首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arbuscular mycorrhizal fungi (AMF) can promote plant growth and reduce plant uptake of heavy metals. Phosphorus (P) fertilization can affect this relationship. We investigated maize (Zea mays L.) uptake of heavy metals after soil AMF inoculation and P fertilization. Maize biomass, glomaline and chlorophyll contents and uptake of Fe, Mn, Zn, Cu, Cd and Pb have been determined in a soil inoculated with AMF (Glomus aggregatum, or Glomus intraradices) and treated with 30 or 60 µg P-K2HPO4 g?1 soil. Consistent variations were found between the two mycorrhizal species with respect to the colonization and glomalin content. Shoot dry weight and chlorophyll content were higher with G. intraradices than with G. aggregatum inoculation. The biomass was highest with 30 µg P g?1 soil. Shoot concentrations of Cd, Pb and Zn decreased with G. aggregatum inoculation, but that of Cd and Pb increased with G. intraradices inoculation. Addition of P fertilizers decreased Cd and Zn concentrations in the shoot. AMF with P fertilization greatly reduced maize content of heavy metals. The results provide that native AMF with a moderate application rate of P fertilizers can be exploited in polluted soils to minimize the heavy metals uptake and to increase maize growth.  相似文献   

2.
The effects of the interaction between Pratylenchus vulnus and the endomycorrhizal fungus Glomus intraradices on growth and nutrition of Santa Lucia 64 cherry rootstock was studied under microplot conditions during one growing season. Fresh top weight, and stem diameter of mycorrhizal plants and high P treatments with and without P. vulnus were significantly higher than those of non-mycorrhizal plants. The lowest shoot length and fresh root weights were recorded in nematode inoculated plants in low P soil. Mycorrhizal infection did not affect the number of nematodes per gram of root in plants infected with P. vulnus. In the presence of the nematode, internal spore production by G. intraradices was significantly reduced. No nutrient deficiencies were detected through foliar analysis, although low levels of Ca, Mn and Fe were detected in nematode treatments. Mycorrhizal plants achieved the highest values for N, P, S, Fe, and Zn, whereas high P treatments increased absorption of Ca and Mn. Early mycorrhizal infection of Santa Lucia 64 cherry rootstock by G. intraradices confers increased growth capacity in the presence of P. vulnus.  相似文献   

3.
Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.  相似文献   

4.
Grapevine N fertilization may affect and be affected by arbuscular mycorrhizal (AM) fungal colonization and change berry composition. We studied the effects of different N fertilizers on AM fungal grapevine root colonization and sporulation, and on grapevine growth, nutrition, and berry composition, by conducting a 3.5-year pot study supplying grapevine plants with either urea, calcium nitrate, ammonium sulfate, or ammonium nitrate. We measured the percentage of AM fungal root colonization, AM fungal sporulation, grapevine shoot dry weight and number of leaves, nutrient composition (macro- and micronutrients), and grapevine berry soluble solids (total sugars or °Brix) and total acidity. Urea suppressed AM fungal root colonization and sporulation. Mycorrhizal grapevine plants had higher shoot dry weight and number of leaves than non-mycorrhizal and with a higher growth response with calcium nitrate as the N source. For the macronutrients P and K, and for the micronutrient B, leaf concentration was higher in mycorrhizal plants. Non-mycorrhizal plants had higher concentration of microelements Zn, Mn, Fe, and Cu than mycorrhizal. There were no differences in soluble solids (°Brix) in grapevine berries among mycorrhizal and non-mycorrhizal plants. However, non-mycorrhizal grapevine berries had higher acid content with ammonium nitrate, although they did not have better N nutrition and vegetative growth.  相似文献   

5.
Liu  A.  Hamel  C.  Hamilton  R. I.  Smith  D. L. 《Plant and Soil》2000,221(2):157-166
A study was conducted to evaluate the effect of N and P supply levels on mycorrhizal formation and nutrient uptake in corn hybrids with different architectures and to determine arbuscular mycorrhizal fungal (AMF) development in relation to shoot N/P ratio and shoot:root ratio. Corn pot cultures with a pasteurized medium of two parts sand and one part sandy loam soil were grown in the greenhouse. Marigold plants inoculated or not with Glomus intraradices Schenck & Smith were used to establish an AMF hyphal network in the designated soil pots. Corn hybrids were seeded after removal of the marigold plant. Mycorrhizal colonization of corn hybrids and the quantity of extraradical hyphae produced in soil were greatest at the lowest P level and at the intermediate N level. Root colonization was correlated with shoot N/P ratio only at the intermediate N level. The shoot concentrations of P, Mg, Zn and Cu were significantly higher in mycorrhizal plants than in non-mycorrhizal plants. The corn phenotype with the highest shoot:root ratio had the highest root colonization. The corn hybrid with a leafy normal stature architecture had a greater mycorrhizal colonization than that of other two corn hybrids. This experiment showed that N level in soil influenced shoot N/P ratio, root colonization and extraradical hyphal production, which in turn influenced uptake of other nutrients. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Mohammad MJ  Pan WL  Kennedy AC 《Mycorrhiza》2005,15(4):259-266
Plexiglass pot growth chamber experiments were conducted to evaluate the chemical alterations in the rhizosphere of mycorrhizal wheat roots after inoculation with Glomus intraradices [arbuscular mycorrhizal fungus (AMF)]. Exchange resins were used as sinks for nutrients to determine whether the inoculated plant can increase the solubility and the uptake of P and micronutrients. Treatments included: (1) soil (bulk soil); (2) AMF inoculation no P addition (I–P); (3) no inoculation with no P addition (NI–P); (4) AMF inoculation with addition of 50 mg P (kg soil)–1 (I+P), and (5) no inoculation with addition of 50 mg P (kg soil)–1 (NI+P). The AMF inoculum was added at a rate of four spores of G. intraradices (g soil)–1. The exchange resin membranes were inserted vertically 5 cm apart in the middle of Plexiglass pots. Spring wheat (Triticum aestivum cv. Len) was planted in each Plexiglass pot and grown for 2 weeks in a growth chamber where water was maintained at field capacity. Rhizosphere pH and redox potential (Eh), nutrient bioavailability indices and mycorrhizal colonization were determined. Mycorrhizal inoculation increased the colonization more when P was not added, but did not increase the shoot dry weight at either P level. The rhizosphere pH was lower in the inoculated plants compared to the noninoculated plants in the absence of added P, while the Eh did not change. The decrease in pH in the rhizosphere of inoculated plants could be responsible for the increased P and Zn uptake observed with inoculation. In contrast, Mn uptake was decreased by inoculation. The resin-adsorbed P was increased by inoculation, which, along with the bioavailability index data, may indicate that mycorrhizal roots were able to increase the solubility of soil P.  相似文献   

7.
The interaction between Glomus intraradices and the root-lesion nematode Pratylenchus vulnus was studied on micropropagated BA-29 quince rootstock during one growing season. Inoculation with G. intraradices significantly increased growth of plants in low P soil and was more effective than P fertilization at increasing top-plant development. In the presence of the nematode, mycorrhizal plants achieved higher values in all growth parameters measured. P. vulnus caused a significant decrease in the percentage of root length colonized by G. intraradices and fewer internal vesicles were formed within the host roots. Enhanced root mass production accounted for the twofold increase in final nematode population recovered from plants with combined inoculations of pathogen and symbiont. Low levels were found of Al, Fe, Mn and Zn in nonmycorrhizal nematode-infected plants in low P soil. G. intraradices-inoculated plants reached the highest foliar levels of N, Ca, Mg, Mn, Cu and Zn. Mycorrhizal plants infected with P. vulnus maintained normal to high levels of Mn, Cu, and Zn. Inoculation with G. intraradices favours quince growth and confers protection against P. vulnus by improving plant nutrition.  相似文献   

8.
An investigation was carried out to test whether the mechanism of increased zinc (Zn) uptake by mycorrhizal plants is similar to that of increased phosphorus (P) acquisition. Maize (Zea mays L.) was grown in pots containing sterilised calcareous soil either inoculated with a mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe or with a mixture of mycorrhizal fungi, or remaining non-inoculated as non-mycorrhizal control. The pots had three compartments, a central one for root growth and two outer ones for hyphal growth. The compartmentalization was done using a 30-m nylon net. The root compartment received low or high levels of P (50 or 100 mg kg–1 soil) in combination with low or high levels of P and micronutrients (2 or 10 mg kg–1 Fe, Zn and Cu) in the hyphal compartments.Mycorrhizal fungus inoculation did not influence shoot dry weight, but reduced root dry weight when low P levels were supplied to the root compartment. Irrespective of the P levels in the root compartment, shoots and roots of mycorrhizal plants had on average 95 and 115% higher P concentrations, and 164 and 22% higher Zn concentrations, respectively, compared to non-mycorrhizal plants. These higher concentrations could be attributed to a substantial translocation of P and Zn from hyphal compartments to the plant via the mycorrhizal hyphae. Mycorrhizal inoculation also enhanced copper concentration in roots (135%) but not in shoots. In contrast, manganese (Mn) concentrations in shoots and roots of mycorrhizal plants were distinctly lower, especially in plants inoculated with the mixture of mycorrhizal fungi.The results demonstrate that VA mycorrhizal hyphae uptake and translocation to the host is an important component of increased acquisition of P and Zn by mycorrhizal plants. The minimal hyphae contribution (delivery by the hyphae from the outer compartments) to the total plant acquisition ranged from 13 to 20% for P and from 16 to 25% for Zn.  相似文献   

9.
The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N) levels. Fe, Mn and Cu RIEs (average 64.4, 18.1and 5.3 g, respectively) were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60%) and decreased Zn concentrations in straw (a 56% decrease) and grain (decreased from 16.9 to 12.2 mg kg−1) rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively). The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.  相似文献   

10.
Excess manganese (Mn) in soil is toxic to crops, but in some situations arbuscular mycorrhizal fungi (AMF) alleviate the toxic effects of Mn. Besides the increased phosphorus (P) uptake, mycorrhiza may affect the balance between Mn-reducing and Mn-oxidizing microorganisms in the mycorrhizosphere and affect the level of extractable Mn in soil. The aim of this work was to compare mycorrhizal and non-mycorrhizal plants that received extra P in relation to alleviation of Mn toxicity and the balance between Mn-oxidizing and Mn-reducing bacteria in the mycorrhizosphere. A clayey soil containing 508 mg kg−1 of extractable Mn was fertilized with 30 mg kg−1 (P1) or 45 mg kg−1 (P2) of soluble P. Soybean (Glycine max L. Merrill, cv. IAC 8-2) plants at P1 level were non-inoculated (CP1) or inoculated with either Glomus etunicatum (GeP1) or G. macrocarpum (GmP1), while plants at P2 level were left non-inoculated (CP2). Plants were grown in a greenhouse and harvested after 80 days. In the mycorrhizosphere of the GmP1 and GeP1 plants a shift from Mn-oxidizing to Mn-reducing bacteria coincided with higher soil extractability of Mn and Fe. However, the occurrence of Mn-oxidizing/reducing bacteria in the (mycor)rhizosphere was unrelated to Mn toxicity in plants. Using 16S rDNA sequence homologies, the Mn-reducing isolates were consistent with the genus Streptomyces. The Mn-oxidizers were homologous with the genera Arthrobacter, Variovorax and Ralstonia. While CP1 plants showed Mn toxicity throughout the whole growth period, CP2 plants never did, in spite of having Fe and Mn shoot concentrations as high as in CP1 plants. Mycorrhizal plants showed Mn toxicity symptoms early in the growth period that were no longer visible in later growth stages. The shoot P concentration was almost twice as high in mycorrhizal plants compared with CP1 and CP2 plants. The shoot Mn and Fe concentrations and contents were lower in GmP1 and GeP1 plants compared with the CP2 treatment, even though levels of extractable metals increased in the soil when plants were mycorrhizal. This suggests that mycorrhiza protected its host plant from excessive uptake of Mn and Fe. In addition, higher tissue P concentrations may have facilitated internal detoxification of Mn in mycorrhizal plants. The exact mechanisms acting on alleviation of Mn toxicity in mycorrhizal plants should be further investigated.  相似文献   

11.
The effects of liming and inoculation with the arbuscular mycorrhizal fungus, Glomus intraradices Schenck and Smith on the uptake of phosphate (P) by maize (Zea mays L.) and soybean (Glycine max [L.] Merr.) and on depletion of inorganic phosphate fractions in rhizosphere soil (Al-P, Fe-P, and Ca-P) were studied in flat plastic containers using two acid soils, an Oxisol and an Ultisol, from Indonesia. The bulk soil pH was adjusted in both soils to 4.7, 5.6, and 6.4 by liming with different amounts of CaCO3.In both soils, liming increased shoot dry weight, total root length, and mycorrhizal colonization of roots in the two plant species. Mycorrhizal inoculation significantly increased root dry weight in some cases, but much more markedly increased shoot dry weight and P concentration in shoot and roots, and also the calculated P uptake per unit root length. In the rhizosphere soil of mycorrhizal and non-mycorrhizal plants, the depletion of Al-P, Fe-P, and Ca-P depended in some cases on the soil pH. At all pH levels, the extent of P depletion in the rhizosphere soil was greater in mycorrhizal than in non-mycorrhizal plants. Despite these quantitative differences in exploitation of soil P, mycorrhizal roots used the same inorganic P sources as non-mycorrhizal roots. These results do not suggest that mycorrhizal roots have specific properties for P solubilization. Rather, the efficient P uptake from soil solution by the roots determines the effectiveness of the use of the different soil P sources. The results indicate also that both liming and mycorrhizal colonization are important for enhancing P uptake and plant growth in tropical acid soils.  相似文献   

12.
 Plant ability to withstand acidic soil mineral deficiencies and toxicities can be enhanced by root-arbuscular mycorrhizal fungus (AMF) symbioses. The AMF benefits to plants may be attributed to enhanced plant acquisition of mineral nutrients essential to plant growth and restricted acquisition of toxic elements. Switchgrass (Panicum virgatum L.) was grown in pHCa (soil:10 mM CaCl2, 1 : 1) 4 and 5 soil (Typic Hapludult) inoculated with Glomus clarum, G. diaphanum, G. etunicatum, G. intraradices, Gigaspora albida, Gi. margarita, Gi. rosea, and Acaulospora morrowiae to determine differences among AMF isolates for mineral acquisition. Shoots of mycorrhizal (AM) plants had 6.2-fold P concentration differences when grown in pHCa 4 soil and 2.9-fold in pHCa 5 soil. Acquisition trends for the other mineral nutrients essential for plant growth were similar for AM plants grown in pHCa 4 and 5 soil, and differences among AMF isolates were generally higher for plants grown in pHCa 4 than in pHCa 5 soil. Both declines and increases in shoot concentrations of N, S, K, Ca, Mg, Zn, Cu, and Mn relative to nonmycorrhizal (nonAM) plants were noted for many AM plants. Differences among AM plants for N and Mg concentrations were relatively small (<2-fold) and were large (2- to 9-fold) for the other minerals. Shoot concentrations of mineral nutrients did not relate well to dry matter produced or to percentage root colonization. Except for Mn and one AMF isolate, shoot concentrations of Mn, Fe, B, and Al in AM plants were lower than in nonAM plants, and differences among AM plants for these minerals ranged from a low of 1.8-fold for Fe to as high as 6.9-fold for Mn. Some AMF isolates were effective in overcoming acidic soil mineral deficiency and toxicity problems that commonly occur with plants grown in acidic soil. Accepted: 14 June 1999  相似文献   

13.
Summary The effects of soil acidification and micronutrient addition on levels of extractable Fe, Mn, Zn and Cu in a soil, and on the growth and micronutrient uptake of young highbush blueberry plants (Vaccinium corymbosum L. cv. Blueray) was investigated in a greenhouse study.Levels of 0.05M CaCl2-extractable Fe, Mn, Zn and Cu increased as the pH was lowered from 7.0 to 3.8. However, the solubility (CaCl2-extractability) of Fe and Cu was considerably less pH-dependent than that of Mn and Zn. With the exception of HCl-and DTPA-extractable Mn, micronutrients extractable with 0.1M HCl, 0.005M DTPA and 0.04M EDTA were unaffected or raised only slightly as the pH was lowered from 6.0 to 3.8. Quantities of Mn and Zn extractable with CaCl2 were similar in magnitude to those extractable with HCl, DTPA and EDTA whilst, in contrast, the latter reagents extracted considerably more Cu and Fe than did CaCl2. A fractionation of soil Zn and Cu revealed that soil acidification resulted in an increase in the CaCl2- and pyrophosphate-extractable fractions and a smaller decrease in the oxalate-extractable fraction.Plant dry matter production increased consistently when the soil pH was lowered from 7.0 to 4.6 but there was a slight decline in dry matter as the pH was lowered to 3.8. Micronutrient additions had no influence on plant biomass although plant uptake was increased. As the pH was lowered, concentrations of plant Fe first decreased and then increased whilst those of Mn, and to a lesser extent Zn and Cu, increased markedly.  相似文献   

14.
Zn uptake by maize plants may be affected by the presence of arbuscular mycorrhizal fungi (AMF). Collembola often play an important controlling role in the inter-relationship between AMF and host plants. The objective of this experiment was to examine whether the presence of Collembola at different densities (0.4 and 1 individuals g−1 dry soil) and their activity have any effect on Zn uptake by maize through the plant–AMF system. The presence of the AMF (Glomus intraradices) and of the Collembola species Folsomia candida was studied in a laboratory microcosm experiment, applying a Zn exposure level of 250 mg kg−1 dry soil. Biomass and water content of the plants were no different when only AMF or when both AMF and Collembola were present. In the presence of AMF the Zn content of the plant shoots and roots was significantly higher than without AMF. This effect was reduced by Collembola at both low and high density. High densities of Collembola reduced the extent of AMF colonization of the plant roots and hyphal length in the soil, but low densities had no effect on either. The results of this experiment reveal that the F. candidaG. intraradices interaction affects Zn uptake by maize, but the mechanisms are still unknown.  相似文献   

15.
Nutrient acquisition and growth of citronella Java (Cymbopogon winterianus Jowitt) was studied in a P-deficient sandy soil to determine the effects of mycorrhizal symbiosis and soil compaction. A pasteurized sandy loam soil was inoculated either with rhizosphere microorganisms excluding VAM fungi (non-mycorrhizal) or with the VAM fungus, Glomus intraradices Schenck and Smith (mycorrhizal) and supplied with 0, 50 or 100 mg P kg-1 soil. The soil was compacted to a bulk density of 1.2 and 1.4 Mg m-3 (dry soil basis). G. intraradices substantially increased root and shoot biomass, root length, nutrient (P, Zn and Cu) uptake per unit root length and nutrient concentrations in the plant, compared to inoculation with rhizosphere microorganisms when the soil was at the low bulk density and not amended with P. Little or no plant response to the VAM fungus was observed when the soil was supplied with 50 or 100 mg P kg-1 soil and/or compacted to the highest bulk density. At higher soil compaction and P supply the VAM fungus significantly reduced root length. Non-mycorrhizal plants at higher soil compaction produced relatively thinner roots and had higher concentrations and uptake of P, Zn and Cu than at lower soil compaction, particularly under conditions of P deficiency. The quality of citronella Java oil measured in terms citronellal and d-citronellol concentration did not vary appreciably due to various soil treatments.  相似文献   

16.

Background and aims

Malnutrition resulting from zinc (Zn) and iron (Fe) deficiency has become a global issue. Excessive phosphorus (P) application may aggravate this issue due to the interactions of P and micronutrients in soil crop. Crop grain micronutrients associated with P applications and the increase of grain Zn by Zn fertilization were field-evaluated.

Methods

A field experiment with wheat was conducted to quantify the effect of P applications on grain micronutrient quality during two cropping seasons. The effect of foliar Zn applications on grain Zn quality with varied P applications was tested in 2011.

Results

Phosphorus applications decreased grain Zn concentration by 17–56%, while grain levels of Fe, manganese (Mn) and copper (Cu) either remained the same or increased. Although P applications increased grain yield, they restricted the accumulation of shoot Zn, but enhanced the accumulation of shoot Fe, Cu and especially Mn. In 2011, foliar Zn application restored the grain Zn to levels occurring without P and Zn application, and consequently reduced the grain P/Zn molar ratio by 19–53% than that without Zn application.

Conclusions

Foliar Zn application may be needed to achieve both favorable yield and grain Zn quality of wheat in production areas where soil P is building up.  相似文献   

17.
Development and heavy metal tolerance of two cultivation lineages of the indigenous isolate of arbuscular mycorrhizal fungus (AMF)Glomus intraradices PH5 were compared in a pot experiment in soil from lead (Pb) smelter waste deposits. One lineage was sub-cultured in original Pb-contaminated soil; the second one was maintained for 13 months in an inert substrate (river sand) without Pb stress. The contribution of these cultivation lineages to the Pb uptake and accumulation by the host plantAgrostis capillaris was investigated. The experiment was conducted in a compartmented system where the lateral compartments withAgrostis seedlings were separated from the central pot containing 4-week olderAgrostis plants by a nylon mesh for allowing out-growing of extraradical mycelium (ERM) from the pot. No differences in mycorrhizal colonization, ERM length and viability were observed between the two lineages ofG. intraradices PH5 in the soil of the isolate origin. However, the ability to support plant growth and Pb uptake differed between the lineages and also between the plants in the central pots and the lateral compartments. The growth of the plants in the central pots was positively affected by AMF inoculation. The plants inoculated with the lineage maintained in original soil showed larger shoot biomass and higher shoot P content as compared to the other inoculation treatments. The shoot Pb concentration of these plants was lower when compared to the plants inoculated with the lineage sub-cultured in the inert substrate. However the concentration did not differ from non-mycorrhizal control or from the reference isolateG. intraradices BEG75 from non-contaminated soil. Also shoot Pb contents were similar for all inoculation treatments. The development ofG. intraradices BEG75 in the contaminated soil was very poor; this isolate was not able to initiate colonization of seedlings in lateral compartments. In lateral compartments, growth of seedlings in contaminated soil was inhibited by theG. intraradices PH5 lineage maintained in the inert substrate. Pb translocation from the seedling roots to shoots was increased for plants inoculated with either lineage as compared to the non-mycorrhizal control; however, the increase for the lineage cultivated in the inert substrate was significantly higher in comparison with that maintained in the original soil. After 13 months of cultivation in a metal free substrate, theG. intraradices isolate from Pb contaminated soil did not lose its tolerance to Pb as regards colonization of plant roots and growth of ERM in the soil of its origin. However, its ability to support plant growth and to prevent Pb translocation from the roots to the shoots was decreased.  相似文献   

18.
In order to evaluate host plant performance relative to different soil arbuscular mycorrhizal fungal (AMF) communities, Andropogon gerardii seedlings were grown with nine different AMF communities. The communities consisted of 0, 10, or 20 spores of Glomus etunicatum and 0, 10, or 20 spores of Glomus intraradices in all possible combinations. Spores were produced by fungal cultures originating on A. gerardii in a serpentine plant community; seeds of A. gerardii were collected at the same site. The experiment was performed in the greenhouse using a mixture of sterilized serpentine soil and sand to which naturally occurring non-mycorrhizal microbes were added. There was no difference in root AMF colonization rates between single species communities of either G. etunicatum or G. intraradices, but G. intraradices enhanced plant growth and G. etunicatum did not. However, plants grew larger with some combinations of G.␣intraradices plus G. etunicatum than with the same quantity of G. intraradices alone. These results suggest the potential for niche complementarity in the mycorrhizal fungi. That G. etunicatum only increased plant growth in the presence of G. intraradices could be illustrative of why AMF that appear to be parasitic or benign when examined in isolation are maintained within multi-species mycorrhizal communities in nature.  相似文献   

19.
The response of Allium cepa, A. roylei, A. fistulosum, and the hybrid A. fistulosum × A. roylei to the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied. The genetic basis for response to AMF was analyzed in a tri-hybrid A. cepa × (A. roylei × A. fistulosum) population. Plant response to mycorrhizal symbiosis was expressed as relative mycorrhizal responsiveness (R′) and absolute responsiveness (R). In addition, the average performance (AP) of genotypes under mycorrhizal and non-mycorrhizal conditions was determined. Experiments were executed in 2 years, and comprised clonally propagated plants of each genotype grown in sterile soil, inoculated with G. intraradices or non-inoculated. Results were significantly correlated between both years. Biomass of non-mycorrhizal and mycorrhizal plants was significantly positively correlated. R′ was negatively correlated with biomass of non-mycorrhizal plants and hence unsuitable as a breeding criterion. R and AP were positively correlated with biomass of mycorrhizal and non-mycorrhizal plants. QTLs contributing to mycorrhizal response were located on a linkage map of the A. roylei × A. fistulosum parental genotype. Two QTLs from A. roylei were detected on chromosomes 2 and 3 for R, AP, and biomass of mycorrhizal plants. A QTL from A. fistulosum was detected on linkage group 9 for AP (but not R), biomass of mycorrhizal and non-mycorrhizal plants, and the number of stem-borne roots. Co-segregating QTLs for plant biomass, R and AP indicate that selection for plant biomass also selects for enhanced R and AP. Moreover, our findings suggest that modern onion breeding did not select against the response to AMF, as was suggested before for other cultivated species. Positive correlation between high number of roots, biomass and large response to AMF in close relatives of onion opens prospects to combine these traits for the development of more robust onion cultivars.  相似文献   

20.
In order to investigate the cadmium (Cd) accumulation patterns and possible alleviation of Cd stress by mycorrhization, sunflower plants (Helianthus annuus L.) were grown in the presence or absence of Cd (20 micromol L(-1)) and inoculated or not inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus intraradices. No visual symptoms of Cd phytotoxicity were observed; nevertheless, in non-mycorrhizal plants the presence of Cd decreased plant growth. The addition of Cd had no significant effect on either mycorrhizal colonization or the amount of extra-radical mycelia that was produced by the AMF. Cd accumulated mainly in roots; only 22% of the total Cd absorbed was translocated to the shoots, where it accumulated to an average of 228 mg Cd kg(-1). Although the shoot-to-root ratio of Cd was similar in both the AMF inoculated and non-inoculated plants, the total absorbed Cd was 23% higher in mycorrhizal plants. Cd concentration in AMF extra-radical mycelium was 728 microg g(-1) dry weight. Despite the greater absorption of Cd, mycorrhizal plants showed higher photosynthetic pigment concentrations and shoot P contents. Cd also influenced mineral nutrition, leading to decreased Ca and Cu shoot concentrations; N, Fe and Cu shoot contents; and increased S and K shoot concentrations. Cd induced guaiacol peroxidase activity in roots in both mycorrhizal and non-mycorrhizal plants, but this increase was much more accentuated in non-mycorrhizal roots. In conclusion, sunflower plants associated with G. intraradices were less sensitive to Cd stress than non-mycorrhizal plants. Mycorrhizal sunflowers showed enhanced Cd accumulation and some tolerance to excessive Cd concentrations in plant tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号