首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
《Process Biochemistry》2007,42(2):167-174
A mathematical model was formulated to describe hybridoma cell growth within the alginate-poly-l-lysine (alginate-PLL) microcapsules during air-lift bioreactor cultivation. Model development was based on experimentally obtained data concerning the hybridoma cell counts, monoclonal antibody (mAb) production and the distribution of hybridoma cell growth within the microcapsules. The cell growth was modeled using a mean field approach expressed as Langevin class of equations for two different regions of alginate-PLL microcapsules, the alginate microcapsule core and the annular region between microcapsule core and membrane. In this paper we propose an influence of microenvironmental conditions on cell growth. The osmotic pressure changes in the Na-alginate liquefied annular region, as well as, the resistance effects of Ca-alginate hydrogel in the core region during the cell growth were incorporated into the model. Good agreement between the experimental data and model prediction values was obtained. The proposed model successfully predicted the impact of various microenvironmental restriction effects on the dynamics of cell growth and appears useful for further optimization of microcapsule design in order to achieve higher intra-capsule cell concentrations resulting in higher amounts of mAb produced.  相似文献   

2.
In the continuous systems, such as continuous beer fermentation, immobilized cells are kept inside the bioreactor for long periods of time. Thus an important factor in the design and performance of the immobilized yeast reactor is immobilized cell viability and physiology. Both the decreasing specific glucose consumption rate (q(im)) and intracellular redox potential of the cells immobilized to spent grains during continuous cultivation in bubble-column reactor implied alterations in cell physiology. It was hypothesized that the changes of the physiological state of the immobilized brewing yeast were due to the aging process to which the immobilized yeast are exposed in the continuous reactor. The amount of an actively growing fraction (X(im)act) of the total immobilized biomass (X(im)) was subsequently estimated at approximately X(im)act = 0.12 g(IB) g(C)(-1) (IB = dry immobilized biomass, C = dry carrier). A mathematical model of the immobilized yeast biofilm growth on the surface of spent grain particles based on cell deposition (cell-to-carrier adhesion and cell-to-cell attachment), immobilized cell growth, and immobilized biomass detachment (cell outgrowth, biofilm abrasion) was formulated. The concept of the active fraction of immobilized biomass (X(im)act) and the maximum attainable biomass load (X(im)max) was included into the model. Since the average biofilm thickness was estimated at ca. 10 microm, the limitation of the diffusion of substrates inside the yeast biofilm could be neglected. The model successfully predicted the dynamics of the immobilized cell growth, maximum biomass load, free cell growth, and glucose consumption under constant hydrodynamic conditions in a bubble-column reactor. Good agreement between model simulations and experimental data was achieved.  相似文献   

3.
A segregated mathematical model was developed for the analysis and interpretation of cultivation data of growth of the recombinant yeast Saccharomyces cerevisiae on multiple substrates (glucose, maltose, pyruvate, ethanol, acetate, and galactose). The model accounts for substrate consumption, plasmid stability, and production level of a model protein, a modified nucleocapsid protein of the Puumala virus. Recombinant nucleocapsid proteins from different Hantaviruses have previously been demonstrated as suitable antigens for diagnostics as well as for sero‐epidemiological studies. The model is based on a system of 10 nonlinear ordinary differential equations and accounts for the influence of various factors, e.g., selective pressure for enhancing plasmid stability by formaldehyde or the toxic effects of the intracellular accumulation of the heterologous protein on cell growth and product yield. The model allows the growth of two populations of cells to be simulated: plasmid‐bearing and plasmid‐free yeast cells, which have lost the plasmid during cultivation. Based on the model, sensitivity studies in respect to parameter changes were performed. These enabled, for example, the evaluation of the impact of an increase in the initial concentration of nutrients and growth factors (e.g., vitamins, microelements, etc.) on the biomass yield and the heterologous protein production level. As expected, the productivity of the heterologous protein in S. cerevisiae is closely correlated with plasmid stability. The 25 free model parameters, including the yield coefficients for different growth stages and dynamic constants, were estimated by nonlinear techniques, and the model was validated against a data set not used for parameter estimation. The simulation results were found to be in good agreement with the experimental data.  相似文献   

4.
A mathematical model has been created for the process of citric acid biosynthesis by yeast (mutant strain Yarrowia lipolytica) cultivated by the repeated batch (RB) method on ethanol under conditions of nitrogen limitation. The model accounts for cell growth as a function of nitrogen concentration in the culture liquid; nitrogen uptake by growing cells; citric acid production; pH control in the fermentor by means of NaOH addition; and changes in system volume. The model represents a system of five nonlinear differential equations. Experimental measurements of cell concentration, citric acid concentration, and cultivation broth volume were used with the least squares method to determine the values of eight model parameters. The parameter values obtained were consistent with literature data and general concepts of cell growth and citric acid biosynthesis. The model has been used to predict optimum RB culture conditions.  相似文献   

5.
Regulation of polarised cell growth is essential for many cellular processes including spatial coordination of cell morphology changes during the division cycle. We present a mathematical model of the core mechanism responsible for the regulation of polarised growth dynamics during the fission yeast cell cycle. The model is based on the competition of growth zones localised at the cell tips for a common substrate distributed uniformly in the cytosol. We analyse the bifurcations in this model as the cell length increases, and show that the growth activation dynamics provides an explanation for the new-end take-off (NETO) as a saddle-node bifurcation at which the cell sharply switches from monopolar to bipolar growth. We study the parameter sensitivity of the bifurcation diagram and relate qualitative changes of the growth pattern, e.g. delayed or absent NETO, to previously observed mutant phenotypes. We investigate the effects of imperfect asymmetric cell division, and show that this leads to distinct growth patterns that provide experimentally testable predictions for validating the presented competitive growth zone activation model. Finally we discuss extension of the model for describing mutant cells with more than two growth zones.  相似文献   

6.
A recombinant yeast plasmid carrying the Ieu2 gene for auxotrophic complementation and a reporter gene for beta-galactosidase under the control of Gal10 promoter was studied in Saccharomyces cerevisiae. Growth, product formation, and plasmid stability were studied in defined, semi-defined, and complex media. The biomass concentration and specific activity were higher in complex medium than in defined medium, which was selective for the growth of plasmid-containing cells, leading to a 10-fold increase in volumetric activity. However, plasmid instability was very high in complex media with 50% plasmid-free cells emerging in the culture within 75 h of cultivation. In order to control instability, the growth rates of the plasmid-containing and plasmid-free cells were determined in semi-defined media, which consisted of defined medium supplemented with different concentrations of yeast extract. Below a critical concentration of yeast extract (0.05 g/L), the plasmid-containing cells had a growth rate advantage over the plasmid-free cells. This was possibly because, at this concentration of yeast extract, the availability of leucine became the rate-determining factor in the specific growth rate of plasmid-free cells. A feeding strategy was designed which maintained a low concentration of the residual yeast extract in the medium and thus continuously provided the plasmid-containing cells with a competitive advantage over the plasmid-free cells. This resulted in high stability as well as high cell density under non-selective conditions, which led to a 10-fold increase in the volumetric activity compared to that achieved in defined selective media. A simple mathematical model was formulated to verify the experimental data. The important state variables and process parameters, i.e., biomass concentration, beta-galactosidase expression, sucrose consumption, yeast extract consumption, and specific growth rates of the two cell populations, were evaluated. These variables and parameters along with the differential equations based on material balances as well as the experimental results obtained were used in a mathematical model for the fed-batch cultivation. These correctly verified the experimental data and clearly illustrated the concept behind the success of the fed-batch strategy under yeast extract starvation.  相似文献   

7.
The study of the effect of different ethanol concentrations in the medium on the growth and the activity of enzymatic systems involved in ethanol oxidation in Yarrowia lipolytica showed that the cultivation of yeast cells on 1 and 2% ethanol caused their rapid growth and a drastic increase in cell respiration and sensitivity to cyanide already in the first hours of cultivation. At the same time, during cultivation on 3, 4, and 5% ethanol, the growth and respiration of yeast cells were considerably suppressed. All of the ethanol concentrations studied induced the synthesis of cytochrome P-450, its dynamics in cells being dependent on the initial concentration of ethanol in the medium. When the initial concentration of ethanol was 1 and 2%, the content of cytochrome P-450 in cells steeply decreased after a short period of induction. But when the initial concentration of ethanol in the medium was 3 to 5%, the content of cytochrome P-450 in cells was high throughout the cultivation period. The induction of cytochrome P-450 in cells preceded the induction of the NAD-dependent enzymes alcohol dehydrogenase and catalase, which, like cytochrome P-450, are also involved in ethanol oxidation by yeasts. The activity of catalase was higher in the yeast cells grown in the presence of 3 to 5% ethanol than in the cells grown in the presence of 1 and 2% ethanol. The roles played by cytochrome P-450, alcohol dehydrogenase, and catalase in ethanol oxidation by yeast cells are discussed.  相似文献   

8.
The study of the effect of different ethanol concentrations in the medium on the growth and activity of enzymatic systems involved in ethanol oxidation in Yarrowia lipolytica showed that the cultivation of yeast cells on 1 and 2% ethanol caused their rapid growth and a drastic increase in cell respiration and sensitivity to cyanide already in the first hours of cultivation. At the same time, during cultivation on 3, 4, and 5% ethanol, the growth and respiration of yeast cells were considerably suppressed. All of the ethanol concentrations studied induced the synthesis of cytochrome P-450, its dynamics in cells being dependent on the initial concentration of ethanol in the medium. When the initial concentration of ethanol was 1 and 2%, the content of cytochrome P-450 in cells steeply decreased after a short period of induction. However, when the initial concentration of ethanol in the medium was 4 to 5%, the content of cytochrome P-450 in cells was high throughout the cultivation period. The induction of cytochrome P-450 in cells preceded the induction of the NAD-dependent enzymes alcohol dehydrogenase and catalase, which, like cytochrome P-450, are also involved in ethanol oxidation by yeasts. The activity of catalase was higher in the yeast cells grown in the presence of 3 to 5% ethanol than in the cells grown in the presence of 1 and 2% ethanol. The roles played by cytochrome P-450, alcohol dehydrogenase, and catalase in ethanol oxidation by yeast cells are discussed.  相似文献   

9.
Yeast production on hydrolysate is a likely process solution in large-scale ethanol production from lignocellulose. The hydrolysate will be available on site, and the yeast has furthermore been shown to acquire an increased inhibitor tolerance when cultivated on hydrolysate. However, due to over-flow metabolism and inhibition, efficient yeast production on hydrolysate can only be achieved by well-controlled substrate addition. In the present work, a method was developed for controlled addition of hydrolysate to PDU (process development unit)-scale aerobic fed-batch cultivations of Saccharomyces cerevisiae TMB 3000. A feed rate control strategy, which maintains the ethanol concentration at a low constant level, was adapted to process-like conditions. The ethanol concentration was obtained from on-line measurements of the ethanol mole fraction in the exhaust gas. A computer model of the system was developed to optimize control performance. Productivities, biomass yields, and byproduct formation were evaluated. The feed rate control worked satisfactorily and maintained the ethanol concentration close to the setpoint during the cultivations. Biomass yields of 0.45 g/g were obtained on added hexoses during cultivation on hydrolysate and of 0.49 g/g during cultivation on a synthetic medium with glucose as the carbon source. Exponential growth was achieved with a specific growth rate of 0.18 h-1 during cultivation on hydrolysate and 0.22 h-1 during cultivation on glucose.  相似文献   

10.
A simple mathematical model describing the cell cycle dependency of rice alpha-amylase production by a recombinant yeast was constructed to investigate the efficiency of cell cycle population control. First, the effects of the glucose concentration and cultivation temperature on the specific growth rate, the specific production rate of rice alpha-amylase, and the distribution of the cell cycle population were studied under balanced growth conditions. On the basis of the results, parameter values for the mathematical model were then estimated. The proposed model was shown to be applicable for unbalanced as well as balanced growth phases. The optimal control strategy in respect of temperature and glucose concentration for maximum rice alpha-amylase production, taking into account the cell cycle population, was determined and the result was compared with that obtained by a simple mathematical model in which cell cycle distribution was not considered. Finally, the effect of the initial population of each cell cycle phase on the final amount of the product under optimal operational conditions was investigated. The simulation and experimental data coincided well with each other, and the model was used to optimize the control strategy for maximum alpha-amylase production.  相似文献   

11.
An asynchronous bacterial population has been approximated using a finite number of "computer" cells, each based on a complex single-cell model for Escherichia coli. This formulation correctly simulates the transient responses of protein and total cell mass synthesis rate to the sudden increase in the concentration of limiting energy source in the growth medium. Experimentally observed responses of rRNA and mRNA synthesis rates to growth rate shifts are qualitatively mirrored by the model. Simulation trends following those of a rel(-) mutant suggest that model modifications are needed to describe the dynamics of the stringent response. Simulations of the responses of recombinant populations to plasmid amplification or plasmid promoter induction also result in behavior similar to that determined experimentally. The calculated responses for recombinant populations subjected to constant promoter induction or cyclic induction-noninduction lead to the conclusion that inducible systems give greater productivity than those with fixed promoter strength. This formulation may be utilized as a basis for exploring other aspects of recombinant population dynamics.  相似文献   

12.
Experimental data from six hybridoma cell lines grown under diverse experimental conditions in both normal continuous and perfusion cultures are analyzed with respect to the significance of nutrients and products in determining the growth and death rates of cells and with respect to their mathematical modeling. It is shown that neither nutrients (glucose and glutamine) nor the common products lactic acid, ammonia, and monoclonal antibody can be generally assumed to be the clear-limiting or inhibiting factors for most of the cultures. Correspondingly, none of the unstructured models existing in the literature can be generally applied to describe the experimental data obtained over a relatively wide range of cultivation conditions as considered in this work. Surprisingly, for all cultures the specific growth rate (mu) almost linearly correlates with the ratio of the viable cell concentration (NV) to the dilution (perfusion) rate (D). Similarly, the specific death rate (kd) is a function of the ratio of the total cell concentration (Nt) to the dilution (perfusion) rate. These results strongly suggest the formation of not yet identified critical factors or autoinhibitors that determine both the growth and death rates of hybridoma cells. Based on these observations, simple kinetic models are developed for mu and kd which describe the experimental data satisfactorily. Analysis of the experimental data with the kinetic models reveals that under the current cultivation conditions the formation rate of the autoinhibitor(s) or the sensitivity of cell growth and death to the autoinhibitor(s) is mainly affected by the medium composition. Irrespective of the cell lines, cells grown on serum-containing media have almost the same model parameters, which are distinctively different from those of cells grown on serum-free media. Furthermore, in contrast to the prevailing view, kd is shown to positively correlate with mu if the effects of cell concentration and dilution (perfusion) rate are considered. Several important implications of these findings are discussed for the optimization and control of animal cell culture.  相似文献   

13.
The spatio-temporal dynamics of traveling waves in glycolysis as it occurs in yeast extract have been studied, both theoretically and experimentally. We describe this phenomenon with the distributed Selkov model that accounts for the reactions of phosphofructokinase, which is a key enzyme of the glycolytic reaction cascade. To describe the experimentally observed phase waves in an open spatial reactor we introduce a non-homogeneous flux of substrate in the model. The experimental observation that waves can change their direction of propagation during the experiment is considered in the model. The mechanism for such a change in wave direction is discussed.  相似文献   

14.

Background

Microorganisms can adapt to perturbations of the surrounding environment to grow. To analyze the adaptation process of the yeast Saccharomyces cerevisiae to a high ethanol concentration, repetitive cultivation was performed with a stepwise increase in the ethanol concentration in the culture medium.

Methodology/Principal Findings

First, a laboratory strain of S. cerevisiae was cultivated in medium containing a low ethanol concentration, followed by repetitive cultivations. Then, the strain repeatedly cultivated in the low ethanol concentration was transferred to medium containing a high ethanol concentration and cultivated repeatedly in the same high-ethanol-concentration medium. When subjected to a stepwise increase in ethanol concentration with the repetitive cultivations, the yeast cells adapted to the high ethanol concentration; the specific growth rate of the adapted yeast strain did not decrease during repetitive cultivation in the medium containing the same ethanol concentration, while that of the non-adapted strain decreased during repetitive cultivation. A comparison of the fatty acid composition of the cell membrane showed that the contents in oleic acid (C18:1) in ethanol-adapted and non-adapted strains were similar, but the content of palmitic acid (C16:0) in the ethanol-adapted strains was lower than that in the non-adapted strain in media containing ethanol. Moreover, microscopic observation showed that the mother cells of the adapted yeast were significantly larger than those of the non-adapted strain.

Conclusions

Our results suggest that activity of cell growth defined by specific growth rate of the yeast cells adapted to stepwise increase in ethanol concentration did not decrease during repetitive cultivation in high-ethanol-concentration medium. Moreover, fatty acid content of cell membrane and the size of ethanol-adapted yeast cells were changed during adaptation process. Those might be the typical phenotypes of yeast cells adapted to high ethanol concentration. In addition, the difference in sizes of the mother cell between the non-adapted and ethanol strains suggests that the cell size, cell cycle and adaptation to ethanol are thought to be closely correlated.  相似文献   

15.
The diversity and content of available nitrogen sources in the growth medium both are very important in the accumulation of ergosterol in the yeast cell membrane. Growth on the good nitrogen sources such as ammonia can harvest more yeast cells than on poor ones, but ergosterol content in those yeast cells is relatively lower. Ergosterol content, one of the most variable parameters in ergosterol production by yeast cultivation, is greatly influenced by nitrogen limitation. The aim of our work was to study how the nitrogen sources affected the membrane ergosterol content and increase the total ergosterol yield. On the premise of keeping high ergosterol content in yeast cell, the ergosterol yield was enhanced by increasing the yeast biomass. Direct feed back control of glucose using an on-line ethanol concentration monitor was introduced to achieve high cell density. Ammonia, which acted as nitrogen source, was added to adjust pH during fermentation process, but its addition needed careful control. Cultivation in 5 L bioreactor was carried out under following conditions: culture temperature 30+/-1 degrees C, pH 5.5+/-0.1, agitation speed 600 rpm, controlling ethanol concentration below 1% and controlling ammonium ion concentration below 0.1 mol/L. Under these conditions the yeast dry weight reached 95.0+/-2.6 g/L and the ergosterol yield reached 1981+/-34 mg/L.  相似文献   

16.
The effect of pyrimethanil on the growth of wine yeasts   总被引:1,自引:0,他引:1  
Aims:  The toxicity of the fungicide pyrimethanil on the growth of wine yeasts was evaluated using in vivo and in vitro experimentation.
Methods and Results:  The effect of pyrimethanil in the must was studied during the spontaneous wine fermentation of three consecutive vintages and by the cultivation of Hanseniaspora uvarum and Saccharomyces cerevisiae yeasts in a liquid medium. The residues of the fungicide were measured using gas chromatography-mass spectrometry system and the sugar concentration in the must using HPLC-RI. Molecular and standard methods were used for identifying the yeast species. Although the pyrimethanil residues in grapes were below the maximum residue limits, they significantly affected the reduced utilization of sugars in the first days of fermentation. Its residues controlled the growth of H. uvarum during the fermentation and during in vitro cultivation as well.
Conclusions:  The fungicide pyrimethanil had an effect on the course and successful conclusion of spontaneous wine fermentation that was correlated with the initial concentration of yeasts in the must.
Significance and Impact of the Study:  The impact of pyrimethanil on the indigenous mixed yeast flora in fermenting must was investigated for the first time. The results showed that its residues might play an important role in the growth and succession of yeast during spontaneous wine fermentation.  相似文献   

17.
The study presented in this article investigated the influence of different Cr(III) and Cr(VI) compounds in the cultivation medium on the uptake and localization of chromium in the cell structure of the yeast Candida intermedia. The morphology of the yeast cell surface was observed by the scanning electron microscopy. Results demonstrated that the growth inhibitory concentration of Cr(III) in the cultivation medium induced changes in the yeast cell shape and affected the budding pattern, while inhibitory concentration of Cr(VI) did not cause any visible effects on morphological properties of the yeast cells. The amount of total accumulated chromium in yeast cells and the distribution of chromium between the yeast cell walls and spheroplasts were determined by atomic absorption spectroscopy. No significant differences were found neither in total chromium accumulation nor in the distribution of chromium in yeast cell walls and spheroplasts between the two of Cr(VI) compounds. Conversely, substantial differences between Cr(III) compounds were demonstrated in the total uptake as well as the localization of chromium in yeast cells.  相似文献   

18.
The characterization and quantification of biomass is often time consuming and dependent on the cultivation media and gives no detailed information between cell size and shape and their productivity. By monitoring the bioprocess with steric sedimentation field-flow fractionation (Sd/StFFF) in combination with laser light scattering, not only cell growth, but also the variation of cell size and shape during the cultivation, can be observed. In this work, the feasibility of separating and characterizing cell populations by steric sedimentation field-flow fractionation is demonstrated by its application to three different yeast cultivation broths. For this purpose samples which were collected at different cultivation times were injected into an FFF system. Fractograms were obtained in less than 4 min. Due to the relatively high resolution of the method, a cell sample could be fractionated in several subpopulations differing in their size as well as in their number of buds.  相似文献   

19.
A leucine auxotroph strain of Saccharomyces cerevisiae was used to study plasmid stability and expression using a recombinant plasmid, which contained a foreign gene for firefly luciferase (luc). This recombinant yeast was tested in a series of continuous cultures in semi-defined media with varying concentrations of yeast extract in order to study its effect on stability. While the biomass concentration and luciferase activity increased with increasing concentrations of yeast extract, the plasmid stability declined. An analysis of the growth rates showed that the recombinants enjoyed a growth rate advantage over the plasmid-free cells at critically low yeast extract concentrations, possibly due to leucine starvation in the media. A two-stage cultivation strategy was designed in order to create a yeast extract limited environment so that plasmid-free cells could not grow and overtake the recombinant cells. The cells were cultivated in selective media in the first stage, and then transferred continuously to the second stage where the media was enriched by feeding yeast extract. The feed rate was kept low in order to ensure yeast extract and hence leucine starvation, thereby selecting against the plasmid-free cells. This strategy resulted in a stable existence of recombinant cells, which stabilized around 60% at steady state during the tested period of cultivation. The complex nitrogen feed helped in increasing the cell density and volumetric activity by approximately 9 and 18-fold respectively with respect to that achieved in minimal medium. The experimental data was used to formulate a mathematical model to predict cell growth and plasmid stability in two-stage cultivation, which correctly explained the experimental data.  相似文献   

20.
An extended dynamical model for growth and sporulation of Bacillus thuringiensis subsp. kurstaki in an intermittent fed-batch culture with total cell retention is proposed. This model differs from reported models, by including dynamics for natural death of cells and substrate consumption for cell maintenance. The proposed model uses sigmoid functions to describe these kinetic parameters. Equations for time evolution of substrate, vegetative, sporulated and total cell concentration were taken from previous works. Model parameters were determined from batch experimental data obtained in pilot plant. Parameter identification was developed in two stages: (1) coarse identification using a multivariable optimization with constraints algorithm, (2) fine identification by heuristic fit of model parameters looking for a minimal model error. The proposed model estimates adequate time evolution of the process variables with a mean error of 2.6% on substrate concentration and 6.7% on biomass concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号