首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of the honey bee queen reduces worker ovary activation. When the queen is healthy and fecund, this is interpreted as an adaptive response as workers can gain fitness from helping the queen raise additional offspring, their sisters. However, when the queen is absent, workers activate their ovaries and lay unfertilized eggs that become males. Queen pheromones are recognised as a factor affecting worker ovary activation. Recent work has shown that queen mandibular pheromone composition changes with queen mating condition and workers show different behavioural responses to pheromone extracts from these queens. Here, we tested whether workers reared in colonies with queens of different mating condition varied in level of ovary activation. We also examined the changes in the chemical composition of the queen mandibular glands to determine if the pheromone blend varied among the queens. We found that the workers activated their ovaries when queens were unmated and had lower ovary activation when raised with mated queens, suggesting that workers detect and respond adaptively to queens of differing mating status. Moreover, variation in queen mandibular gland’s chemical composition correlated with the levels of worker ovary activation. Although correlative, this evidence suggests that queen pheromone may act as a signal of queen mating condition for workers, in response to which they alter their level of ovary activation.  相似文献   

2.
Kin selection theory predicts conflict between queens and workers in the social insect colony with respect to male production. This conflict arises from the haplodiploid system of sex determination in Hymenoptera that creates relatedness asymmetries in which workers are more closely related to the sons of other workers than to those of the queen. In annual hymenopteran societies that are headed by a single queen, the mating frequency of the queen is the only factor that affects the colony kin structure. Therefore, we examined the mating structure of queens and the parentage of males in a monogynous bumblebee, Bombus ignitus, using DNA microsatellites. In the seven colonies that were studied, B. ignitus queens mated once, thereby leading to the prediction of conflict between the queen and workers regarding male production. In each of the five queen-right colonies, the majority of the males (95%) were produced by the colony’s queen. In contrast, workers produced approximately 47% of all the males in two queenless colonies. These results suggest that male production in B. ignitus is a conflict between queen and workers.  相似文献   

3.
Relatedness is a central parameter in the evolution of sociality, because kin selection theory assumes that individuals involved in altruistic interactions are related. At least three reproductive characteristics are known to profoundly affect colony kin structure in social insects: the number of reproductive queens per colony, the relatedness among breeding queens and queen mating frequency. Both the occurrence of multiple queens (polygyny) and multiple mating (polyandry) decrease within-colony relatedness, while mating among sibs increases relatedness between the workers and the brood they rear. Using DNA microsatellites, we performed a detailed genetic analysis of the colony kin structure and breeding system in three ant species belonging to the genus Plagiolepis: P. schmitzii, P. taurica and P. maura. Our data show that queens of the three species mate multiply: queens of P. maura mate with 1-2 males, queens of P. taurica with 3-11 males and queens of P. schmitzii may have 1-14 different mates. Moreover, colonies are headed by multiple queens: P. taurica and P. maura are facultatively polygynous, while P. schmitzii is obligately polygynous. Despite polyandry and polygyny, relatedness within colonies remains high because all species are characterized by sib-mating, with a fixation index F(it) = 0.25 in P. taurica, 0.24 in P. schmitzii and 0.26 in P. maura, and because the male mates of a queen are on average closely related.  相似文献   

4.
The genetic structure of social insect colonies is predicted to affect the balance between cooperation and conflict. Stingless bees are of special interest in this respect because they are singly mated relatives of the multiply mated honeybees. Multiple mating is predicted to lead to workers policing each others' male production with the result that virtually all males are produced by the queen, and this prediction is borne out in honey bees. Single mating by the queen, as in stingless bees, causes workers to be more related to each others' sons than to the queen's sons, so they should not police each other. We used microsatellite markers to confirm single mating in eight species of stingless bees and then tested the prediction that workers would produce males. Using a likelihood method, we found some worker male production in six of the eight species, although queens produced some males in all of them. Thus the predicted contrast with honeybees is observed, but not perfectly, perhaps because workers either lack complete control or because of costs of conflict. The data are consistent with the view that there is ongoing conflict over male production. Our method of estimating worker male production appears to be more accurate than exclusion, which sometimes underestimates the proportion of males that are worker produced.  相似文献   

5.
We estimated queen mating frequency, genetic relatedness among workers, and worker reproduction in Vespa crabro flavofasciata using microsatellite DNA markers. Of 20 colonies examined, 15 contained queens inseminated by a single male, 3 colonies contained queens inseminated by two males, and 2 colonies contained queens inseminated by three males. The genetic relatedness among workers was estimated to be 0.73±0.003 (mean±SE). For this high relatedness, kin selection theory predicts a potential conflict between queens and workers over male production. To verify whether males are derived from queens or workers, 260 males from 13 colonies were genotyped at four microsatellite loci. We found that all of the males were derived from the queens. This finding was further supported by the fact that only 33 of 2,990 workers dissected had developed ovaries. These workers belonged to 2 of the 20 colonies. There was no relationship between queen mating frequency and worker reproduction, and no workers produced male offspring in any of the colonies. These results suggest that male production dominated by queens in V. crabro flavofasciata is possibly due to worker policing.  相似文献   

6.
Mutual policing is an important mechanism for maintaining social harmony in group-living organisms. In some ants, bees, and wasps, workers police male eggs laid by other workers in order to maintain the reproductive primacy of the queen. Kin selection theory predicts that multiple mating by the queen is one factor that can selectively favor worker policing. This is because when the queen is mated to multiple males, workers are more closely related to queen's sons than to the sons of other workers. Here we provide an additional test of worker policing theory in Vespinae wasps. We show that the yellowjacket Vespula rufa is characterized by low mating frequency, and that a significant percentage of the males are workers' sons. This supports theoretical predictions for paternities below 2, and contrasts with other Vespula species, in which paternities are higher and few or no adult males are worker produced, probably due to worker policing, which has been shown in one species, Vespula vulgaris. Behavioral observations support the hypothesis that V. rufa has much reduced worker policing compared to other Vespula. In addition, a significant proportion of worker-laid eggs were policed by the queen.  相似文献   

7.
Most species of social insects have singly mated queens, but in some species each queen mates with numerous males to create a colony whose workers belong to multiple patrilines. This colony genetic structure creates a potential for intracolonial nepotism. One context with great potential for such nepotism arises in species, like honey bees, whose colonies reproduce by fissioning. During fissioning, workers might nepotistically choose between serving a young (sister) queen or the old (mother) queen, preferring the former if she is a full-sister but the latter if the young queen is only a half-sister. We examined three honeybee colonies that swarmed, and performed paternity analyses on the young (immature) queens and samples of workers who either stayed with the young queens in the nest or left with the mother queen in the swarm. For each colony, we checked whether patrilines represented by immature queens had higher proportions of staying workers than patrilines not represented by immature queens. We found no evidence of this. The absence of intracolonial nepotism during colony fissioning could be because the workers cannot discriminate between full-sister and half-sister queens when they are immature, or because the costs of behaving nepotistically outweigh the benefits.  相似文献   

8.
Paxton  R. J. 《Insectes Sociaux》2000,47(1):63-69
Summary: Stingless bee queens have for long been assumed to mate once on a nuptial flight, early in life. To evaluate critically monandry in one stingless bee, Scaptotrigona postica, worker offspring (adults or brood) were genetically analysed with microsatellite loci, five of which were developed specifically for the species. Marker loci were highly variable; unbiased estimates of heterozygosity were > 0.5. "Foreign" workers, either those having drifted from other colonies (circa 2%) or those of a replacement queen, were identified with the genetic markers and removed from further analysis. Worker genotypes were consistent with some queens having mated once and others having mated with up to six different males. Scaptotrigona postica queens are therefore facultatively polyandrous. Effective mating frequencies, me, were generally lower than the number of patrilines observed. Relatedness estimates of nestmates from individual colonies concurred with those derived from direct counts of the number of patrilines and their proportional representation. Putative genotypes of a colony's queen and her mates were deduced from those of her workers. Queens were generally not related to their mates. For one polyandrous queen, her six mates were related to each other, possibly because of numerically biased representation of males from different colonies at mating sites. However, males at an aggregation outside a colony came from numerous colonies.  相似文献   

9.
Although multiple mating most likely increases mortality risk for social insect queens and lowers the kin benefits for nonreproductive workers, a significant proportion of hymenopteran queens mate with several males. It has been suggested that queens may mate multiply as a means to manipulate sex ratios to their advantage. Multiple paternity reduces the extreme relatedness value of females for workers, selecting for workers to invest more in males. In populations with female-biased sex ratios, queens heading such male-producing colonies would achieve a higher fitness. We tested this hypothesis in a Swiss and a Swedish population of the ant Lasius niger. There was substantial and consistent variation in queen mating frequency and colony sex allocation within and among populations, but no evidence that workers regulated sex allocation in response to queen mating frequency; the investment in females did not differ among paternity classes. Moreover, population-mean sex ratios were consistently less female biased than expected under worker control and were close to the queen optimum. Queens therefore had no incentive to manipulate sex ratios because their fitness did not depend on the sex ratio of their colony. Thus, we found no evidence that the sex-ratio manipulation theory can explain the evolution and maintenance of multiple mating in L. niger.  相似文献   

10.
Because workers in colonies of eusocial Hymenoptera are more closely related to sisters than to brothers, theory predicts workers should bias investment in reproductive broods to favour reproductive females over males. However, conflict between queens and workers is predicted. Queens are equally related to daughters and sons, and should act to prevent workers from biasing investment. Previous study of the ant Pheidole desertorum showed that workers are nearly three times more closely related to reproductive females than males; however, the investment sex ratio is very near equal, consistent with substantial queen control of workers. Near-equal investment is produced by an equal frequency of colonies whose reproductive broods consist of only females (female specialists) and colonies whose reproductive broods consist of only males or whose sex ratios are extremely male biased (male specialists). Because natural selection should act on P. desertorum workers to bias investment in favour of reproductive females, why do workers in male-specialist colonies rear only (or mostly) males? We tested the hypothesis that queens prevent workers from rearing reproductive females by experimentally providing workers with immature reproductive broods of both sexes. Workers reared available reproductive females, while failing to rear available males. Worker preference for rearing reproductive females is consistent with queens preventing their occurrence in colonies of male specialists. These results provide evidence that queens and workers will act in opposition to determine the sex ratio, a fundamental prediction of queen-worker conflict theory. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

11.
The resolution of social conflict in colonies may accord with the interests of the most numerous party. In social insect colonies with single once-mated queens, workers are more closely related to the workers' sons than they are to the queens' sons. Therefore, they should prefer workers to produce males, against the queen's interests. Workers are capable of producing males as they arise from unfertilized eggs. We found Polistes gallicus to have colonies of single, once-mated queens, as determined by microsatellite genotyping of the workers, so worker interests predict worker male production. In colonies lacking queens, workers produced the males, but not in colonies with original queens. Thus worker interests were expressed only when the queen was gone. The high fraction of missing queens and early end to the colony cycle relative to climate so early in the season is surprising and may indicate a forceful elimination of the queen.  相似文献   

12.
Queens of leafcutter ants exhibit the highest known levels of multiple mating (up to 10 mates per queen) among ants. Multiple mating may have been selected to increase genetic diversity among nestmate workers, which is hypothesized to be critical in social systems with large, long-lived colonies under severe pressure of pathogens. Advanced fungus-growing (leafcutter) ants have large numbers (104-106 workers) and long-lived colonies, whereas basal genera in the attine tribe have small (< 200 workers) colonies with probably substantially shorter lifespans. Basal attines are therefore expected to have lower queen mating frequencies, similar to those found in most other ants. We tested this prediction by analysing queen mating frequency and colony kin structure in three basal attine species: Myrmicocrypta ednaella, Apterostigma collare and Cyphomyrmex longiscapus. Microsatellite marker analyses revealed that queens in all three species were single mated, and that worker-to-worker relatedness in these basal attine species is very close to 0.75, the value expected under exclusively single mating. Fungus growing per se has therefore not selected for multiple queen mating. Instead, the advanced and highly productive social structure of the higher attine ants, which is fully dependent on the rearing of an ancient clonal fungus, may have necessitated high genetic diversity among nestmate workers. This is not the case in the lower attines, which rear fungi that were more recently derived from free-living fungal populations.  相似文献   

13.
Kin selection theory predicts that honeybee (Apis mellifera) workers should largely refrain from producing their own offspring, as the workers collectively have higher inclusive fitness if they rear the sons of their mother, the queen. Studies that have quantified levels of ovary activation and reproduction among workers have largely supported this prediction. We sampled pre‐emergent male pupae and adult workers from seven colonies at regular intervals throughout the reproductive part of the season. We show that the overall contribution of workers to male (drone) production is 4.2%, nearly 40 times higher than is generally reported, and is highest during reproductive swarming, when an average of 6.2% of the males genotyped are worker‐produced. Similarly, workers in our samples were 100 times more likely to have active ovaries than previously assumed. Worker reproduction is seasonally influenced and peaks when colonies are rearing new queens. Not all worker subfamilies contribute equally to reproduction. Instead, certain subfamilies are massively over‐represented in drone brood. By laying eggs within the period in which many colonies produce virgin queens, these rare worker subfamilies increase their direct fitness via their well‐timed sons.  相似文献   

14.
Multiple mating by queens (polyandry) and the occurrence of multiple queens in the same colony (polygyny) alter patterns of relatedness within societies of eusocial insects. This is predicted to influence kin-selected conflicts over reproduction. We investigated the mating system of a facultatively polygynous UK population of the ant Leptothorax acervorum using up to six microsatellite loci. We estimated mating frequency by genotyping 79 dealate (colony) queens and the contents of their sperm receptacles and by detailed genetic analysis of 11 monogynous (single-queen) and nine polygynous colonies. Results indicated that 95% of queens were singly mated and 5% of queens were doubly mated. The corrected population mean mating frequency was 1.06. Parentage analysis of adults and brood in 17 colonies (10 monogynous, 7 polygynous) showed that female offspring attributable to each of 31 queens were full sisters, confirming that queens typically mate once. Inbreeding coefficients, queen-mate relatedness of zero and the low incidence of diploid males provided evidence that L. acervorum sexuals mate entirely or almost entirely at random. Males mated to queens in the same polygynous colony were not related to one another. Our data also confirmed that polygynous colonies contain queens that are related on average and that their workers had a mixed maternity. We conclude that the mating system of L. acervorum involves queens that mate near nests with unrelated males and then seek readoption by those nests, and queens that mate in mating aggregations away from nests, also with unrelated males.  相似文献   

15.
Considerable attention has focused on why females of many species mate with several males. For social hymenopteran insects, efforts have primarily concentrated on determining whether multiple mating increases colony performance due to the increased genetic diversity. Most of these studies are correlative because it is difficult or impossible to experimentally mate queens in most species. Thus, the positive associations found between multiple paternity and colony fitness in some cases may not be due to direct effects of genetic diversity but could, in theory, arise from high-quality queens having more mates. Here we show that in the ant Lasius niger variation in the number of matings covaries with queen phenotype. Young queens that were heavier at the time of the mating flight were significantly more likely to mate with several males. As a result, heavier queens stored more sperm. The initial weight of queens was significantly associated with the probability of surviving mating flights during the two years of the study, with queens of intermediate weight having the highest across-year survival. Queen initial weight was also significantly and positively associated with the quantity of brood at the time of the first worker eclosion as well as colony productivity at the time of hibernation. By contrast, there was little evidence for a positive effect of the number of matings on colony performance when the effect of mate number and queen initial weight were considered simultaneously.  相似文献   

16.
A single-locus two-allele model is analyzed to determine the invasion conditions for facultative biasing of colony sex allocation by hymenopteran workers in response to queen mating frequency, for a situation in which colonies have a single queen mated to one or two males. Facultative biasing of sex allocation towards increased male production in double mated colonies and increased female production in single mated colonies can both invade when the population sex allocation ratio is at the worker optimum. However, when the population sex allocation ratio is more male biased than the worker optimum, plausibly due to mixed queen and worker control, it is likely that only increased female allocation in colonies perceived by the workers to have single mated queens can invade. In this case, the frequency of mistakes made by workers in assessing queen mating frequency is an important constraint on the invasion of facultative male biasing in colonies perceived to have a double mated queen. When the population sex allocation ratio is not between the optima for workers in single and double mated colonies, plausibly due to strong queen control, then facultative biasing cannot invade. In this situation, workers in all colonies should attempt to bias allocation towards increased females. Worker male production in queenright colonies (provided not all males are worker-derived), unequal sperm use by double mated queens, and the amount of facultative biasing, do not alter these results.  相似文献   

17.
Queen number, mating frequency and nest kin-structure of the ant Formica japonica were studied in the field and the laboratory. Nest excavation in the study site, the east slope of Mt. Fuji, Gotenba, Japan, revealed that F. japonica is weakly polygynous all year round and the queen number increases after the nuptial flight season, suggesting the adoption of newly mated queens by established nests. Dissection and laboratory rearing demonstrated that nearly all queens in polygynous nests had mated and were fertile with mature oocytes in their ovaries. Multilocus DNA fingerprinting was used to examine kin relationships among ants found in the same nests. The fingerprint band patterns were apparently governed by a simple genetic rule and suggested monoandry (single mating per queen). The mean band sharing score of DNA fingerprints among full sisters was 0.90, and the mean value between queens and their daughters was 0.75. Comparison of DNA fingerprints of adult and pupal workers with pupal gynes suggested that multiple queens in a nest may contribute unequally to gyne (new queen) production.  相似文献   

18.
Paxton RJ  Ayasse M  Field J  Soro A 《Molecular ecology》2002,11(11):2405-2416
The sweat bees (Family Halictidae) are a socially diverse taxon in which eusociality has arisen independently numerous times. The obligate, primitively eusocial Lasioglossum malachurum, distributed widely throughout Europe, has been considered the zenith of sociality within halictids. A single queen heads a colony of smaller daughter workers which, by mid-summer, produce new sexuals (males and gynes), of which only the mated gynes overwinter to found new colonies the following spring. We excavated successfully 18 nests during the worker- and gyne-producing phases of the colony cycle and analysed each nest's queen and either all workers or all gynes using highly variable microsatellite loci developed specifically for this species. Three important points arise from our analyses. First, queens are facultatively polyandrous (queen effective mating frequency: range 1-3, harmonic mean 1.13). Second, queens may head colonies containing unrelated individuals (n = 6 of 18 nests), most probably a consequence of colony usurpation during the early phase of the colony cycle before worker emergence. Third, nonqueen's workers may, but the queen's own workers do not, lay fertilized eggs in the presence of the queen that successfully develop into gynes, in agreement with so-called 'concession' models of reproductive skew.  相似文献   

19.
Queen-worker conflicts in social insect societies have received much attention in the past decade. In many species workers modify the colony sex ratio to their own advantage or produce their own male offspring. In some other species, however, queens seem to be able to prevent workers from making selfish reproductive decisions. So far, little effort has been made to find out how queens may keep control over sex ratio and male parentage. In this study we use a Lasius niger population under apparent queen control to show that sexual deception cannot explain queen dominance in this population. The sexual deception hypothesis postulates that queens should prevent workers from discriminating against males by disguising male brood as females. Contrary to the predictions of this hypothesis, we found that workers are able to distinguish male and female larvae early in their development: in early spring workers generally placed only either female or male larvae in the uppermost chambers of the nest, although both types of larvae must have been present. At this time males were only at 11% of their final dry weight, a developmental stage at which (according to two models) workers would still have benefited from replacing queen-produced males by females or worker-produced males. This study thus demonstrates that sexual deception cannot account for the apparent queen control over colony sex ratio and male parentage in L. niger.  相似文献   

20.
The Australian endemic ant Nothomyrmecia macrops is considered one of the most ‘primitive’ among living ants. We investigated the genetic structure of colonies to determine queen mating frequencies and nestmate relatedness. An average of 18.8 individuals from each of 32 colonies, and sperm extracted from 34 foraging queens, were genotyped using five highly variable microsatellite markers. Queens were typically singly (65%) or doubly mated (30%), but triple mating (5%) also occurred. The mean effective number of male mates for queens was 1.37. No relationship between colony size and queen mate number was found. Nestmate workers were related by b=0.61 ± 0.03, significantly above the threshold under Hamilton’s rule over which, all else being equal, altruistic behaviour persists, but queens and their mates were unrelated. In 25% of the colonies we detected a few workers that could not have been produced by the resident queen, although there was no evidence for worker reproduction. Polyandry is for the first time recorded in a species with very small mature colonies, which is inconsistent with the sperm‐limitation hypothesis for the mediation of polyandry levels. Facultative polyandry is therefore not confined to the highly advanced ant genera, but may have arisen at an early stage in ant social evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号