首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Bdallophytum oxylepis is a rare and endemic species belonging to the Cytinaceae family, a root holoparasitic plant in which most resources are allocated to attracting pollinators. This species is gynomonoecious with intraindividual variation in flower size and sex. Moreover, the flowers exhibit sapromyophilous traits, as do other species of Bdallophytum. Firstly, this study aimed to determine whether all floral morphs can form seeds and be pollen donors (in the case of bisexual flowers). Secondly, as this species has floral traits hypothesized to adapt to particular types of pollen vectors (carrion flies), we also studied the pollination of B. oxylepis to confirm whether the syndromes correspond to what occurs in nature. Through pollination treatments, we determined that all floral morphs are functional. By monitoring the inflorescences, we found that pollination is specialized in the studied population. Stingless bees performed pollination, as they have a high visitation rate, frequency, and constancy, and they are unique visitors that deposit pollen on the stigmas. Thus, they appear to be effective pollinators rather than carrion flies, as predicted by the syndrome. As shown here, animal–plant interaction studies can help establish a basis for conserving rare species such as holoparasites. Moreover, knowledge about the reproductive aspects of B. oxylepis reveals essential clues about its life cycle and role in maintaining native pollinators with economic and cultural value, such as stingless bees.  相似文献   

2.
    
Mellitochory, seed dispersal by bees, has been implicated in long-distance dispersal of the tropical rain forest tree, Corymbia torelliana (Myrtaceae). We examined natural and introduced populations of C. torelliana for 4 years to determine the species of bees that disperse seeds, and the extent and distance of seed dispersal. The mechanism of seed dispersal by bees was also investigated, including fruit traits that promote dispersal, foraging behaviour of bees at fruits, and the fate of seeds. The fruit structure of C. torelliana , with seed presented in a resin reward, is a unique trait that promotes seed dispersal by bees and often results in long-distance dispersal. We discovered that a guild of four species of stingless bees, Trigona carbonaria, T. clypearis, T. sapiens , and T. hockingsi, dispersed seeds of C. torelliana in its natural range. More than half of the nests found within 250 m of fruiting trees had evidence of seed transport. Seeds were transported minimum distances of 20–220 m by bees. Approximately 88% of seeds were dispersed by gravity but almost all fruits retained one or two seeds embedded in resin for bee dispersal. Bee foraging for resin peaked immediately after fruit opening and corresponded to a peak of seed dispersal at the hive. There were strong correlations between numbers of seeds brought in and taken out of each hive by bees ( r =  0.753–0.992, P  < 0.05), and germination rates were 95 ± 5%. These results showed that bee-transported seeds were effectively dispersed outside of the hive soon after release from fruits. Seed dispersal by bees is a non-standard dispersal mechanism for C. torelliana, as most seeds are dispersed by gravity before bees can enter fruits. However, many C. torelliana seeds are dispersed by bees, since seeds are retained in almost all fruits, and all of these are dispersed by bees.  相似文献   

3.
A caste system in which females develop into morphologically distinct queens or workers has evolved independently in ants, wasps and bees. Although such reproductive division of labour may benefit the colony it is also a source of conflict because individual immature females can benefit from developing into a queen in order to gain greater direct reproduction. Here we present a formal inclusive fitness analysis of caste fate conflict appropriate for swarm-founding social Hymenoptera. Three major conclusions are reached: (1) when caste is self-determined, many females should selfishly choose to become queens and the resulting depletion of the workforce can substantially reduce colony productivity; (2) greater relatedness among colony members reduces this excess queen production; (3) if workers can prevent excess queen production at low cost by controlled feeding, a transition to nutritional caste determination should occur. These predictions generalize results derived earlier using an allele-frequency model [Behav. Ecol. Sociobiol. (2001) 50: 467] and are supported by observed levels of queen production in various taxa, especially stingless bees, where caste can be either individually or nutritionally controlled.  相似文献   

4.
5.
Insect societies are well known for their high degree of cooperation, but their colonies can potentially be exploited by reproductive workers who lay unfertilized, male eggs, rather than work for the good of the colony. Recently, it has also been discovered that workers in bumblebees and Asian honeybees can succeed in entering and parasitizing unrelated colonies to produce their own male offspring. The aim of this study was to investigate whether such intraspecific worker parasitism might also occur in stingless bees, another group of highly social bees. Based on a large-scale genetic study of the species Melipona scutellaris , and the genotyping of nearly 600 males from 45 colonies, we show that ∼20% of all males are workers' sons, but that around 80% of these had genotypes that were incompatible with them being the sons of workers of the resident queen. By tracking colonies over multiple generations, we show that these males were not produced by drifted workers, but rather by workers that were the offspring of a previous, superseded queen. This means that uniquely, workers reproductively parasitize the next-generation workforce. Our results are surprising given that most colonies were sampled many months after the previous queen had died and that workers normally only have a life expectancy of ∼30 days. It also implies that reproductive workers greatly outlive all other workers. We explain our results in the context of kin selection theory, and the fact that it pays workers more from exploiting the colony if costs are carried by less related individuals.  相似文献   

6.
Intraspecific queen parasitism in a highly eusocial bee   总被引:1,自引:0,他引:1  
Insect societies are well-known for their advanced cooperation, but their colonies are also vulnerable to reproductive parasitism. Here, we present a novel example of an intraspecific social parasitism in a highly eusocial bee, the stingless bee Melipona scutellaris. In particular, we provide genetic evidence which shows that, upon loss of the mother queen, many colonies are invaded by unrelated queens that fly in from unrelated hives nearby. The reasons for the occurrence of this surprising form of social parasitism may be linked to the fact that unlike honeybees, Melipona bees produce new queens in great excess of colony needs, and that this exerts much greater selection on queens to seek alternative reproductive options, such as by taking over other nests. Overall, our results are the first to demonstrate that queens in highly eusocial bees can found colonies not only via supersedure or swarming, but also by infiltrating and taking over other unrelated nests.  相似文献   

7.
1. The distribution of consumers among resources (trophic interaction network) may be shaped by asymmetric competition. Dominance hierarchy models predict that asymmetric interference competition leads to a domination of high quality resources by hierarchically superior species. 2. In order to determine the competitive dominance hierarchy and its effect on flower partitioning in a local stingless bee community in Borneo, interspecific aggressions were tested among eight species in arena experiments. 3. All species tested were strongly mutually aggressive in the arena, and the observed interactions were often lethal for one or both opponents. Aggression significantly increased with body size differences between fighting pairs and was asymmetric: larger aggressors were superior over smaller species. Additional aggression tests involved dummies with surface extracts, and results suggest that species‐ and colony‐specific surface profiles are important in triggering the aggressive behaviour. 4. Sixteen stingless bee species were observed foraging on 41 species of flowering plants. The resulting bee–flower interaction network showed a high degree of generalisation (network‐level specialisation H2’ = 0.11), corresponding to a random, opportunistic distribution of bee species among available flower species. 5. Aggressions on flowers were rare and only occurred at a low level. The dominance hierarchy obtained in the arena experiments did not correlate significantly with plant quality, estimated as the number of flowers per plant or as total bee visitation rate. 6. Our findings suggest that asymmetries in interference competition do not necessarily translate into actual resource partitioning in the context of complex interacting communities.  相似文献   

8.
Drones of stingless bee species often form distinctive congregations of up to several hundred individuals which can persist over considerable periods of time. Here we analyse the genetic structure of three drone congregations of the neotropical stingless bee Scaptotrigona mexicana employing eight microsatellite markers. Two congregations were close to each other (50 m), the third one was located more than 10 km away from them. This spatial pattern was also reflected on the genetic level : the two close congregations did not show any population sub-structuring, whereas the more distant congregation showed a significant population differentiation to both of them. Population subdifferentiation was however low with F st values (F st = 0.020 and 0.014) between the distant congregations, suggesting gene flow over larger distances mediated by the drones of S. mexicana. Based on the genotypic data we also estimated the number of colonies contributing drones to the congregations. The two joint congregations consisted of drones originating from 39,6 colonies, while the third congregation was composed of drones from 21,8 colonies, thus proving that congregations of S. mexicana are constituted of unrelated drones of multicolonial origin. Received 23 April 2007; revised 21 September 2007; accepted 2 October 2007.  相似文献   

9.
Summary We displaced a small nest box containing stingless bees (Trigona (Tetragonisca)angustula) over distances of up to 1.6 meters in different directions and counted the numbers of returning foragers to measure the effects of this manipulation on the homing ability of bees. Bees find it hard to locate the nest box when it was displaced more than about 1 m backwards, forwards or sideways relative to the direction into which the nest entrance pointed. They do not find the nest when its height above ground is changed. The bees use landmarks in the vicinity of the nest to locate it: When the nest box is displaced and landmark positions are changed so that their angular position at the new nest site is the same as at the normal nest position their homing ability is less impaired than it is without changes in landmark positions. Our results show that the bees do not use the nest box itself as a landmark until they have approached the nest position to within about 1 meter with the aid of surrounding landmarks.  相似文献   

10.
    
Social bee colonies can allocate their foraging resources over a large spatial scale, but how they allocate foraging on a small scale near the colony is unclear and can have implications for understanding colony decision‐making and the pollination services provided. Using a mass‐foraging stingless bee, Scaptotrigona pectoralis (Dalla Torre) (Hymenoptera: Apidae: Meliponini), we show that colonies will forage near their nests and allocate their foraging labor on a very fine spatial scale at an array of food sources placed close to the colony. We counted the foragers that a colony allocated to each of nine feeders containing 1.0, 1.5, or 2.0 M sucrose solution [31, 43, and 55% sucrose (wt/wt), respectively] at distances of 10, 15, and 20 m from the nest. A significantly greater number of foragers (2.6–5.3 fold greater) visited feeders placed 10 vs. 20 m away from the colony. Foraging allocation also corresponded to food quality. At the 10‐m feeders, 4.9‐fold more foragers visited 2.0 M as compared to 1.0 M sucrose feeders. Colony forager allocation thus responded to both differences in food distance and quality even when the travel cost was negligible compared to normal colony foraging distances (10 m vs. an estimated 800–1 710 m). For a nearby floral patch, this could result in unequal floral visitation and pollination.  相似文献   

11.
Four colonies of the stingless bee Partamona cupira (Hymenoptera: Apidae) were cytogenetically analyzed using conventional staining and the fluorochromes CMA(3) e DAPI. The females have 2n = 34 chromosomes (2K = 32 Mˉ+2 Aˉ). Some females, however, presented an additional large B acrocentric chromosome, to a total of 2n = 35. Chromosome B and the chromosomal pairs 2, 9 and 10 showed CMA (3) (+) bands, indicating an excess of CG base-pairs. A clear association was verified between the P. helleri B chromosome SCAR marker and the presence of a B chromosome in P. cupira. The data obtained suggests that B chromosomes in P. helleri and P. cupira share a common origin.  相似文献   

12.
Abstract

Melissopalynological analysis of 14 honey samples of Tetragonisca angustula (two), Scaptotrigona mexicana (six), Melipona beecheii (three) and Melipona solani (three) from Soconusco region in Chiapas, Mexico was performed. A total of 79 taxa were identified, being Asteraceae, Euphorbiaceae, Fabaceae, Melostomataceae and Rubiaceae the predominant pollen types. Melissopalynological analysis reported a monofloral composition for Melipona beecheii honeys, where the most predominant pollen type was Fabaceae (54.2%). T. angustula, Scaptotrigona mexicana and Melipona solani honey samples were multifloral and predominant pollen types were Asteraceae, Euphorbiaceae, Fabaceae, Melastomataceae and Solanaceae. The most frequent polliniferous pollen type were Asteraceae, Bernardia interrupta, Euphorbia heterophyla and Miconia. Shannon–Wiener diversity index (H′) for Melipona beecheii 2016 (2.21) and Melipona solani 2017 (1.64) were lower meanwhile honeys of Melipona beecheii 2017, S. mexicana 2017, Melipona solani 2016 and T. angustula 2017 were considered as fairly diverse, because they visited a wider range of plant species, by preferring shrub and wild strata such as: Asteraceae, Euphorbia, Euphorbiaceae, Miconia and Mimosa. Our results showed that the foraging behaviour of these bee species is polylectic, as no taxa was found to be more than 70% of the counted grains. Since the study of the collection of meliponine flower resources in the southern region of Mexico have not been studied yet, it is not possible to analyse the foraging behaviour, the use of resources and the management of these species in this region.  相似文献   

13.
14.
    
  1. The tropical stingless bees have evolved intricate communication systems to recruit nestmates to food locations. Some species are able to accurately communicate the location of food, whereas others simply announce the presence of food in the environment.
  2. Plebeia droryana is a tiny Neotropical stingless bee that, until recently, was thought to use a solitary foraging strategy, that is without the use of a recruitment communication system. However, recent research has indicated that P. droryana might be able to recruit nestmates to specific food source locations.
  3. We tested this by studying whether foragers can guide nestmates in the direction and the distance of artificial feeders placed in the vicinity of the colony. We trained bees to a scented sucrose solution feeder at 10 m and placed different feeders either in different directions (experiment 1) or in different distances (experiment 2). We found that P. droryana directs newcomers in the right direction, but distance information does not seem to be communicated.
  4. Moreover, we then tested whether newcomers use chemical and visual cues originating from nestmates foraging at the food source, but found no evidence for the use of these social cues provided by conspecifics.
  5. The potential mechanism that P. droryana may use to orient recruits toward the food source, however, remains unknown and requires further study.
  相似文献   

15.
    
Over 50 genera of bees release pollen from flower anthers using thoracic vibrations,a phenomenon known as buzz-pollination.The efficiency of this process is directly affected by the mechanical properties of the buzzes,namely the duration,amplitude,and frequency.Nonetheless,although the effects of the former two properties are well described,the role of buzz frequency on pollen release remains unclear.Furthermore,nearly all of the existing studies describing vibrational properties of natural buzz-pollination are limited to bumblebees(Bombus)and carpenter bees(Xvlocopa)constraining our current understanding of this behavior and its evolution.Therefore,we attempted to minimize this shortcoming by testing whether flower anthers exhibit optimal frequency for pollen release and whether bees tune their buzzes to match these(optimal)frequencies.If true,certain frequencies will trigger more pollen release and lighter bees will reach buzz frequencies closer to this optimum to compensate their smaller buzz amplitudes.Two strategies were used to test these hypotheses:(i)the use of(artificial)vibrational playbacks in a broad range of buzz frequencies and amplitudes to assess pollen release by tomato plants(Solarium Ivcopersicum L.)and(ii)the recording of natural buzzes of Neotropical bees visiting tomato plants during pollination.The playback experiment indicates that although buzz frequency does affect pollen release,no optimal frequency exists for that.In addition,the recorded results of natural buzz-pollination reveal that buzz frequencies vary with bee genera and are not correlated with body size.Therefore,neither bees nor plants are tuned to optimal pollen release frequencies.Bee frequency of buzz-pollination is a likely consequence of the insect flight machinery adapted to reach higher accelerations,while flower plant response to buzz-pollination is the likely result of its pollen granular properties.  相似文献   

16.
17.
    
We studied the flight activity of two stingless bee species (Meliponula ferruginea and Meliponula nebulata) and the environmental factors influencing their flight. Two morphs of M. ferruginea were studied: M. ferruginea (brown) in Budongo forest and M. ferruginea (black) in Bwindi Park. The two bee species exited their nests in characteristically distinct foraging bouts suggesting that the recruitment methods used may be direct leading or ‘piloting’. The number of individuals in a returning bout was less than that in an exiting bout suggesting recruits do not follow experienced foragers the whole distance to food source, a phenomenon referred to as ‘partial piloting’. Flight period of M. ferruginea (black) and M. nebulata in Bwindi was restricted to a few hours each day. Meliponula nebulata foraged in the drizzle; a survival strategy, which could promote its reproductive fitness. Nectar and pollen foraging took place throughout the day while the removal of debris was greater in the late hours of the morning. Increased temperature resulted in significant increase in number of exiting bees. There was increase in number of exiting bees with decrease in humidity up to an optimal of 78% thereafter, increase in humidity resulted in reduced number of exiting bees.  相似文献   

18.
Summary We examined the ability of stingless bees to recruit nest mates to a food source (i) in group foraging species laying pheromone trails from the food to the nest (Trigona recursa Smith, T. hypogea Silvestri, Scaptotrigona depilis Moure), (ii) in solitary foraging species with possible but still doubtful communication of food location inside the nest (Melipona seminigra Friese, M. favosa orbignyi Guérin), and (iii) in species with a less precise (Nannotrigona testaceicornis Lep., Tetragona clavipes Fab.) or no communication (Frieseomelitta varia Lep.). The bees were allowed to collect food (sugar solution or liver in the necrophageous species) ad libitum and the forager number to accumulate, as it would do under normal unrestrained conditions. The median number of bees collecting differed considerably among the species (1.0–1436.5). It was highest in the species employing scent trails. The time course of recruitment was characteristic for most of the species and largely independent of the number of foragers involved. The two Melipona species recruited other bees significantly faster than T. recursa, S. depilis, and N. testaceicornis during the first 10 to 30 minutes of an experiment. In species laying a scent trail to guide nestmates to a food source the first recruits appeared with a delay of several minutes followed by a quick increase in forager number. The median time required to recruit all foragers available differed among the species between 95.0 and 240.0 min. These differences can at least partly be explained by differences in the recruitment mechanisms and do not simply follow from differences in colony biomass.  相似文献   

19.
    
Melipona quadrifasciata is a stingless bee widely found throughout the Brazilian territory, with two recognized subspecies, M. quadrifasciata anthidioides, that exhibits interrupted metasomal stripes, and M. quadrifasciata quadrifasciata, with continuous metasomal stripes. This study aimed to estimate the genetic variability of these subspecies. For this purpose, 127 colonies from 15 Brazilian localities were analyzed, using nine species-specific microsatellite primers. At these loci, the number of alleles ranged from three to 15 (mean: 7.2), and the observed heterozygosity (Ho) ranged from 0.03–0.21, while the expected heterozygosity (He) ranged from 0.23–0.47. The genetic distances among populations ranged from 0.03–0.45. The FST multilocus value (0.23) indicated that the populations sampled were structured, and the clustering analysis showed the formation of two subgroups and two more distant populations. The first group contained the subspecies M. quadrifasciata quadrifasciata, and the other, the subspecies M. quadrifasciata anthidioides and the two M. quadrifasciata populations with continuous metasomal stripes from northern Minas Gerais. These results confirmed that the yellow metasomal stripes alone are not a good means for correctly identifying the different subspecies of M. quadrifasciata.  相似文献   

20.
    
Stingless bees (Meliponini) construct their own species-specific nest entrance. The size of this entrance is under conflicting selective pressures. Smaller entrances are easier to defend; however, a larger entrance accommodates heavier forager traffic. Using a comparative approach with 26 species of stingless bees, we show that species with greater foraging traffic have significantly larger entrances. Such a strong correlation between relative entrance area and traffic across the different species strongly suggests a trade-off between traffic and security. Additionally, we report on a significant trend for higher forager traffic to be associated with more guards and for those guards to be more aggressive. Finally, we discuss the nest entrance of Partamona, known in Brazil as boca de sapo, or toad mouth, which has a wide outer entrance but a narrow inner entrance. This extraordinary design allows these bees to finesse the defensivity/traffic trade-off.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号