首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In universal-code eukaryotes, a single class-1 translation termination factor eRF1 decodes all three stop codons, UAA, UAG, and UGA. In some ciliates with variant genetic codes one or two stop codons are used to encode amino acid(s) and are not recognized by eRF1. In Stylonychia, UAG and UAA codons are reassigned as glutamine codons, and in Euplotes, UGA is reassigned as cysteine codon. In omnipotent eRF1s, stop codon recognition is associated with the N-terminal domain of eRF1. Because variant-code ciliates most likely evolved from universal code ancestor(s), structural features should exist in ciliate eRF1s that restrict their stop codon recognition. To find out amino acid residues which confer UAR-only specificity to Euplotes aediculatus eRF1, eRFI chimeras were constructed by swapping eRF1 E. aediculatus N-terminal domain sequences with the matching ones from the human protein. In these chimeras the MC-domain was from human eRF1. Functional analysis of these chimeric eRFI highlighted the crucial role of the two regions (positions 38-50 and 123-145) in the N-terminal domain of E. aediculatus eRF1 that restrict E. aediculatus eRF1 specificity toward UAR codons. Possibly, restriction of eRF1 specificity to UAR codons might have been an early event occurring in independent instances in ciliate evolutionary history, possibly facilitating the reassignment of UGA to sense codons.  相似文献   

2.
3.
In several species of ciliates, the universal stop codons UAA and UAG are translated into glutamine, while in the euplotids, the glutamine codon usage is normal, but UGA appears to be translated as cysteine. Because the emerging position of this monophyletic group in the eukaryotic lineage is relatively late, this deviant genetic code represents a derived state of the universal code. The question is therefore raised as to how these changes arose within the evolutionary pathways of the phylum. Here, we have investigated the presence of stop codons in alpha tubulin and/or phosphoglycerate kinase gene coding sequences from diverse species of ciliates scattered over the phylogenetic tree constructed from 28S rRNA sequences. In our data set, when deviations occur they correspond to in frame UAA and UAG coding for glutamine. By combining these new data with those previously reported, we show that (i) utilization of UAA and UAG codons occurs to different extents between, but also within, the different classes of ciliates and (ii) the resulting phylogenetic pattern of deviations from the universal code cannot be accounted for by a scenario involving a single transition to the unusual code. Thus, contrary to expectations, deviations from the universal genetic code have arisen independently several times within the phylum.  相似文献   

4.
5.
Class 1 eukaryotic release factor 1 (eRF1) recognizes all three stop codons (UAA, UAG, and UGA) in standard-code organisms. In some ciliates with variant genetic codes, one or two stop codons are used to encode amino acids and are not recognized by eRF1; e.g., UAA and UAG are reassigned to Gln in Stylonychia and UGA is reassigned to Cys in Euplotes. Stop codon recognition is due to the N-terminal domain of eRF1 in standard-code organisms. Since variant-code ciliates most likely originate from universal-code ancestors, the N-domain sequence of their eRF1 was assumed to harbor the residues that are responsible for the changes in stop codon recognition specificity. To identify the N-domain regions determining the UGA-only specificity of Euplotes aediculatus eRF1, chimeric proteins were constructed by swapping various N-domain fragments of the E. aediculatus for their human counterparts; the MC domain was from human eRF1. Functional analysis of the chimeric eRF1 in vivo revealed two regions (residues 38–50 and 123–145) restricting the E. aediculatus eRF1 specificity to UAR. The change in stop codon recognition specificity of eRF1 was regarded as the first step in the origin of the variant genetic code in ciliates.  相似文献   

6.
Readthrough of the nonsense codons UAG, UAA, and UGA is seen in Escherichia coli strains lacking tRNA suppressors. Earlier results indicate that UGA is miscoded by tRNA(Trp). It has also been shown that tRNA(Tyr) and tRNA(Gln) are involved in UAG and UAA decoding in several eukaryotic viruses as well as in yeast. Here we have investigated which amino acid(s) is inserted in response to the nonsense codons UAG and UAA in E. coli. To do this, the stop codon in question was introduced into the staphylococcal protein A gene. Protein A binds to IgG, which facilitates purification of the readthrough product. We have shown that the stop codons UAG and UAA direct insertion of glutamine, indicating that tRNA(Gln) can read the two codons. We have also confirmed that tryptophan is inserted in response to UGA, suggesting that it is read by tRNA(Trp).  相似文献   

7.
In eukaryotes with the universal genetic code a single class I release factor (eRF1) most probably recognizes all stop codons (UAA, UAG and UGA) and is essential for termination of nascent peptide synthesis. It is well established that stop codons have been reassigned to amino acid codons at least three times among ciliates. The codon specificities of ciliate eRF1s must have been modified to accommodate the variant codes. In this study we have amplified, cloned and sequenced eRF1 genes of two hypotrichous ciliates, Oxytricha trifallax (UAA and UAG for Gln) and Euplotes aediculatus (UGA for Cys). We also sequenced/identified three protist and two archaeal class I RF genes to enlarge the database of eRF1/aRF1s with the universal code. Extensive comparisons between universal code eRF1s and those of Oxytricha, Euplotes, and Tetrahymena which represent three lineages that acquired variant codes independently, provide important clues to identify stop codon-binding regions in eRF1. Domain 1 in the five ciliate eRF1s, particularly the TASNIKS heptapeptide and its adjacent region, differs significantly from domain 1 in universal code eRF1s. This observation suggests that domain 1 contains the codon recognition site, but that the mechanism of eRF1 codon recognition may be more complex than proposed by Nakamura et al. or Knight and Landweber.  相似文献   

8.
The reassignment of stop codons is common among many ciliate species. For example, Tetrahymena species recognize only UGA as a stop codon, while Euplotes species recognize only UAA and UAG as stop codons. Recent studies have shown that domain 1 of the translation termination factor eRF1 mediates stop codon recognition. While it is commonly assumed that changes in domain 1 of ciliate eRF1s are responsible for altered stop codon recognition, this has never been demonstrated in vivo. To carry out such an analysis, we made hybrid proteins that contained eRF1 domain 1 from either Tetrahymena thermophila or Euplotes octocarinatus fused to eRF1 domains 2 and 3 from Saccharomyces cerevisiae. We found that the Tetrahymena hybrid eRF1 efficiently terminated at all three stop codons when expressed in yeast cells, indicating that domain 1 is not the sole determinant of stop codon recognition in Tetrahymena species. In contrast, the Euplotes hybrid facilitated efficient translation termination at UAA and UAG codons but not at the UGA codon. Together, these results indicate that while domain 1 facilitates stop codon recognition, other factors can influence this process. Our findings also indicate that these two ciliate species used distinct approaches to diverge from the universal genetic code.  相似文献   

9.
Ciliated protozoa of the genus Euplotes have undergone genetic code reassignment, redefining the termination codon UGA to encode cysteine. In addition, Euplotes spp. genes very frequently employ shifty stop frameshifting. Both of these phenomena involve noncanonical events at a termination codon, suggesting they might have a common cause. We recently demonstrated that Euplotes octocarinatus peptide release factor eRF1 ignores UGA termination codons while continuing to recognize UAA and UAG. Here we show that both the Tetrahymena thermophila and E. octocarinatus eRF1 factors allow efficient frameshifting at all three termination codons, suggesting that UGA redefinition also impaired UAA/UAG recognition. Mutations of the Euplotes factor restoring a phylogenetically conserved motif in eRF1 (TASNIKS) reduced programmed frameshifting at all three termination codons. Mutation of another conserved residue, Cys124, strongly reduces frameshifting at UGA while actually increasing frameshifting at UAA/UAG. We will discuss these results in light of recent biochemical characterization of these mutations.  相似文献   

10.
Kim OT  Sakurai A  Saito K  Ito K  Ikehara K  Harumoto T 《Gene》2008,417(1-2):51-58
Stop codon reassignments have occurred very frequently in ciliates. In some ciliate species, the universal stop codons UAA and UAG are translated into glutamine, while in some other species, the universal stop codon UGA appears to be translated into cysteine or tryptophan. The class Litostomatea has been hypothesized to be the only group of ciliates using the universal genetic code. However, the hypothesis was based on a statistical analysis of quite small sequence dataset which was insufficient to elucidate the codon usage of the class among such highly deviated phylum. In this study, together with the updated database sequence analysis for the class, we approached the problem of stop codon usage by examining the capacity of the translation termination factor eRF1 for recognizing stop codons. Using in vivo assay systems in budding yeast, we estimated the activity of eRF1 from two litostome species Didinium nasutum and Dileptus margaritifer. The results clearly showed that Didinium and Dileptus eRF1s efficiently recognize all three stop codons. This is the first experimental evidence that strongly supports the hypothesis that litostome ciliates use universal genetic code.  相似文献   

11.
Paramecium tetraurelia, like some other ciliate species, uses an alternative nuclear genetic code where UAA and UAG are translated as glutamine and UGA is the only stop codon. It has been postulated that the use of stop codons as sense codons is dependent on the presence of specific tRNAs and on modification of eukaryotic release factor one (eRF1), a factor involved in stop codon recognition during translation termination. We describe here the isolation and characterisation of two genes, eRF1-a and eRF1 b, coding for eRF1 in P. tetraurelia. The two genes are very similar, both in genomic organization and in sequence, and might result from a recent duplication event. The two coding sequences are 1,314 nucleotides long, and encode two putative proteins of 437 amino acids with 98.5% identity. Interestingly, when compared with the eRF1 sequences either of ciliates having the same variant genetic code, or of other eukaryotes, the eRF1 of P. tetraurelia exhibits significant differences in the N-terminal region, which is thought to interact with stop codons. We discuss here the consequences of these changes in the light of recent models proposed to explain the mechanism of stop codon recognition in eukaryotes. Besides, analysis of the expression of the two genes by Northern blotting and primer extension reveals that these genes exhibit a differential expression during vegetative growth and autogamy.  相似文献   

12.
Recent evidence for evolution of the genetic code.   总被引:42,自引:2,他引:42       下载免费PDF全文
The genetic code, formerly thought to be frozen, is now known to be in a state of evolution. This was first shown in 1979 by Barrell et al. (G. Barrell, A. T. Bankier, and J. Drouin, Nature [London] 282:189-194, 1979), who found that the universal codons AUA (isoleucine) and UGA (stop) coded for methionine and tryptophan, respectively, in human mitochondria. Subsequent studies have shown that UGA codes for tryptophan in Mycoplasma spp. and in all nonplant mitochondria that have been examined. Universal stop codons UAA and UAG code for glutamine in ciliated protozoa (except Euplotes octacarinatus) and in a green alga, Acetabularia. E. octacarinatus uses UAA for stop and UGA for cysteine. Candida species, which are yeasts, use CUG (leucine) for serine. Other departures from the universal code, all in nonplant mitochondria, are CUN (leucine) for threonine (in yeasts), AAA (lysine) for asparagine (in platyhelminths and echinoderms), UAA (stop) for tyrosine (in planaria), and AGR (arginine) for serine (in several animal orders) and for stop (in vertebrates). We propose that the changes are typically preceded by loss of a codon from all coding sequences in an organism or organelle, often as a result of directional mutation pressure, accompanied by loss of the tRNA that translates the codon. The codon reappears later by conversion of another codon and emergence of a tRNA that translates the reappeared codon with a different assignment. Changes in release factors also contribute to these revised assignments. We also discuss the use of UGA (stop) as a selenocysteine codon and the early history of the code.  相似文献   

13.
Organisms that use the standard genetic code recognize UAA, UAG, and UGA as stop codons, whereas variant code species frequently alter this pattern of stop codon recognition. We previously demonstrated that a hybrid eRF1 carrying the Euplotes octocarinatus domain 1 fused to Saccharomyces cerevisiae domains 2 and 3 (Eo/Sc eRF1) recognized UAA and UAG, but not UGA, as stop codons. In the current study, we identified mutations in Eo/Sc eRF1 that restore UGA recognition and define distinct roles for the TASNIKS and YxCxxxF motifs in eRF1 function. Mutations in or near the YxCxxxF motif support the cavity model for stop codon recognition by eRF1. Mutations in the TASNIKS motif eliminated the eRF3 requirement for peptide release at UAA and UAG codons, but not UGA codons. These results suggest that the TASNIKS motif and eRF3 function together to trigger eRF1 conformational changes that couple stop codon recognition and peptide release during eukaryotic translation termination.  相似文献   

14.
We have cloned an isogenetic set of UAG, UAA, and UGA suppressors. These include the Su7 -UAG, Su7 -UAA, and Su7 -UGA suppressors derived from base substitutions in the anticodon of Escherichia coli tRNATrp and also Su9 , a UGA suppressor derived from a base substitution in the D-arm of the same tRNA. These genes are cloned on high-copy-number plasmids under lac promoter control. The construction of the Su7 -UAG plasmid and the wild-type trpT plasmid have been previously described ( Yarus , et al., Proc. Natl. Acad. Sci. U.S.A. 77:5092-5097, 1980). Su7 -UAA ( trpT177 ) is a weak suppressor which recognizes both UAA and UAG nonsense codons and probably inserts glutamine. Su7 -UGA ( trpT176 ) is a strong UGA suppressor which may insert tryptophan. Su9 ( trpT178 ) is a moderately strong UGA suppressor which also recognizes UGG (Trp) codons, and it inserts tryptophan. The construction of these plasmids is detailed within. Data on the DNA sequences of these trpT alleles and on amino acid specificity of the suppressors are presented. The efficiency of the cloned suppressors at certain nonsense mutations has been measured and is discussed with respect to the context of these codons.  相似文献   

15.
原生动物的一些纤毛虫中终止密码子发生重分配现象,将1个或2个终止密码子翻译为氨基酸.目前对这一现象的发生机制仍无合理解释.近年来,对蛋白质合成终止过程中肽链释放因子(eukaryotic polypeptide release factor, eRF)结构和功能的深入研究,为揭示终止密码子的重分配机制提供了重要的线索.本实验以具有终止密码子识别特异性的四膜虫Tt-eRF1为研究对象,将其中与密码子识别有关的GTx、NIKS和Y-C-F关键模体(motif) 引入识别通用终止密码子的酵母Sc=eRF1中,构建成各种嵌合体eRF1.利用双荧光素酶报告系统和细胞活性实验,分析关键模体及其周边的氨基酸对eRF1识别终止密码子性质的影响.结果表明,GTx和NIKS模体一定程度上决定eRF1识别终止密码子第1位碱基U和第2位碱基A;Y-C-F模体决定eRF1识别终止密码子UGA的第2位碱基G.模体内及其相邻氨基酸定点突变分析进一步支持以上结果.本研究推测,eRF1在进化过程中一些关键模体结构的改变决定其识别终止密码子的特异性,只能识别3个终止密码子中的1个或2个.随后,由于tRNA基因的突变产生阻抑性tRNA,促成终止密码子在原生动物纤毛虫中的重新分配.  相似文献   

16.
Stop codon readthrough may be promoted by the nucleotide environment or drugs. In such cases, ribosomes incorporate a natural suppressor tRNA at the stop codon, leading to the continuation of translation in the same reading frame until the next stop codon and resulting in the expression of a protein with a new potential function. However, the identity of the natural suppressor tRNAs involved in stop codon readthrough remains unclear, precluding identification of the amino acids incorporated at the stop position. We established an in vivo reporter system for identifying the amino acids incorporated at the stop codon, by mass spectrometry in the yeast Saccharomyces cerevisiae. We found that glutamine, tyrosine and lysine were inserted at UAA and UAG codons, whereas tryptophan, cysteine and arginine were inserted at UGA codon. The 5′ nucleotide context of the stop codon had no impact on the identity or proportion of amino acids incorporated by readthrough. We also found that two different glutamine tRNAGln were used to insert glutamine at UAA and UAG codons. This work constitutes the first systematic analysis of the amino acids incorporated at stop codons, providing important new insights into the decoding rules used by the ribosome to read the genetic code.  相似文献   

17.
The nearest 5' context of 2559 human stop codons was analysed in comparison with the same context of stop-like codons (UGG, UGC, UGU, CGA for UGA; CAA, UAU, UAC for UAA; and UGG, UAU, UAC, CAG for UAG). The non-random distribution of some nucleotides upstream of the stop codons was observed. For instance, uridine is over-represented in position -3 upstream of UAG. Several codons were shown to be over-represented immediately upstream of the stop codons: UUU(Phe), AGC(Ser), and the Lys and Ala codon families before UGA; AAG(Lys), GCG(Ala), and the Ser and Leu codon families before UAA; and UCA(Ser), AUG(Met), and the Phe codon family before UAG. In contrast, the Thr and Gly codon families were under-represented before UGA, while ACC(Thr) and the Gly codon family were under-represented before UAG and UAA respectively. In an earlier study, uridine was shown to be over-represented in position -3 before UGA in Escherichia coli [Arkov,A.L., Korolev,S.V. and Kisselev,L.L. (1993) Nucleic Acids Res., 21,2891-2897]. In that study, the codons for Lys, Phe and Ser were shown to be over-represented immediately upstream of E. coli stop codons. Consequently, E. coli and human termination codons have similar 5' contexts. The present study suggests that the 5' context of stop codons may modulate the efficiency of peptide chain termination and (or) stop codon readthrough in higher eukaryotes, and that the mechanisms of such a modulation in prokaryotes and higher eukaryotes may be very similar.  相似文献   

18.
The 5' context of 671 Escherichia coli stop codons UGA and UAA has been compared with the context of stop-like codons (UAC, UAU and CAA for UAA; UGG, UGC, UGU and CGA for UGA). We have observed highly significant deviations from the expected nucleotide distribution: adenine is over-represented whereas pyrimidines are under-represented in position -2 upstream from UAA. Uridine is over-represented in position -3 upstream from UGA. Lysine codons are preferable immediately prior to UAA. A complete set of codons for serine and the phenylalanine UUC codon are preferable immediately 5' to UGA. This non-random codon distribution before stop codons could be considered as a molecular device for modulation of translation termination. We have found that certain fragment of E. coli release factor 2 (RF2) (amino acids 93-114) is similar to the amino acid sequences of seryl-tRNA synthetase (positions 10-19 and 80-93) and of beta (small) subunit (positions 72-94) of phenylalanyl-tRNA synthetase from E. coli. Three-dimensional structure of E. coli seryl-tRNA synthetase is known [1]: Its N-terminus represents an antiparallel alpha-helical coiled-coil domain and contains a region homologous to RF2. On the basis of the above-mentioned results we assume that a specific interaction between RF2 and the last peptidyl-tRNA(Ser/Phe) occurs during polypeptide chain termination in prokaryotic ribosomes.  相似文献   

19.
The codon usage of Tetrahymena thermophila and other ciliates deviates from the 'universal genetic code' in that UAA and probably UAG are not translational termination signals but code for glutamine. Therefore, translation in vitro of mRNA from Tetrahymena in a reticulocyte lysate is prematurely terminated if a UAA or UAG triplet is present in the reading frame of the mRNA. We show that the addition of a subcellular fraction from Tetrahymena thermophila enables a rabbit reticulocyte lysate to translate Tetrahymena mRNAs into full-sized proteins. The activity of the subcellular fraction is shown to depend on the combined function of a protein component(s) and a tRNA(s). The subcellular fraction is easily prepared and its usefulness for the identification of isolated mRNAs from Tetrahymena by their translation products in vitro is demonstrated.  相似文献   

20.
In eukaryotes, the polypeptide release factor 1 (eRF1) is involved in translation termination at all three stop codons. However, the mechanism for decoding stop codons remains unknown. A direct interaction of eRF1 with the stop codons has been postulated. Recent studies focus on eRF1 from ciliates in which some stop codons are reassigned to sense codons. Using an in vitro assay based on mammalian ribosomes, we show that eRF1 from the ciliate Euplotes aediculatus responds to UAA and UAG as stop codons and lacks the capacity to decipher the UGA codon, which encodes cysteine in this organism. This result strongly suggests that in ciliates with variant genetic codes eRF1 does not recognize the reassigned codons. Recent hypotheses describing stop codon discrimination by eRF1 are not fully consistent with the set of eRF1 sequences available so far and require direct experimental testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号