首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 942 毫秒
1.

Background  

Septin2 is a member of a highly conserved GTPase family found in fungi and animals. Septins have been implicated in a diversity of cellular processes including cytokinesis, formation of diffusion barriers and vesicle trafficking. Septin2 partially co-localises with actin bundles in mammalian interphase cells and Septin2-filamentmorphology depends upon an intact actin cytoskeleton. How this interaction is regulated is not known. Moreover, evidence that Septin2 is remodelled or redistributed in response to other changes in actin organisation is lacking.  相似文献   

2.

Background  

Germline mutations in LKB1 result in Peutz-Jeghers Syndrome characterized by intestinal hamartomas and increased incidence of epithelial cancers. LKB1 encodes a serine/threonine kinase that plays an important role in regulating energy metabolism through the AMPK/mTOR signaling pathway. In addition, LKB1 is homologous to PAR-4, a polarity protein first described in C. elegans, while activation of LKB1 in mammalian epithelial cells induces the polarized assembly of actin filaments.  相似文献   

3.

Background  

Nitrate, acting as both a nitrogen source and a signaling molecule, controls many aspects of plant development. However, gene networks involved in plant adaptation to fluctuating nitrate environments have not yet been identified.  相似文献   

4.

Background  

The cell surface undergoes continuous change during cell movement. This is characterized by transient protrusion and partial or complete retraction of microspikes, filopodia, and lamellipodia. This requires a dynamic actin cytoskeleton, moesin, components of Rho-mediated signal pathways, rearrangement of membrane constituents and the formation of focal adhesion sites. While the immunofluorescence distribution of endogenous moesin is that of a membrane-bound molecule with marked enhancement in some but not all microextensions, the C-terminal fragment of moesin co-distributes with filamentous actin consistent with its actin-binding activity. By taking advantage of this property we studied the spontaneous protrusive activity of live NIH3T3 cells, expressing a fusion of GFP and the C-terminal domain of moesin.  相似文献   

5.

Background  

Merlin, the product of the Neurofibromatosis type 2 (NF2) tumor suppressor gene, belongs to the ezrin-radixin-moesin (ERM) subgroup of the protein 4.1 superfamily, which links cell surface glycoproteins to the actin cytoskeleton. While merlin's functional activity has been examined in mammalian and Drosophila models, little is understood about its evolution, diversity, and overall distribution among different taxa.  相似文献   

6.

Key message

SOS3 mediates calcium dependent actin filament reorganization that plays important roles in plant responses to salt stress.

Abstract

Arabidopsis salt overly sensitive 3 (SOS3) plays an important role in plant salt tolerance by regulation of Na+/K+ homeostasis. Plants lacking SOS3 are hypersensitive to salt stress and this phenomenon can be partially rescued by the addition of calcium. However the mechanism underlying remains elusive. We here report that the organization of actin filaments in sos3 mutant differs from that in wild-type plant. Under salt stress abnormal actin assembly and arrangement in sos3 are more pronounced, which can be partially complemented by addition of external calcium or low concentration of latrunculin A, an actin monomer-sequestering agent. The effects of calcium and Lat A on actin filament organization of sos3 mutant are accordant with their effects on sos3 salt sensitivity under salt stress. These findings indicate that the salt-hypersensitivity of sos3 mutant partially results from its disordered actin filaments, and SOS3 mediated actin filament reorganization plays important roles in plant responses to salt stress.  相似文献   

7.

Background  

DNA extraction from plant tissues, unlike DNA isolation from mammalian tissues, remains difficult due to the presence of a rigid cell wall around the plant cells. Currently used methods inevitably require a laborious mechanical grinding step, necessary to disrupt the cell wall for the release of DNA.  相似文献   

8.

Background  

Mitochondria are dynamic organelles that move along actin filaments, and serve as calcium stores in plant cells. The positioning and dynamics of mitochondria depend on membrane-cytoskeleton interactions, but it is not clear whether microfilament cytoskeleton has a direct effect on mitochondrial function and Ca2+ storage. Therefore, we designed a series of experiments to clarify the effects of actin filaments on mitochondrial Ca2+ storage, cytoplasmic Ca2+ concentration ([Ca2+]c), and the interaction between mitochondrial Ca2+ and cytoplasmic Ca2+ in Arabidopsis root hairs.  相似文献   

9.

Background

Formin proteins utilize a conserved formin homology 2 (FH2) domain to nucleate new actin filaments. In mammalian diaphanous-related formins (DRFs) the FH2 domain is inhibited through an unknown mechanism by intramolecular binding of the diaphanous autoinhibitory domain (DAD) and the diaphanous inhibitory domain (DID).

Methodology/Principal Findings

Here we report the crystal structure of a complex between DID and FH2-DAD fragments of the mammalian DRF, mDia1 (mammalian diaphanous 1 also called Drf1 or p140mDia). The structure shows a tetrameric configuration (4 FH2 + 4 DID) in which the actin-binding sites on the FH2 domain are sterically occluded. However biochemical data suggest the full-length mDia1 is a dimer in solution (2 FH2 + 2 DID). Based on the crystal structure, we have generated possible dimer models and found that architectures of all of these models are incompatible with binding to actin filament but not to actin monomer. Furthermore, we show that the minimal functional monomeric unit in the FH2 domain, termed the bridge element, can be inhibited by isolated monomeric DID. NMR data on the bridge-DID system revealed that at least one of the two actin-binding sites on the bridge element is accessible to actin monomer in the inhibited state.

Conclusions/Significance

Our findings suggest that autoinhibition in the native DRF dimer involves steric hindrance with the actin filament. Although the structure of a full-length DRF would be required for clarification of the presented models, our work here provides the first structural insights into the mechanism of the DRF autoinhibition.  相似文献   

10.

Background  

Selenium is a trace element performing important biological functions in many organisms including humans. It usually affects organisms in a strictly dosage-dependent manner being essential at low and toxic at higher concentrations. The impact of selenium on mammalian and land plant cells has been quite extensively studied. Information about algal cells is rare despite of the fact that they could produce selenium enriched biomass for biotechnology purposes.  相似文献   

11.

Background

Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments.

Methodology/Principal Findings

In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore.

Conclusions/Significance

Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin''s role in tip growing plant cells.  相似文献   

12.

Background

2,3-Butanedione monoxime (BDM) has been widely used as a non-muscle myosin inhibitor to investigate the role of non-muscle myosinII in the process of actin retrograde flow and other actin cytoskeletal processes. Recent reports show that BDM does not inhibit any non-muscle myosins so far tested, including nm-myosinII, prompting the question, how were these process affected in BDM studies?

Results

We have found that treatment of mammalian cells with BDM for only 1 min blocks actin incorporation at the leading edge in a permeabilized cell system. We show that inhibition of actin incorporation occurs through de-localization of leading edge proteins involved in actin polymerization – the Arp2/3 complex, WAVE, and VASP – that de-localize concomitantly with the leading edge actin network.

Conclusion

De-localization of actin leading edge components by BDM treatment is a newly described effect of this compound. It may explain many of the results previously ascribed to inhibition of non-muscle myosinII by BDM, particularly in studies of leading edge dynamics. Though this effect of BDM is intriguing, future studies probing actin dynamics at the leading edge should use more potent and specific inhibitors.
  相似文献   

13.

Background  

The actin cytoskeleton participates in many fundamental processes including the regulation of cell shape, motility, and adhesion. The remodeling of the actin cytoskeleton is dependent on actin binding proteins, which organize actin filaments into specific structures that allow them to perform various specialized functions. The Eps8 family of proteins is implicated in the regulation of actin cytoskeleton remodeling during cell migration, yet the precise mechanism by which Eps8 regulates actin organization and remodeling remains elusive.  相似文献   

14.

Background  

Actin is a cytoskeletal protein which exerts a broad range of functions in almost all eukaryotic cells. In higher vertebrates, six primary actin isoforms can be distinguished: alpha-skeletal, alpha-cardiac, alpha-smooth muscle, gamma-smooth muscle, beta-cytoplasmic and gamma-cytoplasmic isoactin. Expression of these actin isoforms during vertebrate development is highly regulated in a temporal and tissue-specific manner, but the mechanisms and the specific differences are currently not well understood. All members of the actin multigene family are highly conserved, suggesting that there is a high selective pressure on these proteins.  相似文献   

15.

Background  

The microtubule-associated protein tau is able to interact with actin and serves as a cross-linker between the microtubule and actin networks. The microtubule-binding domain of tau is known to be involved in its interaction with actin. Here, we address the question of whether the other domains of tau also interact with actin.  相似文献   

16.

Background

Previous studies have shown that plant mitochondrial movements are myosin-based along actin filaments, which undergo continuous turnover by the exchange of actin subunits from existing filaments. Although earlier studies revealed that actin filament dynamics are essential for many functions of the actin cytoskeleton, there are little data connecting actin dynamics and mitochondrial movements.

Methodology/Principal Findings

We addressed the role of actin filament dynamics in the control of mitochondrial movements by treating cells with various pharmaceuticals that affect actin filament assembly and disassembly. Confocal microscopy of Arabidopsis thaliana root hairs expressing GFP-FABD2 as an actin filament reporter showed that mitochondrial distribution was in agreement with the arrangement of actin filaments in root hairs at different developmental stages. Analyses of mitochondrial trajectories and instantaneous velocities immediately following pharmacological perturbation of the cytoskeleton using variable-angle evanescent wave microscopy and/or spinning disk confocal microscopy revealed that mitochondrial velocities were regulated by myosin activity and actin filament dynamics. Furthermore, simultaneous visualization of mitochondria and actin filaments suggested that mitochondrial positioning might involve depolymerization of actin filaments on the surface of mitochondria.

Conclusions/Significance

Base on these results we propose a mechanism for the regulation of mitochondrial speed of movements, positioning, and direction of movements that combines the coordinated activity of myosin and the rate of actin turnover, together with microtubule dynamics, which directs the positioning of actin polymerization events.  相似文献   

17.

Background  

Defensins comprise a large family of cationic antimicrobial peptides that are characterized by the presence of a conserved cysteine-rich defensin motif. Based on the spacing pattern of cysteines, these defensins are broadly divided into five groups, namely plant, invertebrate, α-, β-, and θ-defensins, with the last three groups being mostly found in mammalian species. However, the evolutionary relationships among these five groups of defensins remain controversial.  相似文献   

18.

Background

Plant cell walls are complex matrices of carbohydrates and proteins that control cell morphology and provide protection and rigidity for the plant body. The construction and maintenance of this intricate system involves the delivery and recycling of its components through a precise balance of endomembrane trafficking, which is controlled by a plethora of cell signalling factors. Phosphoinositides (PIs) are one class of signalling molecules with diverse roles in vesicle trafficking and cytoskeleton structure across different kingdoms. Therefore, PIs may also play an important role in the assembly of plant cell walls.

Scope

The eukaryotic PI pathway is an intricate network of different lipids, which appear to be divided in different pools that can partake in vesicle trafficking or signalling. Most of our current understanding of how PIs function in cell metabolism comes from yeast and mammalian systems; however, in recent years significant progress has been made towards a better understanding of the plant PI system. This review examines the current state of knowledge of how PIs regulate vesicle trafficking and their potential influence on plant cell-wall architecture. It considers first how PIs are formed in plants and then examines their role in the control of vesicle trafficking. Interactions between PIs and the actin cytoskeleton and small GTPases are also discussed. Future challenges for research are suggested.  相似文献   

19.

Background  

The antioxidant glutathione fulfills many important roles during plant development, growth and defense in the sporophyte, however the role of this important molecule in the gametophyte generation is largely unclear. Bioinformatic data indicate that critical control enzymes are negligibly transcribed in pollen and sperm cells. Therefore, we decided to investigate the role of glutathione synthesis for pollen germination in vitro in Arabidopsis thaliana accession Col-0 and in the glutathione deficient mutant pad2-1 and link it with glutathione status on the subcellular level.  相似文献   

20.

Background  

CapZ is a calcium-insensitive and lipid-dependent actin filament capping protein, the main function of which is to regulate the assembly of the actin cytoskeleton. CapZ is associated with membranes in cells and it is generally assumed that this interaction is mediated by polyphosphoinositides (PPI) particularly PIP2, which has been characterized in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号