首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 963 毫秒
1.
Glycopeptides obtained by exhaustive proteolytic digestion of synaptosomal plasma membranes from adult rat forebraini were separated by affinity chromatography on concanavalin A-Sepharoe. Concanavalin A-binding glycopeptides are essentially made up of mannose and N-acetylglucosamine in a molar ration of 3.45:1, whereas glycopeptides not bound to concanavalin A have a complex monosaccharide composition. By gel filtration on Bio-Gel P-30, concanavalin A-binding glycopeptides appear as low-molecular-weight glycopeptides (migrating like ovalbumin glycopeptides), whereas glycopeptides not bound to concanavalin A behave as high-molecular-weight glycopeptides (migrating like fetuin glycopeptides). Comparison of concanavalin A-binding glycopeptides from rat brain synaptosomal plasma membranes with concanavalin A-binding glycoproteins isolated from the same membrane fraction shows clear differences in monosccharide composition. We demonstrate here that this discrepancy is due to the presence on most concanavalin A-binding glycoprotein subunits of at least two different types of glycan: in addition to the concanavalin A-binding glycans, these glycoprotein subunits carry other glycans which do not interact with concanavalin A. Biological implications of the presence of two (or more) types of glycan on the same polypeptide are discussed.  相似文献   

2.
Changes in axonally transported phospholipids of regenerating goldfish optic nerve were studied by intraocular injection of [2-3H]glycerol 9 days and 16 days after nerve crush at 30°C. The four major glycerophospholipids all showed substantial increases in transported radioactivity above non-regenerating controls at both time points, these being maximal (15- to 35-fold) in the optic nerve-tract at 9 days and about half as great at 16 days. In the contralateral optic tectum transported label increased 6- to 13-fold at 9 days and 10- to 25-fold at 16 days in the various glycerophospholipids. While all glycerophospholipids showed absolute increases in both tissues, PS and PI increased relatively more, especially in the tectum. The regeneration-associated increases in transported label of all glycerophospholipids were larger than those previously demonstrated for gangliosides and glycoproteins in the same system. Special Issue dedicated to Dr. Eugene Kreps.  相似文献   

3.
The insertion of axonally transported fucosyl glycoproteins into the axolemma of regenerating nerve sprouts was examined in rat sciatic motor axons at intervals after nerve crush. [(3)H]Fucose was injected into the lumbar ventral horns and the nerves were removed at intervals between 1 and 14 d after labeling. To follow the fate of the “pulse- labeled” glycoproteins, we examined the nerves by correlative radiometric and EM radioautographic approaches. The results showed, first, that rapidly transported [(3)H]fucosyl glycoproteins were inserted into the axolemma of regenerating sprouts as well as parent axons. At 1 d after delivery, in addition to the substantial mobile fraction of radioactivity still undergoing bidirectional transport within the axon, a fraction of label was already associated with the axolemma. Insertion of labeled glycoproteins into the sprout axolemma appeared to occur all along the length of the regenerating sprouts, not just in sprout terminals. Once inserted, labeled glycoproteins did not undergo extensive redistribution, nor did they appear in sprout regions that formed (as a result of continued outgrowth) after their insertion. The amount of radioactivity in the regenerating nerves decreased with time, in part as a result of removal of transported label by retrograde transport. By 7-14 d after labeling, radioautography showed that almost all the remaining radioactivity was associated with axolemma. The regenerating sprouts retained increased amounts of labeled glycoproteins; 7 or 14 d after labeling, the regenerating sprouts had over twice as much of radioactivity as comparable lengths of control nerves or parent axons. One role of fast axonal transport in nerve regeneration is the contribution to the regenerating sprout of glycoproteins inserted into the axolemma; these membrane elements are added both during longitudinal outgrowth and during lateral growth and maturation of the sprout.  相似文献   

4.
Metabolic turnover of axonally transported glycoproteins has been examined in membranous and soluble subfractions of goldfish optic tectum following intraocular injection of [3H]fucose. Radioactivity in total transported glycoproteins reached a maximum in the tectum after 24–30 hr, then declined with a half-life of approximately 20 days. Radioactivity in the total membranous subfraction declined with a similar half-life of 20–21 days while radioactivity in the soluble fraction showed a significantly shorter half-life of approximately seven days. Various sized glycopeptides derived from the membranous subfraction showed differential rates of loss of radioactivity with the lower molecular weight nondialyzable molecules displaying the most rapid turnover. In contrast, the glycopeptides derived from the soluble fraction showed relatively uniform rates of turnover. The results are discussed in the context of metabolic compartmentalization between membranous and soluble glycoproteins and among the carbohydrate chains of the membranous molecules.Supported by NIH grant NS 11456.  相似文献   

5.
Abstract: Experiments were performed to determine whether ppsttranslational addition of amino acids to axonal proteins occurs in axons of the rat sciatic nerve. Two ligatures were placed 1 cm apart on sciatic nerves. Six days later, segments proximal to each ligature were removed, homogenized, centrifuged at 150,000 · g , and analyzed for the ability to incorporate 3H-amino acids into proteins. No incorporation of amino acids into proteins was found in the high-speed supernatant, but when the supernatant was passed through a Sephacryl S-200 chromatography column (removing molecules less than 20 kD), [3H]arginine, lysine, leucine and aspartic acid were incorporated into proteins in both proximal and distal nerve segments. Small but consistently greater amounts of radioactivity were incorporated into proteins in proximal segments compared with distal segments, indicating that the components necessary for the reaction are transported axonally. This reaction represents the posttranslational incorporation of a variety of amino acids into proteins of rat sciatic nerve axons. Other experiments showed that the incorporation of amino acids into proteins is by covalent bonding, that the amino acid donor is likely to be tRNA, and that the reaction is inhibited in vivo by a substance whose molecular mass is less than 20 kD. This inhibition is not affected by incubation with physiological concentrations of unlabeled amino acids, by boiling, or by treatment with Proteinase K. When the axonally transported component of the reaction was determined in regenerating nerves, the amount of incorporation of amino acids into protein was 15–150 times that in intact nerves. The results indicate that the components of this reaction are transported axonally in rat sciatic nerves and that the reaction is increased dramatically in growing axons during nerve regeneration.  相似文献   

6.
Abstract: Lysolecithin-solubilized proteins from axon plasma membranes of lobster walking leg nerve bundles were chromatographed on concanavalin A (Con A)-sepharose. Bound glycoproteins were eluted with α-methyl-D- mannoside. Near quantitative recovery of total protein was observed, 20–30% of the total protein being eluted in the Con A-binding glycoprotein fraction. A 5-fold enrichment of acetylcholinesterase (AChE) activity was achieved, demonstrating the glycoprotein nature of the axonal enzyme. The chromatographed fractions were characterized for binding of [3H]quinuclidinyl benzilate (QNB), [3nicotine (Nic), and [1251]α-bung arotoxin (BgTx) in an attempt to distinguish possible "muscarinic" and "nicotinic" binding sites in axonal membranes. All of the high-affinity "muscarinic" [3H]QNB binding activity appeared in the non-Con A-binding protein fractions, while binding of the two "nicotinic" ligands, [3Nic and 125I-BgTx, was found in both the glycoprotein and non-Con A-binding protein fractions. BgTx interaction with the Con A-binding glycoproteins could be blocked with dtubocurarine, but BgTx binding in the non-Con A-binding proteins was not inhibited by curare. The significance of multiple cholinergic binding sites in axonal membranes is discussed. These data suggest a closer similarity between the cholinergic ligand binding proteins of peripheral nerve membrane and ganglia than between the axonal cholinergic binding sites and the ACh receptor of the neuromuscular junction.  相似文献   

7.
The axonal transport of proteins, glycoproteins, and gangliosides in sensory neurons of the sciatic nerve was examined in adult rats exposed to acrylamide via intraperitoneal injection (40 mg/kg of body weight/day for nine consecutive days). The L5 dorsal root ganglion was injected with either [35S]methionine to label proteins or [3H]glucosamine to label, more specifically, glycoproteins and gangliosides. At times ranging from 2 to 6 h later, the sciatic nerve and injected ganglion were excised and radioactivity in consecutive 5-mm segments determined. In both control and acrylamide-treated animals, outflow profiles of [35S]methionine-labeled proteins showed a well defined crest which moved down the nerve at a rate of approximately 340 mm/day. Similar outflow profiles and transport rates were seen for [3H]glucosamine-labeled glycoproteins in control animals. However, in animals treated with acrylamide, the crest of transported labeled glycoprotein was severely attenuated as it moved down the nerve. This finding suggests that in acrylamide-treated animals, axonally transported glycoproteins were preferentially transferred (unloaded or exchanged against unlabeled molecules) from the transport vector to stationary axonal structures. We also examined the clearance of axonally transported glycoproteins distal to a ligature on the nerve. The observed impairment of clearance in acrylamide-treated animals relative to controls is supportive of the above hypothesis. Acrylamide may directly affect the mechanism by which axonally transported material is unloaded from the transport vector. Alternatively, the increased rate of unloading might reflect an acrylamide-induced increase in the demand for axonally transported material.  相似文献   

8.
Structural characteristics of glycosaminoglycans (GAGs) derived from axonally transported proteoglycans (PGs) were compared in 21 day regenerating and intact goldfish optic tracts. Twenty one days following unilateral optic nerve crushes, fish received intraocular injections of35SO4. Eight hours post injection, tracts were removed and the35SO4-labeled GAGs, chondroitin sulfate (CS) and heparan sulfate (HS), isolated. The HS from regenerating optic tracts had a DEAE elution profile indicative of decreased charge density, while heparitinase treatment of HS followed by Sephadex G50 analysis of the resulting fragments showed a change in the elution pattern, suggesting reduced overall sulfation. HPLC analysis of HS disaccharides revealed a difference in the sulfation pattern of regenerating tract HS, characterized by the reduced presence of tri-sulfated disaccharides. Other structural features, such as the sizes of CS and HS, and the sulfation of CS, showed no changes during regeneration. These results indicate that changes in the structure of axonally transported HS accompany regeneration of goldfish optic axons.  相似文献   

9.
Ascitic fluid haptoglobins 1-1, 2-1 and 2-2 and their tryptic glycopeptides were fractionated by affinity chromatography on Con A-Sepharose. Three peaks were obtained, corresponding to non-binding, weakly binding and strongly binding fractions. Concanavalin A-non-binding and concanavalin A-binding fractions of haptoglobin and of glycopeptide III 2-2 consisted of a series of polymers with increasing molecular mass, except for the non-binding fraction of glycopeptide III 1-1. After reduction there was no difference between the subunit composition of the glycopeptides and their concanavalin A fraction. Concanavalin A-non-binding fractions from haptoglobin 2-1 and glycopeptides III 1-1 and III 2-2 did not form an active complex with hemoglobin and, in crossed immunodiffusion, showed a reaction of partial identity with haptoglobin 2-1, glycopeptides III 1-1, III 2-2 and their concanavalin A-binding fractions. Concanavalin A-binding fractions of the above preparations exhibited with hemoglobin higher peroxidase activity than before their separation on Con A-Sepharose and immunodiffusion gave a reaction of identity among themselves and with unfractionated preparations. The concanavalin A-binding glycopeptide III is the biologically active part of the haptoglobin beta-chain.  相似文献   

10.
Two endogenous cerebellar mannose binding lectins have been isolated in an active form by immunoaffinity chromatography employing their respective immobilized antibodies. One of them, termed cerebellar soluble lectin (CSL), was extracted in the absence of detergents, whereas the other, called Receptor 1 (R1), was soluble only in the presence of detergents. Tests of inhibition of agglutination of erythrocytes were performed with mono-, oligo and polysaccharides, as well as glycoconjugates of known structures. On the basis of agglutinating activities these 2 lectins are different from the previously reported lectins in brain, since they were not inhibited by galactosides and lactosides and were only marginally inhibited by glycosaminoglycans. CSL and R1 were better inhibited by mannose-rich glycopeptides as compared to the corresponding oligosaccharides. The different inhibition patterns obtained with glycans of known structures indicated that these lectins are very discriminative. Although CSL and R1 have similar specificities, they differed in their binding properties towards glycopeptides of ovalbumin. Both lectins showed considerable affinity for endogenous cerebellar glycopeptides, also rich in mannose. These glycopeptides belong to a few endogenous Con A-binding cerebellar glycoprotein subunits and are not present on other endogenous Con A-binding glycoproteins. In the forebrain, where CSL and R1 were also present, at least some of the glycoproteins interacting with the lectins were different from that observed in the cerebellum. Our data overall suggest that specific cell recognition in the nervous system could be invoked via the interactions between widely distributed lectins and cell-specific glycoproteins.  相似文献   

11.
Previous experiments have demonstrated that 4S RNA, (tRNA), is transported axonally during the reconnection and maturation of regenerating optic nerves of goldfish. The present experiments were performed to determine if tRNA is transported axonally during elongation of these regenerating nerves and whether, as has been demonstrated in other systems, it participates in posttranslational protein modification (PTPM). [3H]Uridine was injected into both eyes of fish with intact optic nerves and 0, 2, 4, or 8 days after bilateral optic nerve cut. Fish were killed 2 days after injection, and [3H]RNA was isolated from retinae and nerves by phenol extraction and ethanol precipitation. [3H]RNA was fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Although the percentage of [3H]4S RNA remained constant in all retinal and control nerve samples, regenerating nerves showed a twofold increase by 6 days after injury, suggesting that [3H]4S RNA is transported axonally in regenerating nerves as early as 6 days after injury. In other experiments, the 150,000-g supernatant of optic nerves was analyzed for incorporation of 3H-amino acids into proteins. No incorporation of 3H-amino acid was found in the soluble supernatant, but when the supernatant was passed through a Sephacryl S-200 column (removing molecules less than 20,000 daltons), [3H]Arg, [3H]Lys, and [3H]Leu were incorporated into proteins. This posttranslational addition of amino acids was greater (1.4-5 times for Lys and 2-13 times for Leu) in regenerating optic nerves than nonregenerating nerves, and the growing tips of regenerating nerves incorporated 5-15 times more [3H]Lys and [3H]Leu into proteins than did the shafts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
In an effort to understand the regulation of the transition of a mature neuron to the growth, or regenerating, state we have analyzed the composition of the axonally transported proteins in the retinal ganglion cells of the toad Bufo marinus after inducing axon regeneration by crushing the optic nerve. At increasing intervals after axotomy, we labeled the retinal ganglion cells with [35S]methionine and subsequently analyzed the labeled transported polypeptides in the crushed optic nerve by means of one- and two-dimensional electrophoretic techniques. The most significant conclusion from these experiments is that, while the transition from the mature to the regenerating state does not require a gross qualitative alteration in the composition of axonally transported proteins, the relative labeling of a small subset of rapidly transported proteins is altered dramatically (changes of more than 20-fold) and reproducibly (more than 30 animals) by axotomy. One of these growth-associated proteins (GAPs) was soluble in an aqueous buffer, while three were associated with a crude membrane fraction. The labeling of all three of the membrane-associated GAPs increased during the first 8 d after axotomy, and they continued to be labeled for at least 4 wk. The modulation of these proteins after axotomy is consistent with the possibility that they are involve in growth-specific functions and that the altered expression of a small number of genes is a crucial regulatory event in the transition of a mature neuron to a growth state. In addition to these selective changes in rapidly transported proteins, we observed the following more general metabolic correlates of the regeneration process: The total radioactive label associated with the most rapidly transported proteins (groups I and II) increased three to fourfold during the first 8 d after the nerve was crushed, while the total label associated with more slowly moving proteins (group IV) increased about 10-fold during this same period. Among these more slowly transported polypeptides, five were observed whose labeling increased much more than the average. Three of these five polypeptides resemble actin and alpha- and beta-tubulin in their electrophoretic properties.  相似文献   

13.
Development of mating competency in Tetrahymena thermophila requires starvation for at least 70 min in low ionic strength buffer. Pair formation between conjugating cells is blocked at early stages by the lectin Concanavalin A (Con A). To investigate the role of Con A-binding proteins in this induced cellular change and pairing, and to confirm and extend an earlier study from our laboratory, a method was developed for preparation of Con A-binding proteins from ciliary membrane-rich fractions of T. thermophila. Con A-binding ciliary proteins were prepared from non-starved and starved cells from two wild type strains and a mating mutant, RH179E1. Comparison of these proteins by SDS-PAGE revealed on overall reduction in number of wild-type bands after starvation. In particular, a major band at 28 kDa was present in non-starved cells and absent in starved cells. However, in the mating mutant, no change in banding profile was seen after starvation: the 28 kDa band was present in both non-starved and starved cells. This, Con A-binding ciliary membrane proteins undergo a major change during starvation-induced development of mating competency in wild-type T. thermophila. In contrast, the mutant differed from wild-type in overall composition of its ciliary Con A-binding glycoproteins and in the response of these proteins to starvation, suggesting that it may be deficient in its ability to be initiated by starvation. Our results are consistent with the hypothesis that a change affecting ciliary membrane Con A-binding proteins is essential for the cellular response to mating signals.  相似文献   

14.
—Application of 35SO4 to the olfactory mucosa of the long-nosed garfish is found to label sulfated macromolecules which are transported down the olfactory nerve. The transported molecules pass along the nerve as a discrete peak whose leading edge has a transport velocity of 206 ± 6 mm/day. A large portion of the radioactivity from the peak is deposited along the axon. At 2 days after isotope application 83% of the total nerve radioactivity is in the axons and the remaining 17% has accumulated at the terminals in the olfactory bulb. Characterization of sulfated material in the migrating peak indicates that both sulfated glycoproteins (isolated as glycopeptides) and mucopolysaccharides, including chondroitin sulfate and heparan sulfate, are undergoing transport.  相似文献   

15.
Regeneration of goldfish optic nerve axons is accompanied by a major increase in axonally transported proteoglycans (21). To identify specific proteoglycans increased during regeneration, we have used proteoglycan preparations from regenerating goldfish optic tracts to produce monoclonal antibodies. Western blot analysis shows a 28-kD antigen reacting with our 1G4/G5 antibody is present in optic tract 21 days after nerve crush, but absent in nonregenerating tract. Treatment with chondroitinase AC removes IG4/G5 immunostaining of the 28-kD molecule. An anti-CS antibody further confirmed this molecule as a chondroitin sulfate proteoglycan. A slightly smaller core protein following chondroitinase AC treatment indicates a low level of glycosylation. The N-terminal amino acid sequence of its core protein is not similar to any known proteoglycans. The CSPG sediments through 1.4 M sucrose, indicative of an extracellular matrix localization. It is expressed during the outgrowth of regenerating axons. Cut nerve and retinal explant studies demonstrate that the 1G4/G5 CSPG is not axonal, suggesting a glial localization.  相似文献   

16.
Glycoproteins were isolated by ethanol precipitation, Con A-sepharose 4B and DEAE-sephadex A-50 chromatography from culture filtrates of Sporothrix schenckii ATCC 10268 at incubation periods of 2, 7, and 14 days, and their chemical and immunological properties investigated. Sugar composition of the isolated glycoproteins varied with time of culture, i.e. from mostly mannose on the 2nd day of culture to increasing amounts of rhamnose and small amounts of galactose in addition to mannose on the 7th and 14th day. The changes in sugar composition also were observed to be closely related to the growth morphology of the organisms. The isolated glycoproteins showed different serological reactivity in immunodiffusion tests against rabbit anti-S. schenckii antiserum. In addition, they showed varying degree of cross-reaction with rabbit anti Klebsiella pneumoniae K47, anti Cladosporium werneckii and anti Saccharomyces cerevisiae antisera. The immunodiffusion results correlate well with sugar composition and strongly suggest the possibility that rhamnose, galactose and mannose determinants participate in the serological reaction of S. schenckii. In delayed hypersensitivity skin tests in guinea pigs immunized with S. schenckii, only Con A-binding glycoproteins were reactive. These fractions also resembled each other in amino acid content. The results from the present work indicate that the immunochemical properties of S. schenckii glycoproteins vary with incubation period, and suggest the need for standardization of sporotrichin test antigens.  相似文献   

17.
—A separation of soluble brain proteins and Con A-binding glycoproteins by chromatography on calcium hydroxylapatite in the presence of SDS is described. Seventeen Coomassie Blue-stained bands were detected by polyacrylamide gel electrophoresis in SDS of Con A-binding glycoproteins of the soluble fraction of rat brain: 16 of these were found by in vivo uptake of [3H]fucose to be fucosylglycoproteins. Hydroxylapatite chromatography yielded several glycoprotein pools, each of which was shown by gel electrophoresis to contain between 4 and 8 individual glycoproteins. Such pools were enriched in [36H]fucose relative to the brain soluble fraction by factors of between 6 and 21. Preliminary experiments demonstrate that this method is also applicable to the fractionation of membrane-bound glycoproteins.  相似文献   

18.
As a preliminary step to studying changes in axonal transport in regenerating neurons, we have analyzed the composition and organization of polypeptides normally axonally transported in a neuronal system capable of regeneration, i.e., the retinal ganglion cells of the toad, Bufo marinus. We labeled proteins synthesized in the retina with 35S-methionine and subsequently used one-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis to analyze labeled, transported proteins in tissues containing segments of the axons (the optic nerve, optic tract, and optic tecta) of the retinal ganglion cells. The transported polypeptides could be divided into five groups according to their apparent transport velocities. Many of the polypeptides of each group were electrophoretically similar to polypeptides of corresponding groups previously described in rabbit and guinea pig retinal ganglion cells, and in some cases, additional properties of the polypeptides indicated that the transported materials of the two vertebrate classes were homologous. These results serve two purposes. First they establish the retinal ganglion cells of the toad Bufo marinus as a model system in which changes in gene expression related to regeneration may be studied. Second they show that the organization and many aspects of the composition of axonal transport in retinal ganglion cells have been conserved in animals as unrelated as amphibians, and mammals.  相似文献   

19.
[3H]Mannose-labeled glycopeptides in the slices after partial hepatectomy were characterized by column chromatography using Sephadex G-50, DE-52 and Con A-Sepharose, and further by digestion with alpha-mannosidase and endo-beta-N-acetylglucosaminidase H. They contained both 'complex type' and 'high-mannose type' oligosaccharides. A higher proportion of 'complex type' oligosaccharides was contained in regenerating liver 24 h after partial hepatectomy than in control. This tendency was increased gradually with time and was most pronounced at 144 h. In our previous studies, the activities of microsomal N-acetylglucosaminyltransferase towards endogenous and exogenous acceptors at 144 h after partial hepatectomy were shown to exceed most prominently that in control. No differences in the oligosaccharides were observed at 240 h when the deficit of liver had been restored. The oligosaccharides of glycopeptides in the incubation media were mostly 'complex type' and the differences between regenerating liver and control were observed only at 144 h. These results suggest that oligosaccharide processing of glycoproteins is regulated at the transfer step of peripheral N-acetylglucosamine to core oligosaccharides 144 h after partial hepatectomy, and that these alterations in oligosaccharides of glycoproteins may be related to hypertrophy and hyperplasia of hepatic cells in liver regeneration.  相似文献   

20.
小鼠精子表面Con A结合糖复合物的形成与变化   总被引:4,自引:0,他引:4  
用辣根过氧化物酶标记的ConA(伴刀豆素A)对小鼠睾丸与附睾切片,以及对取自附睾和子宫(交配后)内的精子涂片进行了标记,旨在认识精子在发生、成熟和获能过程中表面糖复合物的形成与变化。本研究表明,睾丸内的生精细胞和支持细胞均呈ConA标记阳性。附睾的输出小管和附睾管上皮细胞,ConA标记呈中度至强阳性,有部位的差别。附睾头和附睾尾内精子表面的标记无明显差别,标记位置均主要在顶体区和尾部。精子在子宫内存留1.5小时后,顶体后区出现中度阳性标记,但存留3小时和6小时后,顶体和顶体后区的标记均减弱或消失。这些结果提示,(1)精子发生期即可合成ConA结合糖复合物,(2)精子在附睾成熟过程中表面的ConA结合糖复合物无明显变化,(3)精子获能后顶体后区出现的ConA结合糖复合物可能与受精能力有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号