首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysophosphatidic acid (LPA) exhibits a wide variety of biological functions as a bio-active lysophospholipid through G-protein-coupled receptors specific to LPA. Currently at least six LPA receptors are identified, named LPA1 to LPA6, while the existence of other LPA receptors has been suggested. From studies on knockout mice and hereditary diseases of these LPA receptors, it is now clear that LPA is involved in various biological processes including brain development and embryo implantation, as well as patho-physiological conditions including neuropathic pain and pulmonary and renal fibrosis. Unlike sphingosine 1-phosphate, a structurally similar bio-active lysophospholipid to LPA and produced intracellularly, LPA is produced by multiple extracellular degradative routes. A plasma enzyme called autotaxin (ATX) is responsible for the most of LPA production in our bodies. ATX converts lysophospholipids such as lysophosphatidylcholine to LPA by its lysophospholipase D activity. Recent studies on ATX have revealed new aspects of LPA. In this review, we highlight recent advances in our understanding of LPA functions and several aspects of ATX, including its activity, expression, structure, biochemical properties, the mechanism by which it stimulates cell motility and its pahto-physiological function through LPA production.  相似文献   

2.
《Free radical research》2013,47(11):1362-1370
Abstract

We sought to evaluate lysophosphatidic acid (LPA) signaling improvement in lung development by assessing the expression of autotaxin and LPA receptor 1 and 3 (LPAR1 and LPAR3) in the neonatal rat lung during normal perinatal development and in response to hyperoxia. In the developmental study, rats were sacrificed on days 17, 19, and 21 of gestation; on postnatal days 1, 4, and 7; and at adulthood (postnatal 9 weeks). In the hyperoxia study, 42 postnatal 4-day-old rat pups were divided into seven groups and exposed to either 85% O2 for 24, 72, or 120 h or room air for 0, 24, 72, or 120 h. The rats were then euthanized after 0, 24, 72, and 120 h of exposure. Immunofluorescence demonstrated that autotaxin, LPAR1, and LPAR3 proteins were broadly colocalized in airway epithelial cells, but mainly distributed in vascular endothelial and mesenchymal cells during the first postnatal week. The expression of autotaxin, LPAR1, and LPAR3 were increased during late gestation and then decreased after birth. Autotaxin expression and enzymatic activity were significantly increased at 72 and 120 h after exposure to hyperoxia. LPAR1 and LPAR3 expression was also increased after 120 h of hyperoxic exposure. These findings suggest that LPA-associated molecules were upregulated at birth and induced by hyperoxia in the developing rat lung. Therefore, the LPA pathway may be involved in normal lung development, including vascular development, as well as wound-healing processes of injured neonatal lung tissue, which is at risk of neonatal hyperoxic acute lung injury.  相似文献   

3.
Lysophosphatidic acid (LPA) is a bioactive lipid growth factor which is present in high levels in serum and platelets. LPA binds to its specific G-protein-coupled receptors, including LPA1 to LPA6, thereby regulating various physiological functions, including cancer growth, angiogenesis, and lymphangiogenesis. Our previous study showed that LPA promotes the expression of the lymphangiogenic factor vascular endothelial growth factor (VEGF)-C in prostate cancer (PCa) cells. Interestingly, LPA has been shown to regulate the expression of calreticulin (CRT), a multifunctional chaperone protein, but the roles of CRT in PCa progression remain unclear. Here we investigated the involvement of CRT in LPA-mediated VEGF-C expression and lymphangiogenesis in PCa. Knockdown of CRT significantly reduced LPA-induced VEGF-C expression in PC-3 cells. Moreover, LPA promoted CRT expression through LPA receptors LPA1 and LPA3, reactive oxygen species (ROS) production, and phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). Tumor-xenografted mouse experiments further showed that CRT knockdown suppressed tumor growth and lymphangiogenesis. Notably, clinical evidence indicated that the LPA-producing enzyme autotaxin (ATX) is related to CRT and that CRT level is highly associated with lymphatic vessel density and VEGF-C expression. Interestingly, the pharmacological antagonist of LPA receptors significantly reduced the lymphatic vessel density in tumor and lymph node metastasis in tumor-bearing nude mice. Together, our results demonstrated that CRT is critical in PCa progression through the mediation of LPA-induced VEGF-C expression, implying that targeting the LPA signaling axis is a potential therapeutic strategy for PCa.  相似文献   

4.
Cyclic phosphatidic acid (cPA) is a naturally occurring phospholipid mediator and an analog of the growth factor-like phospholipid lysophosphatidic acid (LPA). cPA has a unique cyclic phosphate ring at the sn-2 and sn-3 positions of its glycerol backbone. We showed before that a metabolically stabilized cPA derivative, 2-carba-cPA, relieved osteoarthritis pathogenesis in vivo and induced hyaluronic acid synthesis in human osteoarthritis synoviocytes in vitro. This study focused on hyaluronic acid synthesis in human fibroblasts, which retain moisture and maintain health in the dermis. We investigated the effects of cPA and LPA on hyaluronic acid synthesis in human fibroblasts (NB1RGB cells). Using particle exclusion and enzyme-linked immunosorbent assays, we found that both cPA and LPA dose-dependently induced hyaluronic acid synthesis. We revealed that the expression of hyaluronan synthase 2 messenger RNA and protein is up-regulated by cPA and LPA treatment time dependently. We then characterized the signaling pathways up-regulating hyaluronic acid synthesis mediated by cPA and LPA in NB1RGB cells. Pharmacological inhibition and reporter gene assays revealed that the activation of the LPA receptor LPAR1, Gi/o protein, phosphatidylinositol-3 kinase (PI3K), extracellular-signal-regulated kinase (ERK), and cyclic adenosine monophosphate response element-binding protein (CREB) but not nuclear factor κB induced hyaluronic acid synthesis by the treatment with cPA and LPA in NB1RGB cells. These results demonstrate for the first time that cPA and LPA induce hyaluronic acid synthesis in human skin fibroblasts mainly through the activation of LPAR1-Gi/o followed by the PI3K, ERK, and CREB signaling pathway.  相似文献   

5.
Lysophosphatidic acid (LPA) is released from platelets following injury and also plays a role in neural development but little is known about its effects in the adult central nervous system (CNS). We have examined the expression of LPA receptors 1-3 (LPA1–3) in intact mouse spinal cord and cortical tissues and following injury. In intact and injured tissues, LPA1 was expressed by ependymal cells in the central canal of the spinal cord and was upregulated in reactive astrocytes following spinal cord injury. LPA2 showed low expression in intact CNS tissue, on grey matter astrocytes in spinal cord and in ependymal cells lining the lateral ventricle. Following injury, its expression was upregulated on astrocytes in both cortex and spinal cord. LPA3 showed low expression in intact CNS tissue, viz. on cortical neurons and motor neurons in the spinal cord, and was upregulated on neurons in both regions after injury. Therefore, LPA1–3 are differentially expressed in the CNS and their expression is upregulated in response to injury. LPA release following CNS injury may have different consequences for each cell type because of this differential expression in the adult nervous system.  相似文献   

6.
Lysophosphatidic acid (LPA) is a simple biophysical lipid which interacts with at least six subtypes of G protein-coupled LPA receptors (LPA1–LPA6). In cancer cells, LPA signaling via LPA receptors is involved in the regulation of malignant properties, such as cell growth, motility, and invasion. The aim of this study was to assess whether LPA receptors regulate cellular functions of fibrosarcoma cells treated with anticancer drug. HT1080 cells were maintained by the stepwise treatment of cisplatin (CDDP) at a range of 0.01 to 1.0 µM for approximately 6 months. The cell motile and invasive activities of long-term CDDP-treated (HT-CDDP) cells were significantly stimulated by LPA treatment, while HT-CDDP cells in the static state showed the low cell motile and invasive activities in comparison with HT1080 cells. Since the expression level of LPAR2 gene was markedly elevated in HT-CDDP cells, LPA2 knockdown cells were generated from HT-CDDP cells. The cell motile and invasive activities of HT-CDDP cells were reduced by LPA2 knockdown. In colony assay, large-sized colonies formed by long-term CDDP treatment were suppressed by LPA2 knockdown. In addition, LPA2 knockdown cells reduced LPA production by autotaxin (ATX), correlating with ATX expression level. These results suggest that LPA signaling via LPA2 may play an important role in the regulation of cellular functions in HT1080 cells treated with CDDP.  相似文献   

7.
The objective of the study was to examine which cultured endometrial cells are the source and which are the target for lysophosphatidic acid (LPA) in the bovine uterus. LPA concentration as well as mRNA and protein expressions of the enzymes responsible for LPA synthesis (phospholipase A2: PLA2, autotaxin: AX) were greater in epithelial than in stromal cells (P < 0.05). In turn, mRNA and protein expression of LPA receptor (LPAR1) was lower in epithelial than in stromal cells (P < 0.05). We suggest that LPA in bovine endometrium is produced mainly by epithelial cells and affects mostly stromal cells acting via LPAR1.  相似文献   

8.
Drug resistance remains a barrier to the effective long term treatment of ovarian cancer. We have established an RNAi-based screen to identify genes which confer resistance to carboplatin or paclitaxel. To validate the screen we showed that siRNA interfering with the apoptosis regulators FLIP and Bcl-XL conferred sensitivity to paclitaxel and carboplatin respectively. The expression of 90 genes which have previously been shown to be over-expressed in drug-resistant ovarian cancer was inhibited using siRNA and the impact on sensitivity to carboplatin and paclitaxel was assessed. ENPP2 was identified as a candidate gene causing drug resistance. ENPP2 encodes autotaxin, a phospholipase involved in the synthesis of the survival factor lysophosphatidic acid. siRNA directed to ENPP2 resulted in earlier apoptosis following treatment with carboplatin. 2-carbacyclic phosphatidic acid (ccPA 16:1), a small molecule inhibitor of autotaxin, also accelerated apoptosis induced by carboplatin. Stable ectopic expression of autotaxin in OVCAR-3 cells led to a delay in apoptosis. When serum was withdrawn to remove exogenous LPA, ccPA caused a pronounced potentiation of apoptosis induced by carboplatin in cells expressing autotaxin. These results indicate that autotaxin delays apoptosis induced by carboplatin in ovarian cancer cells.  相似文献   

9.
High expression of autotaxin in cancers is often associated with increased tumor progression, angiogenesis and metastasis. This is explained mainly since autotaxin produces the lipid growth factor, lysophosphatidate (LPA), which stimulates cell division, survival and migration. It has recently become evident that these signaling effects of LPA also produce resistance to chemotherapy and radiation-induced cell death. This results especially from the stimulation of LPA2 receptors, which depletes the cell of Siva-1, a pro-apoptotic signaling protein and stimulates prosurvival kinase pathways through a mechanism mediated via TRIP-6. LPA signaling also increases the formation of sphingosine 1-phosphate, a pro-survival lipid. At the same time, LPA decreases the accumulation of ceramides, which are used in radiation therapy and by many chemotherapeutic agents to stimulate apoptosis. The signaling actions of extracellular LPA are terminated by its dephosphorylation by a family of lipid phosphate phosphatases (LPP) that act as ecto-enzymes. In addition, lipid phosphate phoshatase-1 attenuates signaling downstream of the activation of both LPA receptors and receptor tyrosine kinases. This makes many cancer cells hypersensitive to the action of various growth factors since they often express low LPP1/3 activity. Increasing our understanding of the complicated signaling pathways that are used by LPA to stimulate cell survival should identify new therapeutic targets that can be exploited to increase the efficacy of chemo- and radio-therapy. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   

10.
Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological actions. We have reported that LPA stimulates hepatic stellate cell proliferation and inhibits DNA synthesis in hepatocytes, suggesting that LPA might play some role in the liver. We have found that plasma LPA level and serum autotaxin (ATX) activity were increased in patients with chronic hepatitis C. However, the clinical significance of LPA and its synthetic enzyme, autotaxin (ATX), is still unclear. To determine whether the increase of plasma LPA level and serum ATX activity might be found generally in liver injury, we examined the possible modulation of them in the blood in rats with various liver injuries. Plasma LPA level and serum ATX activity were increased in carbon tetrachloride-induced liver fibrosis correlatively with fibrosis grade, in dimethylnitrosamine-induced acute liver injury correlatively with serum alanine aminotransferase level or in 70% hepatectomy as early as 3 h after the operation. Plasma LPA level was correlated with serum ATX activity in rats with chronic and acute liver injury. ATX mRNA in the liver was not altered in carbon tetrachloride-induced liver fibrosis. Plasma LPA level and serum ATX activity are increased in various liver injuries in relation to their severity. Whether increased ATX and LPA in the blood in liver injury is simply a result or also a cause of the injury should be further clarified.  相似文献   

11.
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.  相似文献   

12.
Oxidatively modified low-density lipoprotein (oxLDL) plays a key role in the initiation of atherosclerosis by increasing monocyte adhesion. The mechanism that is responsible for the oxLDL-induced atherogenic monocyte recruitment in vivo, however, still remains unknown. Oxidation of LDL generates lysophosphatidylcholine, which is the main substrate for the lysophosphatidic acid (LPA) generating enzyme autotaxin. We show that oxLDL requires endothelial LPA receptors and autotaxin to elicit CXCL1-dependent arterial monocyte adhesion. Unsaturated LPA releases endothelial CXCL1, which is subsequently immobilized on the cell surface and mediates LPA-induced monocyte adhesion. Local and systemic application of LPA accelerates the progression of atherosclerosis in mice. Blocking the LPA receptors LPA(1) and LPA(3) reduced hyperlipidemia-induced arterial leukocyte arrest and atherosclerosis in the presence of functional CXCL1. Thus, atherogenic monocyte recruitment mediated by hyperlipidemia and modified LDL crucially depends on LPA, which triggers endothelial deposition of CXCL1, revealing LPA signaling as a target for cardiovascular disease treatments.  相似文献   

13.
14.
Conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA) by autotaxin, a secreted phospholipase D, is a major pathway for producing LPA. We previously reported that feeding Ldlr−/− mice standard mouse chow supplemented with unsaturated LPA or lysophosphatidylcholine qualitatively mimicked the dyslipidemia and atherosclerosis induced by feeding a Western diet (WD). Here, we report that adding unsaturated LPA to standard mouse chow also increased the content of reactive oxygen species and oxidized phospholipids (OxPLs) in jejunum mucus. To determine the role of intestinal autotaxin, enterocyte-specific Ldlr−/−/Enpp2 KO (intestinal KO) mice were generated. In control mice, the WD increased enterocyte Enpp2 expression and raised autotaxin levels. Ex vivo, addition of OxPL to jejunum from Ldlr−/− mice on a chow diet induced expression of Enpp2. In control mice, the WD raised OxPL levels in jejunum mucus and decreased gene expression in enterocytes for a number of peptides and proteins that affect antimicrobial activity. On the WD, the control mice developed elevated levels of lipopolysaccharide in jejunum mucus and plasma, with increased dyslipidemia and increased atherosclerosis. All these changes were reduced in the intestinal KO mice. We conclude that the WD increases the formation of intestinal OxPL, which i) induce enterocyte Enpp2 and autotaxin resulting in higher enterocyte LPA levels; that ii) contribute to the formation of reactive oxygen species that help to maintain the high OxPL levels; iii) decrease intestinal antimicrobial activity; and iv) raise plasma lipopolysaccharide levels that promote systemic inflammation and enhance atherosclerosis.  相似文献   

15.
We previously reported that i) a Western diet increased levels of unsaturated lysophosphatidic acid (LPA) in small intestine and plasma of LDL receptor null (LDLR−/−) mice, and ii) supplementing standard mouse chow with unsaturated (but not saturated) LPA produced dyslipidemia and inflammation. Here we report that supplementing chow with unsaturated (but not saturated) LPA resulted in aortic atherosclerosis, which was ameliorated by adding transgenic 6F tomatoes. Supplementing chow with lysophosphatidylcholine (LysoPC) 18:1 (but not LysoPC 18:0) resulted in dyslipidemia similar to that seen on adding LPA 18:1 to chow. PF8380 (a specific inhibitor of autotaxin) significantly ameliorated the LysoPC 18:1-induced dyslipidemia. Supplementing chow with LysoPC 18:1 dramatically increased the levels of unsaturated LPA species in small intestine, liver, and plasma, and the increase was significantly ameliorated by PF8380 indicating that the conversion of LysoPC 18:1 to LPA 18:1 was autotaxin dependent. Adding LysoPC 18:0 to chow increased levels of LPA 18:0 in small intestine, liver, and plasma but was not altered by PF8380 indicating that conversion of LysoPC 18:0 to LPA 18:0 was autotaxin independent. We conclude that i) intestinally derived unsaturated (but not saturated) LPA can cause atherosclerosis in LDLR−/− mice, and ii) autotaxin mediates the conversion of unsaturated (but not saturated) LysoPC to LPA.  相似文献   

16.
Lysophosphatidic acid (LPA) is a low-molecular-weight lysophospholipid (LPL), which regulates endothelial cells participating in inflammation processes via interactions with endothelial differentiation gene (Edg) family G protein-coupled receptors. In this study, we attempted to determine which LPA receptors mediate the inflammatory response in human endothelial cells. Introduction of siRNA against LPA1 significantly suppressed LPA-induced ICAM-1 mRNA, total protein, and cell surface expressions, and subsequent U937 monocyte adhesion to LPA-treated human umbilical endothelial cells (HUVECs). By knock down of LPA1 and LPA3 in HUVECs, LPA-enhanced IL-1β mRNA expression was significantly attenuated. Moreover, LPA1 and LPA3 siRNA also inhibited LPA-enhanced IL-1-dependent long-term IL-8 and MCP-1 mRNA expression, and subsequent THP-1 cell chemotaxis toward LPA-treated HUVEC-conditioned media. These results suggest that the expression of LPA-induced inflammatory response genes is mediated by LPA1 and LPA3. Our findings suggest the possible utilization of LPA1 or LPA3 as drug targets to treat severe inflammation.  相似文献   

17.
We previously reported that nerve injury‐induced neuropathic pain and its underlying mechanisms are initiated by lysophosphatidic acid. In the present study, by measuring cell‐rounding in a biological assay using lysophosphatidic acid 1 receptor‐expressing B103 cells, we evaluated the molecular mechanism underlying lysophosphatidic acid biosynthesis following intense stimulation of primary afferents. Lysophosphatidic acid production was induced by treatment of spinal cord slices with capsaicin (10 μM), an intense stimulator of primary afferents, in the presence of recombinant autotaxin, but not in its absence. Lysophosphatidic acid was also induced by combination treatment of slices with high doses (10 and 30 μM) of substance P and NMDA, but not by other combinations of substance P, NMDA, calcitonin gene‐related peptide and α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate (30 μM each) in the presence of recombinant autotaxin. We also found that following neurokinin 1 and NMDA receptor activation, activation of both cytosolic phospholipase A2 and calcium‐independent intracellular phospholipase A2 signalling pathways through protein kinase C and mitogen‐activated protein/extracellular signal‐regulated kinase activation and intracellular calcium elevation were required for lysophosphatidic acid production. These findings suggest that simultaneous intense stimulation of neurokinin 1 and NMDA receptors in the spinal dorsal horn triggers lysophosphatidic acid production from lysophosphatidylcholine through extracellular autotaxin.  相似文献   

18.
19.
Lysophosphatidic acid (LPA) and the LPA-generating enzyme autotaxin (ATX) have been implicated in lymphocyte trafficking and the regulation of lymphocyte entry into lymph nodes. High local concentrations of LPA are thought to be present in lymph node high endothelial venules, suggesting a direct influence of LPA on cell migration. However, little is known about the mechanism of action of LPA, and more work is needed to define the expression and function of the six known G protein-coupled receptors (LPA 1–6) in T cells. We studied the effects of 18∶1 and 16∶0 LPA on naïve CD4+ T cell migration and show that LPA induces CD4+ T cell chemorepulsion in a Transwell system, and also improves the quality of non-directed migration on ICAM-1 and CCL21 coated plates. Using intravital two-photon microscopy, lpa2−/− CD4+ T cells display a striking defect in early migratory behavior at HEVs and in lymph nodes. However, later homeostatic recirculation and LPA-directed migration in vitro were unaffected by loss of lpa2. Taken together, these data highlight a previously unsuspected and non-redundant role for LPA2 in intranodal T cell motility, and suggest that specific functions of LPA may be manipulated by targeting T cell LPA receptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号