of protozoan parasite proteasomes   总被引:3,自引:0,他引:3  
The proteasome, a large non-lysosomal multi-subunit protease complex, is ubiquitous in eukaryotic cells. In protozoan parasites, the proteasome is involved in cell differentiation and replication, and could therefore be a promising therapeutic target. This article reviews the present knowledge of proteasomes in protozoan parasites of medical importance such as Giardia, Entamoeba, Leishmania, Trypanosoma, Plasmodium and Toxoplasma spp.  相似文献   

14.
Glucose-6-phosphate isomerase catalyzes the reversible aldose-ketose isomerization of D-glucose-6-phosphate to D-fructose-6-phosphate in glycolysis and gluconeogenesis, and in the recycling of hexose-6-phosphate in the pentose phosphate pathway. The unicellular protozoans, Trypanosoma brucei, T. cruzi and Leishmania spp., of the order Kinetoplastida are important human parasites responsible for African sleeping sickness, Chagas' disease and leishmaniases, respectively. In these parasites, glycolysis is an important (and in some cases the only) metabolic pathway for ATP supply. The first seven of the 10 enzymes that participate in glycolysis, as well as an important fraction of the enzymes of the pentose phosphate pathway, are compartmentalized in peroxisome-like organelles called glycosomes. The dependence of the parasites on glycolysis, the importance of the pentose phosphate pathway in defense against oxidative stress, and the unique compartmentalization of these pathways, point to the enzymes contained in the glycosome as potential targets for drug design. The present report describes the first crystallographic structure of a parasite (Leishmania mexicana) glucose-6-phosphate isomerase. A comparison of the atomic structure of L. mexicana, human and other mammalian PGIs, which highlights unique features of the parasite's enzyme, is presented.  相似文献   

15.
Inoculation of Leishmania ( L.) spp. promastigotes in the dermis of mammals by blood-feeding sand flies can be accompanied by the rapid recruitment of neutrophils, inflammatory monocytes and dendritic cells. Despite the presence of these lytic leucocytes, parasitism is efficiently established. We show here that Leishmania donovani promastigotes are targeted to two different compartments in neutrophils. The compartments harbouring either damaged or non-damaged parasites were characterized at the electron microscopy (EM) level using the glucose 6-phosphatase cytochemistry and endosome–phagosome fusion assays. One involves the contribution of lysosomes leading to the formation of highly lytic compartments where parasites are rapidly degraded. The other is lysosome-independent and involves the contribution of a compartment displaying some features of the endoplasmic reticulum (ER) where parasites are protected from degradation. Using genetically modified parasites, we show that the promastigote surface lipophosphoglycan (LPG) is required to inhibit lysosome fusion and maintain parasites in neutrophil compartments displaying ER features. L. donovani -harbouring neutrophils that eventually enter apoptosis can be phagocytosed by macrophages enabling the stealth entry of parasites into their final replicative host cells. Thus, the ability of L. donovani to avoid trafficking into lysosomes-derived compartments in short-lived neutrophils constitutes a key process for the subsequent establishment of long-term parasitism.  相似文献   

16.

Background  

Leishmania spp., in the course of their parasitic life cycle, encounter two vastly different environments: the gut of sandflies and the phagosomes of mammalian macrophages. During transmission into a mammal, the parasites are exposed to increased ambient temperature as well as to different carbon sources. Molecular chaperones or heat shock proteins are implicated in the necessary adaptations which involve the ordered differentiation from the flagellated, extracellular promastigote to the intracellular amastigote stage.  相似文献   

17.
Leishmania spp., protozoan parasites with a digenetic life cycle, cause a spectrum of diseases in humans. Recently several Leishmania spp. have been sequenced which significantly boosted the number and quality of proteomic studies conducted. Here a historic review will summarize work of the pre-genomic era and then focus on studies after genome information became available. Firstly works comparing the different life cycle stages, in order to identify stage specific proteins, will be discussed. Identifying post-translational modifications by proteomics especially phosphorylation events will be discussed. Further the contribution of proteomics to the understanding of the molecular mechanism of drug resistance and the investigation of immunogenic proteins for the identification of vaccine candidates will be summarized. Approaches of how potentially secreted proteins were identified are discussed. So far 30-35% of the total predicted proteome of Leishmania spp. have been identified. This comprises mainly the abundant proteins, therefore the last section will look into technological approaches on how this coverage may be increased and what the gel-free and gel-based proteomics have to offer will be compared.  相似文献   

18.
6-Phosphogluconate dehydrogenase (6PGDH) is a key enzyme of the oxidative branch involved in the generation of NADPH and ribulose 5-phosphate. In the present work, we describe the cloning, sequencing and characterization of a 6PGDH gene from Leishmania (Leishmania) mexicana. The gene encodes a polypeptide chain of 479 amino acid residues with a predicted molecular mass of 52 kDa and a pI of 5.77. The recombinant protein possesses a dimeric quaternary structure and displays kinetic parameter values intermediate between those reported for Trypanosoma brucei and T. cruzi with apparent K(m) values of 6.93 and 5.2 μM for 6PG and NADP(+), respectively. The three-dimensional structure of the enzymes of Leishmania and T. cruzi were modelled from their amino acid sequence using the crystal structure of the enzyme of T. brucei as template. The amino acid residues located in the 6PGDH C-terminal region, which are known to participate in the salt bridges maintaining the protein dimeric structure, differed significantly among the enzymes of Leishmania, T. cruzi, and T. brucei. Our results strongly suggest that 6PGDH can be selected as a potential target for the development of new therapeutic drugs in order to improve existing chemotherapeutic treatments against these parasites.  相似文献   

19.
Leishmania is a genus of protozoan parasites that are transmitted by the bite of phlebotomine sandflies and give rise to a range of diseases (collectively known as leishmaniases) that affect over 150 million people worldwide. Cellular immune mechanisms have a major role in the control of infections with all Leishmania spp. However, as discussed in this Review, recent evidence suggests that each host-pathogen combination evokes different solutions to the problems of parasite establishment, survival and persistence. Understanding the extent of this diversity will be increasingly important in ensuring the development of broadly applicable vaccines, drugs and immunotherapeutic interventions.  相似文献   

20.
Protozoan parasites of Leishmania spp. invade macrophages as promastigotes and differentiate into replicative amastigotes within parasitophorous vacuoles. Infection of inbred strains of mice with Leishmania major is a well-studied model of the mammalian immune response to Leishmania species, but the ultrastructure and biochemical properties of the parasitophorous vacuole occupied by this parasite have been best characterized for other species of Leishmania. We examined the parasitophorous vacuole occupied by L. major in lymph nodes of infected mice and in bone marrow-derived macrophages infected in vitro. At all time points after infection, single L. major amastigotes were wrapped tightly by host membrane, suggesting that amastigotes segregate into separate vacuoles during replication. This small, individual vacuole contrasts sharply with the large, communal vacuoles occupied by Leishmania amazonensis. An extensive survey of the literature revealed that the single vacuoles occupied by L. major are characteristic of those formed by Old World species of Leishmania, while New World species of Leishmania form large vacuoles occupied by many amastigotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号