首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
3.
4.
The growing list of mutations implicated in monogenic disorders of the developing brain includes at least seven genes (ARX, CUL4B, KDM5A, KDM5C, KMT2A, KMT2C, KMT2D) with loss-of-function mutations affecting proper regulation of histone H3 lysine 4 methylation, a chromatin mark which on a genome-wide scale is broadly associated with active gene expression, with its mono-, di- and trimethylated forms differentially enriched at promoter and enhancer and other regulatory sequences. In addition to these rare genetic syndromes, dysregulated H3K4 methylation could also play a role in the pathophysiology of some cases diagnosed with autism or schizophrenia, two conditions which on a genome-wide scale are associated with H3K4 methylation changes at hundreds of loci in a subject-specific manner. Importantly, the reported alterations for some of the diseased brain specimens included a widespread broadening of H3K4 methylation profiles at gene promoters, a process that could be regulated by the UpSET(KMT2E/MLL5)-histone deacetylase complex. Furthermore, preclinical studies identified maternal immune activation, parental care and monoaminergic drugs as environmental determinants for brain-specific H3K4 methylation. These novel insights into the epigenetic risk architectures of neurodevelopmental disease will be highly relevant for efforts aimed at improved prevention and treatment of autism and psychosis spectrum disorders.  相似文献   

5.
During fertilization, two of the most differentiated cells in the mammalian organism, a sperm and oocyte, are combined to form a pluripotent embryo. Dynamic changes in chromatin structure allow the transition of the chromatin on these specialized cells into an embryonic configuration capable of generating every cell type. Initially, this reprogramming activity is supported by oocyte-derived factors accumulated during oogenesis as proteins and mRNAs; however, the underlying molecular mechanisms that govern it remain poorly characterized. Trimethylation of histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic mark that changes dynamically during pre-implantation development in mice, bovine and pig embryos. Here we present data and hypotheses related to the potential mechanisms behind H3K27me3 remodeling during early development. We postulate that the repressive H3K27me3 mark is globally erased from the parental genomes in order to remove the gametic epigenetic program and to establish a pluripotent embryonic epigenome. We discuss information gathered in mice, pigs, and bovine, with the intent of providing a comparative analysis of the reprogramming of this epigenetic mark during early mammalian development.  相似文献   

6.
《Epigenetics》2013,8(9):976-981
During fertilization, two of the most differentiated cells in the mammalian organism, a sperm and oocyte, are combined to form a pluripotent embryo. Dynamic changes in chromatin structure allow the transition of the chromatin on these specialized cells into an embryonic configuration capable of generating every cell type. Initially, this reprogramming activity is supported by oocyte-derived factors accumulated during oogenesis as proteins and mRNAs; however, the underlying molecular mechanisms that govern it remain poorly characterized. Trimethylation of histone H3 at lysine 27 (H3K27me3) is a repressive epigenetic mark that changes dynamically during pre-implantation development in mice, bovine and pig embryos. Here we present data and hypotheses related to the potential mechanisms behind H3K27me3 remodeling during early development. We postulate that the repressive H3K27me3 mark is globally erased from the parental genomes in order to remove the gametic epigenetic program and to establish a pluripotent embryonic epigenome. We discuss information gathered in mice, pigs, and bovine, with the intent of providing a comparative analysis of the reprogramming of this epigenetic mark during early mammalian development.  相似文献   

7.
Genome duplication relies on the timely activation of multiple replication origins throughout the genome during S phase. Each origin is marked by the assembly of a multiprotein pre‐replication complex (pre‐RC) and the recruitment of the replicative machinery, which can gain access to replication origins on the DNA through the barrier of specific chromatin structures. Inheritance of the genetic information is further accompanied by maintenance and inheritance of the epigenetic marks, which are accomplished by the activity of histone and DNA modifying enzymes traveling with the replisome. Here, we studied the changes in the chromatin structure at the loci of three replication origins, the early activated human lamin B2 (LB2) and monkey Ors8 (mOrs8) origins and the late‐activated human homologue of the latter (hOrs8), during their activation, by measuring the abundance of post‐translationally modified histone H3. The data show that dynamic changes in the levels of acetylated, methylated and phosphorylated histone H3 occur during the initiation of DNA replication at these three origin loci, which differ between early‐ and late‐firing origins as well as between human‐ and monkey‐derived cell lines. These results suggest that specific histone modifications are associated with origin firing, temporal activation and replication fork progression and underscore the importance of species specificity. J. Cell. Biochem. 108: 400–407, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
9.
Genome-wide epigenetic reprogramming is required for successful preimplantation development. Inappropriate or deficient chromatin regulation can result in defective lineage specification and loss of genomic imprinting, compromising normal development. Here we report that two members of the RNA polymerase II associated factor, homolog (Saccharomyces cerevisiae) complex (PAF1 complex) components, Ctr9 and Rtf1, are required during mammalian preimplantation development. We demonstrate that Ctr9-deficient embryos fail to correctly specify lineages at the blastocyst stage. Expression of some lineage specific factors is markedly reduced in Ctr9 knockdown embryos, including Eomes, Elf5 and Sox2, while others are inappropriately expressed (Oct4, Nanog, Gata6, Fgf4 and Sox17). We also show that several imprinted genes (Mest, Peg3, Snrpn and Meg3) are aberrantly expressed although allele specific DNA methylation is not altered. We document a loss of histone H3 lysine 36 trimethylation (H3K36me3) in Ctr9-deficient embryos and confirm that knockdown of either Setd2 or Rtf1 results in similar phenotypes. These findings show that the PAF1 complex is required for mammalian development, likely through regulation of H3K36me3, and indicate functional conservation of the PAF1 complex from yeast to mammals in vivo.  相似文献   

10.
11.
Recurrent mutations at key lysine residues in the histone variant H3.3 are thought to play an etiologic role in the development of distinct subsets of pediatric gliomas and bone and cartilage cancers. H3.3K36M is one such mutation that was originally identified in chondroblastomas, and its expression in these tumors contributes to oncogenic reprogramming by triggering global depletion of dimethylation and trimethylation at H3K36 with a concomitant increase in the levels of H3K27 trimethylation. H3.3K36M expression can also cause epigenomic changes in cell types beyond chondrocytic cells. Here we show that expression of H3.3K36M in HT1080 fibrosarcoma cancer cells severely impairs cellular proliferation, which contrasts its role in promoting transformation of chondrocytic cells. H3.3K36M-associated cellular toxicity phenocopies the specific depletion of H3K36me2, but not loss of H3K36me3. We further find that the H3K36me2-associated toxicity is largely independent of changes in H3K27me3. Together, our findings lend support to the argument that H3K36me2 has distinct roles in cancer cells independent of H3K36me3 and H3K27me3, and highlight the use of H3.3K36M as an epigenetic tool to study H3K36 and H3K27 methylation dynamics in diverse cell types.  相似文献   

12.
13.
14.
We analysed the distribution of histone H3 modifications in the nucleus of the vegetative cell (the vegetative nucleus) during pollen development in lily (Lilium longiflorum). Among the modifications specifically and/or abundantly present in the vegetative nucleus, dimethylation of histone H3 at lysine 9 (H3K9me2) and lysine 27 (H3K27me2) were found in heterochromatin, whereas trimethylation of histone H3 at lysine 27 (H3K27me3) was localized in euchromatin in the vegetative nucleus. Such unique localization of the histone H3 methylation marks, particularly of H3K27me3, within a nucleus was not observed in lily nuclei other than the vegetative nucleus. The level of H3K27me3 increased in the euchromatic region of the vegetative nucleus during pollen maturation. The results suggest that H3K27me3 controls the gene expression of the vegetative cell during pollen maturation.  相似文献   

15.
《Molecular cell》2021,81(21):4481-4492.e9
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
  相似文献   

16.
DNA and core histones are hierarchically packaged into a complex organization called chromatin. The nucleosome assembly protein (NAP) family of histone chaperones is involved in the deposition of histone complexes H2A/H2B and H3/H4 onto DNA and prevents nonspecific aggregation of histones. Testis-specific Y-encoded protein (TSPY)–like protein 5 (TSPYL5) is a member of the TSPY-like protein family, which has been previously reported to interact with ubiquitin-specific protease USP7 and regulate cell proliferation and is thus implicated in various cancers, but its interaction with chromatin has not been investigated. In this study, we characterized the chromatin association of TSPYL5 and found that it preferentially binds histone H3/H4 via its C-terminal NAP-like domain both in vitro and ex vivo. We identified the critical residues involved in the TSPYL5–H3/H4 interaction and further quantified the binding affinity of TSPYL5 toward H3/H4 using biolayer interferometry. We then determined the binding stoichiometry of the TSPYL5–H3/H4 complex in vitro using a chemical cross-linking assay and size-exclusion chromatography coupled with multiangle laser light scattering. Our results indicate that a TSPYL5 dimer binds to either two histone H3/H4 dimers or a single tetramer. We further demonstrated that TSPYL5 has a specific affinity toward longer DNA fragments and that the same histone-binding residues are also critically involved in its DNA binding. Finally, employing histone deposition and supercoiling assays, we confirmed that TSPYL5 is a histone chaperone responsible for histone H3/H4 deposition and nucleosome assembly. We conclude that TSPYL5 is likely a new member of the NAP histone chaperone family.  相似文献   

17.
Phosphorylation modification of core histones is correlated well with diverse chromatin-based cell activities. However, its distribution pattern and primary roles during mammalian oocyte meiosis are still in dispute. In this study, by performing immunofluorescence and Western blotting, spatial distribution and temporal expression of phosphorylated serine 10 or 28 on histone H3 during porcine oocyte meiotic maturation were examined and distinct subcellular distribution patterns between them were presented. Low expression of phosphorylated H3/ser10 was detected in germinal vesicle. Importantly, following gradual dephosphorylation from germinal vesicle (GV) to late germinal vesicle (L-GV) stage, a transient phosphorylation at the periphery of condensed chromatin was re-established at early germinal vesicle breakdown (E-GVBD) stage, and then the dramatically increased signals covered whole chromosomes from pre-metaphase I (Pre-MI) to metaphase II (MII). Similarly, hypophosphorylation of serine 28 on histone H3 was also monitored from GV to E-GVBD, indicating dephosphorylation of histone H3 maybe involved in the regulation of meiotic resumption. Moreover, the rim staining on the chromosomes and high levels of H3/ser28 phosphorylation were observed in Pre-MI, MI, and MII stage oocytes. Based on above results, such stage-dependent dynamics of phosphorylation of H3/ser 10 and 28 may play specific roles during mammalian oocyte maturation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号