首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
C A Buser  B A Diner  G W Brudvig 《Biochemistry》1992,31(46):11449-11459
Cytochrome b559 (cyt b559) is an intrinsic and essential component of the photosystem II (PSII) protein complex, but its function, stoichiometry, and electron-transfer kinetics in the physiological system are not well-defined. In this study, we have used flash-detection optical spectroscopy to measure the kinetics and yields of photooxidation and dark reduction of cyt b559 in untreated, O2-evolving PSII-enriched membranes at room temperature. The dark redox states of cyt b559 and the primary electron acceptor, QA, were determined over the pH range 5.0-8.5. Both the fraction of dark-oxidized cyt b559 and dark-reduced QA increased with increasing acidity. Consistent with these results, an acid-induced drop in pH from 8.5 to 4.9 in a dark-adapted sample caused the oxidation of cyt b559, indicating a shift in the redox state during the dark reequilibration. As expected from the dark redox state of cyt b559, the rate and extent of photooxidation of cyt b559 during continuous illumination decreased toward more acidic pH values. After a single, saturating flash, the rate of photooxidation of cyt b559 was of the same order of magnitude as the rate of S2QA- charge recombination. In untreated PSII samples at pH 8.0 with 42% of cyt b559 oxidized and 15% of QA reduced in the dark, 4.7% of one copy of cyt b559 was photooxidized after one flash with a t1/2 of 540 +/- 90 ms. On the basis of our previous work [Buser, C. A., Thompson, L. K., Diner, B. A., & Brudvig, G. W (1990) Biochemistry 29, 8977] and the data presented here, we conclude that Sn+1, YZ., and P680+ are in redox equilibrium and cyt b559 (and YD) are oxidized via P680+. After a period of illumination sufficient to fully reduce the plastoquinone pool, we also observed the pH-dependent dark reduction of photooxidized cyt b559, where the rate of reduction decreased with decreasing pH and was not observed at pH < 6.4. To determine the direct source of reductant to oxidized cyt b559, we studied the dark reduction of cyt b559 and the reduction of the PQ pool as a function of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) concentration. We find that DCMU inhibits the reduction of cyt b559 under conditions where the plastoquinone pool and QA are reduced. We conclude that QB-. (H+) or QBH2 is the most likely source of the electron required for the reduction of oxidized cyt b559.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Photosystem (PSII) is a supramolecular polypeptide complex found in oxygenic photosynthetic membranes, which is capable of extracting electrons from water for the reduction of plastoquinone. An intriguing feature of this assembly is the fact that it includes more than a dozen low-mass polypeptides of generally unknown function. Using a transplastomic approach, we have individually disrupted the genes of the psbEFLJoperon in Nicotiana tabacum, which encode four such polypeptides, without impairing expression of downstream loci of the operon. All four mutants exhibited distinct phenotypes; none of them was capable of photoautotrophic growth. All mutants bleached rapidly in the light. Disruption of psbEand psbF, which code for the alpha and beta apoproteins of cytochrome b(559), abolished PSII activity, as expected; Delta psbL and Delta psbJ plants displayed residual PSII activity in young leaves. Controlled partial solubilisation of thylakoid membranes uncovered surprisingly severe impairment of PSII structure, with subunit and assembly patterns varying depending on the mutant considered. In the Delta psbL mutant PSII was assembled primarily in a monomeric form, the homodimeric form was preponderant in Delta psbJ, and, unlike the case in Delta psbZ, the thylakoids of both mutants released some PSII supercomplexes. On the other hand, Photosystem I (PSI), the cytochrome b(6)f complex, ATP synthase, LHCII, and CP24/CP26/CP29 antennae were present in near wild-type levels. The data are discussed in terms of their implications for structural, biogenetic and functional aspects of PSII.  相似文献   

3.
The kinetics of the photoreduction of cytochrome b-559 and plastoquinone were measured using well-coupled spinach chloroplasts. High potential (i.e, hydroquinone reducible) cytochrome b-559 was oxidized with low intensity far-red light in the presence of N-methyl phenazonium methosulfate or after preillumination with high intensity light. Using long flashes of red light, the half-reduction time of cytochrome b-559 was found to be 100 +/- 10 ms, compared to 6-10 ms for the photoreduction of the plastoquinone pool. Light saturation of the photoreduction of cytochrome b-559 occurred at a light intensity less than one-third of the intensity necessary for the saturation of ferricyanide reduction under identical illumination conditions. The photoreduction of cytochrome b-559 was accelerated in the presence of dibromothymoquinone with a t 1/2 = 25-35 ms. The addition of uncouplers, which caused stimulatory effect on ferricyanide reduction under the same experimental conditions resulted in a decrease in the rate of cytochrome b-559 reduction. The relatively slow photoreduction rate of cytochrome b-559 compared to the plastoquinone pool implies that electrons can be transferred efficiently from Photosystem II to plastoquinone without the involvement of cytochrome b-559 as an intermediate. These results indicate that it is unlikely that high potential cytochrome b-559 functions as an obligatory redox component in the main electron transport chain joining the two photosystems.  相似文献   

4.
Toxic Cu (II) effect on cytochrome b 559 under aerobic photoinhibitory conditions was examined in two different photosystem II (PSII) membrane preparations active in oxygen evolution. The preparations differ in the content of cytochrome b 559 redox potential forms. Difference absorption spectra showed that the presence of Cu (II) induced the oxidation of the high-potential form of cytochrome b 559 in the dark. Addition of hydroquinone reduced the total oxidized high-potential form of cytochrome b 559 present in Cu (II)-treated PSII membranes indicating that no conversion to the low-potential form took place. Spectroscopic determinations of cytochrome b 559 during photoinhibitory treatment showed slower kinetics of Cu (II) effect on cytochrome b 559 in comparison with the rapid loss of oxygen evolution activity in the same conditions. This result indicates that cytochrome b 559 is affected after PSII centres are photoinhibited. The high-potential form was more sensitive to toxic Cu (II) action than the low-potential form under illumination at pH 6.0. The content of the high-potential form of cytochrome b 559 was completely lost; however, the low-potential content was unaffected in these conditions. This loss did not involve cytochrome protein degradation. The results are discussed in terms of different binding properties of the heme iron to the protonated or unprotonated histidine ligand in the high-potential and low-potential forms of cytochrome b 559, respectively.  相似文献   

5.
Characterization of the multiple forms of cytochrome b559 in photosystem II   总被引:2,自引:0,他引:2  
Cytochrome b559 is an essential component of the photosystem II (PSII) protein complex. Its function, which has long been an unsolved puzzle, is likely to be related to the unique ability of PSII to oxidize water. We have used EPR spectroscopy and spectrophotometric redox titrations to probe the structure of cytochrome b559 in PSII samples that have been treated to remove specific components of the complex. The results of these experiments indicate that the low-temperature photooxidation of cytochrome b559 does not require the presence of the 17-, 23-, or 33-kDa extrinsic polypeptides or the Mn complex (the active site in water oxidation). We observe a shift in the g value of the EPR signal of cytochrome b559 upon warming a low-temperature photooxidized sample, which presumably reflects a change in conformation to accommodate the oxidized state. At least three redox forms of cytochrome b559 are observed. Untreated PSII membranes contain one high-potential (375 mV) and one intermediate-potential (230 mV) cytochrome b559 per PSII. Thylakoid membranes also appear to contain one high-potential and one intermediate-potential cytochrome b559 per PSII, although this measurement is more difficult due to interference from other cytochromes. Removal of the 17- and 23-kDa extrinsic polypeptides from PSII membranes shifts the composition to one intermediate-potential (170 mV) and one low-potential (5 mV) cytochrome b559. This large decrease in potential is accompanied by a very small g-value change (0.04 at gz), indicating that it is the environment and not the ligand field of the heme which changes significantly upon the removal of the 17- and 23-kDa polypeptides.  相似文献   

6.
G S Tae  W A Cramer 《Biochemistry》1992,31(16):4066-4074
The COOH-terminal domain of the 80-residue cytochrome b559 alpha-subunit (psbE gene product) in Synechocystis sp. PCC 6803 was sequentially truncated in order to determine the minimum polypeptide length needed for function and assembly. A stop codon was introduced into the Arg-50, Arg-59, or Tyr-69 codons of the psbE gene, generating mutants truncated by 31, 22, and 12 residues, respectively. Removal of 12 residues caused a decrease of 20% in PSII function. Truncation of 22 or 31 residues caused a large decrease (60-85%) in the photoautotrophic growth rate, the rate of O2 evolution, and the amplitude of the 77 K 696-nm fluorescence, and a concomitant increase in the constant yield fraction (F0/Fmax) of the chlorophyll fluorescence. The level of residual activity in the Arg50-stop mutant was 10-20% of the wild type, which was reflected in a similar low level of immunochemically detected D2 polypeptide. Quantitation of the PSII reaction center stoichiometry of the Arg50-stop mutant by analysis of [14C]DCMU binding also showed a 5-fold decrease (1:910 Chl in wild type and 1:5480 Chl in R50) in the PSII reaction center concentration. However, the KD value for DCMU in the residual 15% of the complexes to which it bound was approximately equal to that (25 nM) of the wild type. Northern blot analysis showed no decrease in the b559 psbE mRNA level. Chemical difference spectral analysis of heme content indicated that the level of native cytochrome b559 heme in the Arg50-stop mutant (1:640 Chl) was 80% that of wild type (1:510 Chl).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cytochrome b559 is an essential component of the photosystem II reaction center in photosynthetic oxygen-evolving organisms, but its function still remains unclear. The use of photosystem II preparations from Thermosynechococcus elongatus of high integrity and activity allowed us to measure for the first time the influence of cytochrome b559 mutations on its midpoint redox potential and on the reduction of the cytochrome b559 by the plastoquinone pool (or QB). In this work, five mutants having a mutation in the α-subunit (I14A, I14S, R18S, I27A and I27T) and one in the β-subunit (F32Y) of cytochrome b559 have been investigated. All the mutations led to a destabilization of the high potential form of the cytochrome b559. The midpoint redox potential of the high potential form was significantly altered in the αR18S and αI27T mutant strains. The αR18S strain also showed a high sensitivity to photoinhibitory illumination and an altered oxidase activity. This was suggested by measurements of light induced oxidation and dark re-reduction of the cytochrome b559 showing that under conditions of a non-functional water oxidation system, once the cytochrome is oxidized by P680+, the yield of its reduction by QB or the PQ pool was smaller and the kinetic slower in the αR18S mutant than in the wild-type strain. Thus, the extremely positive redox potential of the high potential form of cytochrome b559 could be necessary to ensure efficient oxidation of the PQ pool and to function as an electron reservoir replacing the water oxidation system when it is not operating.  相似文献   

8.
G S Tae  W A Cramer 《Biochemistry》1992,31(16):4066-4074
The COOH-terminal domain of the 80-residue cytochrome b559 alpha-subunit (psbE gene product) in Synechocystis sp. PCC 6803 was sequentially truncated in order to determine the minimum polypeptide length needed for function and assembly. A stop codon was introduced into the Arg-50, Arg-59, or Tyr-69 codons of the psbE gene, generating mutants truncated by 31, 22, and 12 residues, respectively. Removal of 12 residues caused a decrease of 20% in PSII function. Truncation of 22 or 31 residues caused a large decrease (60-85%) in the photoautotrophic growth rate, the rate of O2 evolution, and the amplitude of the 77 K 696-nm fluorescence, and a concomitant increase in the constant yield fraction (F0/Fmax) of the chlorophyll fluorescence. The level of residual activity in the Arg50-stop mutant was 10-20% of the wild type, which was reflected in a similar low level of immunochemically detected D2 polypeptide. Quantitation of the PSII reaction center stoichiometry of the Arg50-stop mutant by analysis of [14C]DCMU binding also showed a 5-fold decrease (1:910 Chl in wild type and 1:5480 Chl in R50) in the PSII reaction center concentration. However, the KD value for DCMU in the residual 15% of the complexes to which it bound was approximately equal to that (25 nM) of the wild type. Northern blot analysis showed no decrease in the b559 psbE mRNA level. Chemical difference spectral analysis of heme content indicated that the level of native cytochrome b559 heme in the Arg50-stop mutant (1:640 Chl) was 80% that of wild type (1:510 Chl).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The genes encoding the two subunits (alpha and beta) of the cytochrome b559 (cyt b559) protein, psbE and psbF, were cloned from the unicellular, transformable cyanobacterium, Synechocystis 6803. Cyt b559, an intrinsic membrane protein, is a component of photosystem II, a membrane-protein complex that catalyzes photosynthetic oxygen evolution. However, the role of cyt b559 in photosynthetic electron transport is yet to be determined. A high degree of homology was found between the cyanobacterial and green plant chloroplastidic psbE and psbE genes and in the amino acid sequences of their corresponding protein products. Cartridge mutagenesis techniques were used to generate a deletion mutant of Synechocystis 6803 in which the psbE and psbF genes were replaced by a kanamycin-resistance gene cartridge. Physiological analyses indicated that the PSII complexes of the mutant were inactivated. We conclude that cyt b559 is an essential component of PSII.  相似文献   

10.
We have found that short chain plastoquinones effectively stimulated photoreduction of the low potential form of cytochrome b(559) and were also active in dark oxidation of this cytochrome under anaerobic conditions in Triton X-100-solubilized photosystem II (PSII) particles. It is also shown that molecular oxygen competes considerably with the prenylquinones in cytochrome b(559) oxidation under aerobic conditions, indicating that both molecular oxygen and plastoquinones could be electron acceptors from cytochrome b(559) in PSII preparations. alpha-Tocopherol quinone was not active in the stimulation of cytochrome photoreduction but efficiently oxidized it in the dark. Both the observed photoreduction and dark oxidation of the cytochrome were not sensitive to 3-(3,4-dichlorophenyl)-1, 1-dimethylurea. It was concluded that both quinone-binding sites responsible for the redox changes of cytochrome b(559) are different from either the Q(A) or Q(B) site in PSII and represent new quinone-binding sites in PSII.  相似文献   

11.
In this work, we extended the reversible radical pair model which describes energy utilization and electron transfer up to the first quinone electron acceptor (Q(A)) in photosystem II (PSII), by redox reactions involving cytochrome (cyt) b559. In the model, cyt b559 accepts electrons from the reduced primary electron acceptor in PSII, pheophytin, and donates electrons to the oxidized primary electron donor in PSII (P680+). Theoretical simulations of chlorophyll fluorescence rise based on the model show that the maximal fluorescence, F(M), increases with an increasing amount of initially reduced cyt b559. In this work we applied, the first to our knowledge, metabolic control analysis (MCA) to a model of reactions in PSII. The MCA was used to determine to what extent the reactions occurring in the model control the F(M) level and how this control depends on the initial redox state of cyt b559. The simulations also revealed that increasing the amount of initially reduced cyt b559 could protect PSII against photoinhibition. Also experimental data, which might be used to validate our theory, are presented and discussed.  相似文献   

12.
It has been known that arginine is used as the basic amino acid in the ?subunit of cytochrome b559 (Cyt b559) except histidine. However, previous studies have focused on the function of histidine in the activities of photosystem (PS) Ⅱ and there are no reports regarding the structural and/or functional roles of arginine in PSII complexes. In the present study,two arginine18 (R18) mutants of Chlamydomonas reinhardtii were constructed using site-directed mutagenesis, in which R18 was replaced by glutamic acid (E) and glycine (G). The results show that the oxygen evolution of the PSII complex in the R18G and R18E mutants was approximately 60% of wild-type (WT) levels and that, after irradiation at high light intensity, oxygen evolution for the PSII of mutants was reduced to zero compared with 40% in WT cells. The efficiency of light capture by PSII (Fv/Fm) of R18G and R18E mutants was approximately 42%-46% that of WT cells. Furthermore, levels of the ?subunit of Cyt b559 and PsbO proteins were reduced in thylakoid membranes compared with WT. Overall, these data suggest that R18 plays a significant role in helping Cyt b559 maintain the structure of the PSII complex and its activity,although it is not directly bound to the heme group.  相似文献   

13.
《FEBS letters》1985,179(1):51-54
The high-potential form of cytochrome b-559 (b-559 HP) is closely linked to the oxygenic photosystem (photosystem II) but its relation to other redox components of the photosynthetic apparatus, including plastoquinone, is still obscure. We investigated the photoreduction of cytochrome b-559 HP by isolated chloroplasts in the presence of 3 antagonists of plastoquinone, of which, DBMIB (dibromothymoquinone) and DNP-INT (dinitrophenyl ether of iodonitrothymol) are known to inhibit the oxidation of the plastoquinone pool (PQ) by the FeS-cytochrome ƒ/b6 complex and one, UHDBT (5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole) is known to inhibit the reduction of PQ by QB.QB is a protein-bound plastoquinone that serves as a two-electron gate for the reduction of PQ. We found that DBMIB and DNP-INT did not inhibit but low concentrations of UHDBT severely inhibited the photoreduction of cytochrome b-559 HP. These results suggest that the electron donor for the reduction of cytochrome b-559 HP was either QB or a portion of the PQ pool that was oxidized by a new pathway free of binding sites for DBMIB and DNP-INT.  相似文献   

14.
Cytochrome (cyt) b559 has been proposed to play an important role in the cyclic electron flow processes that protect photosystem II (PSII) from light-induced damage during photoinhibitory conditions. However, the exact role(s) of cyt b559 in the cyclic electron transfer pathway(s) in PSII remains unclear. To study the exact role(s) of cyt b559, we have constructed a series of site-directed mutants, each carrying a single amino acid substitution of one of the heme axial-ligands, in the cyanobacterium Synechocystis sp. PCC6803. In these mutants, His-22 of the alpha or the beta subunit of cyt b559 was replaced with either Met, Glu, Tyr, Lys, Arg, Cys or Gln. On the basis of oxygen-evolution and chlorophyll a fluorescence measurements, we found that, among all mutants that were constructed, only the H22Kalpha mutant grew photoautotrophically, and accumulated stable PSII reaction centers ( approximately 81% compared to wild-type cells). In addition, we isolated one pseudorevertant of the H22Ybeta mutant that regained the ability to grow photoautotrophically and to assemble stable PSII reaction centers ( approximately 79% compared to wild-type cells). On the basis of 77 K fluorescence emission measurements, we found that energy transfer from the phycobilisomes to PSII reaction centers was uncoupled in those cyt b559 mutants that assembled little or no stable PSII. Furthermore, on the basis of immunoblot analyses, we found that in thylakoid membranes of cyt b559 mutants that assembled little or no PSII, the amounts of the D1, D2, cyt b559alpha and beta polypeptides were very low or undetectable but their CP47 and PsaC polypeptides were accumulated to the wild-type level. We also found that the amounts of cyt b559beta polypeptide were significantly increased (larger than two folds) in thylakoid membranes of cyt b559 H22YbetaPS+ mutant cells. We suspected that the increase in the amounts of cyt b559 H22YbetaPS+ mutant polypeptides in thylakoid membranes might facilitate the assembly of functional PSII in cyt b559 H22YbetaPS+ mutant cells. Moreover, we found that isolated His-tagged PSII particles from H22Kalpha mutant cells gave rise to redox-induced optical absorption difference spectra of cyt b559. Therefore, our results concluded that significant fractions of H22Kalpha mutant PSII particles retained the heme of cyt b559. Finally, this work is the first report of cyt b559 mutants having substitutions of an axial heme-ligands that retain the ability to grow photoautotrophically and to assemble stable PSII reaction centers. These two cyt b559 mutants (H22Kalpha and H22YbetaPS+) and their PSII reaction centers will be very suitable for further biophysical and biochemical studies of the functional role(s) of cyt b559 in PSII.  相似文献   

15.
Photosystem II (PSII) core complexes consist of CP47, CP43, D1, D2 proteins and of several low molecular weight integral membrane polypeptides, such as the chloroplast-encoded PsbE, PsbF, and PsbI proteins. To elucidate the function of PsbI in the photosynthetic process as well as in the biogenesis of PSII in higher plants, we generated homoplastomic knock-out plants by replacing most of the tobacco psbI gene with a spectinomycin resistance cartridge. Mutant plants are photoautotrophically viable under green house conditions but sensitive to high light irradiation. Antenna proteins of PSII accumulate to normal amounts, but levels of the PSII core complex are reduced by 50%. Bioenergetic and fluorescence studies uncovered that PsbI is required for the stability but not for the assembly of dimeric PSII and supercomplexes consisting of PSII and the outer antenna (PSII-LHCII). Thermoluminescence emission bands indicate that the presence of PsbI is required for assembly of a fully functional Q(A) binding site. We show that phosphorylation of the reaction center proteins D1 and D2 is light and redox-regulated in the wild type, but phosphorylation is abolished in the mutant, presumably due to structural alterations of PSII when PsbI is deficient. Unlike wild type, phosphorylation of LHCII is strongly increased in the dark due to accumulation of reduced plastoquinone, whereas even upon state II light phosphorylation is decreased in delta psbI. These data attest that phosphorylation of D1/D2, CP43, and LHCII is regulated differently.  相似文献   

16.
J. Whitmarsh  W.A. Cramer 《BBA》1977,460(2):280-289
The kinetics of the photoreduction of cytochrome b-559 and plastoquinone were measured using well-coupled spinach chloroplasts. High potential (i.e. hydroquinone reducible) cytochrome b-559 was oxidized with low intensity far-red light in the presence of N-methyl phenazonium methosulfate or after preillumination with high intensity light. Using long flashes of red light, the half-reduction time of cytochrome b-559 was found to be 100±10 ms, compared to 6–10 ms for the photoreduction of the plastoquinone pool. Light saturation of the photoreduction of cytochrome b-559 occurred at a light intensity less than one-third of the intensity necessary for the saturation of ferricyanide reduction under identical illumination conditions. The photoreduction of cytochrome b-559 was accelerated in the presence of dibromothymoquinone with a t12 = 25–35 ms. The addition of uncouplers, which caused a stimulatory effect on ferricyanide reduction under the same experimental conditions, resulted in a decrease in the rate of cytochrome b-559 reduction. The relatively slow photoreduction rate of cytochrome b-559 compared to the plastoquinone pool implies that electrons can be transferred efficiently from Photosystem II to plastoquinone without the involvement of cytochrome b-559 as an intermediate. These results indicate that it is unlikely that high potential cytochrome b-559 functions as an obligatory redox component in the main electron transport chain joining the two photosystems.  相似文献   

17.
The functional role of cytochrome (cyt) b559 in photosystem II (PSII) was investigated in H22Kα and Y18Sα cyt b559 mutants of the cyanobacterium Synechocystis sp. PCC6803. H22Kα and Y18Sα cyt b559 mutant carries one amino acid substitution on and near one of heme axial ligands of cyt b559 in PSII, respectively. Both mutants grew photoautotrophically, assembled stable PSII, and exhibited the normal period-four oscillation in oxygen yield. However, both mutants showed several distinct chlorophyll a fluorescence properties and were more susceptible to photoinhibition than wild type. EPR results indicated the displacement of one of the two axial ligands to the heme of cyt b559 in H22Kα mutant reaction centers, at least in isolated reaction centers. The maximum absorption of cyt b559 in Y18Sα mutant PSII core complexes was shifted to 561 nm. Y18Sα and H22Kα mutant PSII core complexes contained predominately the low potential form of cyt b559. The findings lend support to the concept that the redox properties of cyt b559 are strongly influenced by the hydrophobicity and ligation environment of the heme. When the cyt b559 mutations placed in a D1-D170A genetic background that prevents assembly of the manganese cluster, accumulation of PSII is almost completely abolished. Overall, our data support a functional role of cyt b559 in protection of PSII under photoinhibition conditions in vivo.  相似文献   

18.
It has been known that arginine is used as the basic amino acid in the α-subunit of cytochrome b559 (Cyt b559) except histidine. However, previous studies have focused on the function of histidine in the activities of photosystem (PS) II and there are no reports regarding the structural and/or functional roles of arginine in PSII complexes. In the present study, two arginine18 (R18) mutants of Chlamydomonas reinhardtii were constructed using site-directed mutagenesis, in which R18 was replaced by glutamic acid (E) and glycine (G). The results show that the oxygen evolution of the PSII complex in the R18G and R18E mutants was approximately 60% of wild-type (WT) levels and that, after irradiation at high light intensity, oxygen evolution for the PSII of mutants was reduced to zero compared with 40% in WT cells. The efficiency of light capture by PSII (Fv/Fm) of R18G and R18E mutants was approximately 42%–46% that of WT cells. Furthermore, levels of the α-subunit of Cyt b559 and PsbO proteins were reduced in thylakoid membranes compared with WT. Overall, these data suggest that R18 plays a significant role in helping Cyt b559 maintain the structure of the PSII complex and its activity, although it is not directly bound to the heme group.  相似文献   

19.
C A Buser  B A Diner  G W Brudvig 《Biochemistry》1992,31(46):11441-11448
The stoichiometry of cytochrome b559 (one or two copies) per reaction center of photosystem II (PSII) has been the subject of considerable debate. The molar ratio of cytochrome b559 has a number of significant implications on our understanding of the functional role of cytochrome b559, the mechanism of electron donation in PSII, and the stoichiometry of the other redox-active, reaction center components. We have reinvestigated the stoichiometry of cytochrome b559 in PSII-enriched and thylakoid membranes, using differential absorbance and electron paramagnetic resonance spectroscopies. The data from both quantitation procedures strongly indicate only one copy of cytochrome b559 per reaction center in PSII-enriched membranes and also suggest one copy of cytochrome b559 per reaction center in thylakoid membranes.  相似文献   

20.
Chung-Hsien Hung 《BBA》2007,1767(6):686-693
Cytochrome (cyt) b559 has been proposed to play an important role in the cyclic electron flow processes that protect photosystem II (PSII) from light-induced damage during photoinhibitory conditions. However, the exact role(s) of cyt b559 in the cyclic electron transfer pathway(s) in PSII remains unclear. To study the exact role(s) of cyt b559, we have constructed a series of site-directed mutants, each carrying a single amino acid substitution of one of the heme axial-ligands, in the cyanobacterium Synechocystis sp. PCC6803. In these mutants, His-22 of the α or the β subunit of cyt b559 was replaced with either Met, Glu, Tyr, Lys, Arg, Cys or Gln. On the basis of oxygen-evolution and chlorophyll a fluorescence measurements, we found that, among all mutants that were constructed, only the H22Kα mutant grew photoautotrophically, and accumulated stable PSII reaction centers (∼ 81% compared to wild-type cells). In addition, we isolated one pseudorevertant of the H22Yβ mutant that regained the ability to grow photoautotrophically and to assemble stable PSII reaction centers (∼ 79% compared to wild-type cells). On the basis of 77 K fluorescence emission measurements, we found that energy transfer from the phycobilisomes to PSII reaction centers was uncoupled in those cyt b559 mutants that assembled little or no stable PSII. Furthermore, on the basis of immunoblot analyses, we found that in thylakoid membranes of cyt b559 mutants that assembled little or no PSII, the amounts of the D1, D2, cyt b559α and β polypeptides were very low or undetectable but their CP47 and PsaC polypeptides were accumulated to the wild-type level. We also found that the amounts of cyt b559β polypeptide were significantly increased (larger than two folds) in thylakoid membranes of cyt b559 H22YβPS+ mutant cells. We suspected that the increase in the amounts of cyt b559 H22YβPS+ mutant polypeptides in thylakoid membranes might facilitate the assembly of functional PSII in cyt b559 H22YβPS+ mutant cells. Moreover, we found that isolated His-tagged PSII particles from H22Kα mutant cells gave rise to redox-induced optical absorption difference spectra of cyt b559. Therefore, our results concluded that significant fractions of H22Kα mutant PSII particles retained the heme of cyt b559. Finally, this work is the first report of cyt b559 mutants having substitutions of an axial heme-ligands that retain the ability to grow photoautotrophically and to assemble stable PSII reaction centers. These two cyt b559 mutants (H22Kα and H22YβPS+) and their PSII reaction centers will be very suitable for further biophysical and biochemical studies of the functional role(s) of cyt b559 in PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号