首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three conformations of the anticodon loop of yeast tRNA(Phe)   总被引:2,自引:0,他引:2  
The complex conformational states of the anticodon loop of yeast tRNA(Phe) which we had previously studied with relaxation experiments by monitoring fluorescence of the naturally occurring Wye base, are analyzed using time and polarization resolved fluorescence measurements at varying counterion concentrations. Synchrotron radiation served as excitation for these experiments, which were analyzed using modulating functions and global methods. Three conformations of the anticodon loop are detected, all three occurring in a wide range of counterion concentrations with and without Mg2+, each being identified by its typical lifetime. The fluorescence changes brought about by varying the ion concentrations, previously monitored by steady state fluorimetry and relaxation methods, are changes in the population of these three conformational states, in the sense of an allosteric model, where the effectors are the three ions Mg2+, Na+ and H+. The population of the highly fluorescent M conformer (8ns), most affine to magnesium, is thus enhanced by that ligand, while the total fluorescence decreases as lower pH favors the H+-affine H conformer (0.6ns). Na+-binding of the N conformer (4ns) is responsible for complex fluorescence changes. By iterative simulation of this allosteric model the equilibrium and binding constants are determined. In turn, using these constants to simulate equilibrium fluorescence titrations reproduces the published results.  相似文献   

2.
Two single-stranded DNA heptadecamers corresponding to the yeast tRNA(Phe) anticodon stem-loop were synthesized, and the solution structures of the oligonucleotides, d(CCAGACTGAAGATCTGG) and d(CCAGACTGAAGAU-m5C-UGG), were investigated using spectroscopic methods. The second, or modified, base sequence differs from that of DNA by RNA-like modifications at three positions; dT residues were replaced at positions 13 and 15 with dU, and the dC at position 14 with d(m5C), corresponding to positions where these nucleosides occur in tRNA(Phe). Both oligonucleotides form intramolecular structures at pH 7 in the absence of Mg2+ and undergo monophasic thermal denaturation transitions (Tm = 47 degrees C). However, in the presence of 10 mM Mg2+, the modified DNa adopted a structure that exhibited a biphasic "melting" transition (Tm values of 23 and 52 degrees C) whereas the unmodified DNA structure exhibited a monophasic denaturation (Tm = 52 degrees C). The low-temperature, Mg(2+)-dependent structural transition of the modified DNA was also detected using circular dichroism (CD) spectroscopy. No such transition was exhibited by the unmodified DNA. This transition, unique to the modified DNA, was dependent on divalent cations and occurred most efficiently with Mg2+; however, Ca2+ also stabilized the alternative conformation at low temperature. NMR studies showed that the predominant structure of the modified DNA in sodium phosphate (pH 7) buffer in the absence of Mg2+ was a hairpin containing a 7-nucleotide loop and a stem composed of 3 stable base pairs. In the Mg(2+)-stabilized conformation, the loop became a two-base turn due to the formation of two additional base pairs across the loop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
We have studied the effect of codon-anticodon interaction on the structure and dynamics of transfer RNAs using molecular dynamics simulations over a nanosecond time scale. From our molecular dynamical investigations of the solvated anticodon domain of yeast tRNA(Phe) in the presence and absence of the codon trinucleotides UUC and UUU, we find that, although at a gross level the structures are quite similar for the free and the bound domains, there are small but distinct differences in certain parts of the molecule, notably near the Y37 base. Comparison of the dynamics in terms of interatomic or inter-residual distance fluctuation for the free and the bound domains showed regions of enhanced rigidity in the loop region in the presence of codons. Because fluorescence experiments suggested the existence of multiple conformers of the anticodon domain, which interconvert on a much larger time scale than our simulations, we probed the conformational space using five independent trajectories of 500 ps duration. A generalized ergodic measure analysis of the trajectories revealed that at least for this time scale, all the trajectories populated separate parts of the conformational space, indicating a need for even longer simulations or enhanced sampling of the conformational space to give an unequivocal answer to this question.  相似文献   

5.
Biologically active DNA analogs of tRNAPhe (tDNAPhe) were used to investigate metal ion interaction with tRNA-like structures lacking the 2OH. Binding of Mg2+ to the 76 oligonucleotide tDNAPhe, monitored by circular dichroism spectroscopy, increased base stacking and thus the conformational stability of the molecule. Mg2+ binding was dependent on a d(m5C) in the anticodon region. In contrast to Mg2+, Cd2+ decreased base stacking interactions, thereby destabilizing the molecule. Since alterations in the anticodon region contributed to most of the spectral changes observed, detailed studies were conducted with anticodon hairpin heptadecamers (tDNAAC Phe). The conformation of tDNAAC Phe-d(m5C) in the presence of 1 mm Cd2+, Co2+, Cr2+, Cu2+, Ni2+, Pb2+, VO2+ or Zn2+ differed significantly from that of the biologically active structure resulting from interaction with Mg2+, Mn2+ or Ca2+. Nanomolar concentrations of the transition metals were sufficient to denature the tDNAAC Phe-d(m5C) structure without catalyzing cleavage of the oligonucleotide. In the absence of Mg2+ and at [Cd2+] to [tDNAAc Phe-d(m5C)] ratios of approximately 0.2–1.0, tDNAAC Phe-d(m5C40) formed a stable conformation with one Cd2+ bound with a K d = 3.7 × 10-7. In contrast to Mg2+, Cd2+ altered the DNA analogs without discriminating between modified and unmodified tDNAAC Phe. This ability of transition metals to disrupt higher order DNA structures, and possibly RNA, at M concentrations, in vitro, demonstrates that these structures are potential targets in chronic metal exposure, in vivo.  相似文献   

6.
The 15-nucleotide analog of yeast tRNA(Phe) anticodon arm binds cooperatively to two sites of poly(U) programmed 40S ribosome like intact tRNA(Phe). The cooperativity coefficients appeared to be about 4 for tRNA(Phe) and 50 for its anticodon arm. Anticodon arm contributes the majority of free energy of tRNA binding to a programmed 40S ribosomal subunit. The correct codon-anticodon pairing seems to play the key role in the cooperativity origin. Contrary to the anticodon arm template independent binding of the whole tRNA to the small ribosomal subunit is revealed.  相似文献   

7.
8.
9.
10.
V Dao  R H Guenther  P F Agris 《Biochemistry》1992,31(45):11012-11019
The tDNA(Phe)AC, d(CCAGACTGAAGAU13m5C14U15GG), with a DNA sequence similar to that of the anticodon stem and loop of yeast tRNA(Phe), forms a stem and loop structure and has an Mg(2+)-induced structural transition that was not exhibited by an unmodified tDNA(Phe)AC d(T13C14T15) [Guenther, R. H., Hardin, C. C., Sierzputowska-Gracz, H., Dao, V., & Agris, P. F. (1992) Biochemistry (preceding paper in this issue)]. Three tDNA(Phe)AC molecules having m5C14, tDNA(Phe)AC d(U13m5C14U15), d(U13m5C14T15), and d(T13,5C14U15), also exhibited Mg(2+)-induced structural transitions and biphasic thermal transitions (Tm approximately 23.5 and 52 degrees C), as monitored by CD and UV spectroscopy. Three other tDNA(Phe)AC, d(T13C14T15), d(U13C14U15), and d(A7;U13m5C14U15) in which T7 was replaced with an A, thereby negating the T7.A10 base pair across the anticodon loop, had no Mg(2+)-induced structural transitions and only monophasic thermal transitions (Tm of approximately 52 degrees C). The tDNA(Phe)AC d(U13m5C14U15) had a single, strong Mg2+ binding site with a Kd of 1.09 x 10(-6) M and a delta G of -7.75 kcal/mol associated with the Mg(2+)-induced structural transition. In thermal denaturation of tDNA(Phe)AC d(U13m5C14U15), the 1H NMR signal assigned to the imino proton of the A5.dU13 base pair at the bottom of the anticodon stem could no longer be detected at a temperature corresponding to that of the loss of the Mg(2+)-induced conformation from the CD spectrum. Therefore, we place the magnesium in the upper part of the tDNA hairpin loop near the A5.dU13 base pair, a location similar to that in the X-ray crystal structure of native, yeast tRNA(Phe).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Yeast tRNA(Phe) and tRNA(Phe-Y) are cleaved by single strand-specific endonuclease S1 at the same positions within the anticodon loop (phosphates 34, 36 and 37) and at the 3'-terminus (phosphates 75 and 76). The efficiency of the anticodon loop hydrolysis is much higher in tRNA(Phe-Y) while the cutting at the 3'-terminus is not influenced considerably by the Y-base1 removal from yeast tRNA(Phe). The effect of the Y-base excision on the structure of the anticodon loop is discussed on the basis of the S1 digestion studies as well as other relevant results.  相似文献   

12.
The effect of U(34) dethiolation on the anticodon-anticodon association between E. coli tRNA(Glu) and yeast tRNA(Phe) has been studied by the temperature jump relaxation technique. An important destabilization upon replacement of the thioketo group of s2U(34) by a keto group, was revealed by a lowering of melting temperature of about 20 degrees C. The measured kinetic parameters indicated that this destabilization effect was originated in an increase of dissociation and a decrease of association rate constants by a factor of 4 to 5. Modifications in both stacking interactions and flexibility in the anticodon loop would be responsible for this effect.  相似文献   

13.
Three analogs of yeast alanyl tRNA with anticodon loops of different sizes, tRNA75 (no G35 and 5'-terminal phosphate), tRNA77 (one more C between G35 and C36, no 5'-terminal phosphate), and ptRNA79 (with Cm1I psi between G35 and C36), were synthesized. In comparison with the reconstituted natural yeast tRNA, the charging activities of the three analogs were 90% (tRNA75), 94.7% (tRNA77), and 104% (ptRNA79). These results supported the conclusion (Yang De-ping and Wang De-bao (T. P. Wang) (1983) Acta Biochim. Biophys. Sin. 15, 83-90) that the anticodon loop of yeast alanyl tRNA was not involved in the interaction between alanyl-tRNA synthetase from rat liver and yeast alanyl tRNA. In contrast, in the rabbit reticulocyte lysate system, the incorporation of alanine in the charged analogs was 0% (tRNA75 and ptRNA79) and 100% (tRNA77). There were significant differences between the incorporation activities of analogs and those of the reconstituted molecule. The reason for these differences is discussed.  相似文献   

14.
A synthetic ribooligonucleotide, r(CCAGACUGm-AAGAUCUGG), corresponding to the unmodified yeast tRNA(Phe) anticodon arm is shown to bind to poly(U) programmed small ribosomal subunits of both E. coli and rabbit liver with affinity two order less than that of a natural anticodon arm. Its deoxyriboanalogs d(CCAGACTGAAGATCTGG) and d(CCAGA)r(CUGm-AAGA)d(TCTGG), are used to study the influence of sugar-phosphate modification on the interaction of tRNA with programmed small ribosomal subunits. The deoxyribooligonucleotide is shown to adopt a hairpin structure. Nevertheless, as well as oligonucleotide with deoxyriboses in stem region, it is not able to bind to 30S or 40S ribosomal subunits in the presence of ribo-(poly(U] or deoxyribo-(poly (dT) template. The deoxyribooligonucleotide also has no inhibitory effect on tRNA(Phe) binding to 30S ribosomes at 10-fold excess over tRNA. Neomycin does not influence binding of tRNA anticodon arm analogs used. Complete tRNA molecule and natural modifications of anticodon arm are considered to stabilize the arm structure needed for its interaction with a programmed ribosome.  相似文献   

15.
The bacterial tRNA(Lys)-specific PrrC-anticodon nuclease efficiently cleaved an anticodon stem-loop (ASL) oligoribonucleotide containing the natural modified bases, suggesting this region harbors the specificity determinants. Assays of ASL analogs indicated that the 6-threonylcarbamoyl adenosine modification (t(6)A37) enhances the reactivity. The side chain of the modified wobble base 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) has a weaker positive effect depending on the context of other modifications. The s(2)U34 modification apparently has none and the pseudouridine (psi39) was inhibitory in most modification contexts. GC-rich but not IC-rich stems abolished the activity. Correlating the reported structural effects of the base modifications with their effects on anticodon nuclease activity suggests preference for substrates where the anticodon nucleotides assume a stacked A-RNA conformation and base pairing interactions in the stem are destabilized. Moreover, the proposal that PrrC residue Asp(287) contacts mnm(5)s(2)U34 was reinforced by the observations that the mammalian tRNA(Lys-3) wobble base 5-methoxycarbonyl methyl-2-thiouridine (mcm(5)s(2)U) is inhibitory and that the D287H mutant favors tRNA(Lys-3) over Escherichia coli tRNA(Lys). The detection of this mutation and ability of PrrC to cleave the isolated ASL suggest that anticodon nuclease may be used to cleave tRNA(Lys-3) primer molecules annealed to the genomic RNA template of the human immunodeficiency virus.  相似文献   

16.
17.
Aminoglycoside antibiotics have recently been found to bind to a variety of unrelated RNA molecules, including sequences that are important for retroviral replication. We report the binding of neomycin B, kanamycin A, and Neo-Neo (a synthetic neomycin-neomycin dimer) to tRNA(Phe). Using thermal denaturation studies, fluorescence spectroscopy, Pb2+-mediated tRNA(Phe) cleavage, and gel mobility shift assays, we have established that aminoglycosides interact with yeast tRNA(Phe) and are likely to induce a conformational change. Thermal denaturation studies revealed that aminoglycosides have a substantial stabilizing effect on tRNA(Phe) secondary and tertiary structures, much greater than the stabilization effect of spermine, an unstructured polyamine. Aminoglycoside-induced inhibition of Pb2+-mediated tRNA(Phe) cleavage yielded IC50 values of: 5 microM for Neo-Neo, 100 microM for neomycin B, > 1 mM for kanamycin A, and > 10 mM for spermine. Enzymatic and chemical footprinting indicate that the anticodon stem as well as the junction of the TpsiC and D loops are preferred aminoglycoside binding sites.  相似文献   

18.
Conformational preferences of hypermodified nucleoside, 4-amino-2-(N(6)-lysino)-1-(beta-D-ribofuranosyl) pyrimidinium (Lysidine or 2-lysyl cytidine), usually designated as k(2)C, have been investigated theoretically by the quantum chemical perturbative configuration interaction with localized orbitals (PCILO) method. The zwitterionic, non-zwitterionic, neutral, and tautomeric forms have been studied. Automated geometry optimization using molecular mechanics force field (MMFF), semi-empirical quantum chemical PM3, and ab initio molecular orbital Hartree-Fock SCF quantum mechanical calculations have also been made to compare the salient features. The predicted most stable conformations of zwitterionic, non-zwitterionic, neutral, and tautomeric form are such that in each of these molecules the orientation of lysidine moiety (R) is trans to the N(1) of cytidine. The preferred base orientation is anti (chi = 3 degrees ) and the lysine substituent folds back toward the ribose ring. This results in hydrogen bonding between the carboxyl oxygen O(12a) of lysine moiety and the 2'-hydroxyl group of ribose sugar. In all these four forms of lysidine O(12a)...H-C(9) and O(12b)...H-N(11) interactions provide stability to respective stable conformers. Watson-Crick base pairing of lysidine with A is feasible only with the tautomeric form of usual anti oriented lysidine. This can help in recognition of AUA codon besides in avoiding misrecognition of AUG.  相似文献   

19.
Kluyveromyces lactis gamma-toxin is a tRNA endonuclease that cleaves Saccharomyces cerevisiae [see text] between position 34 and position 35. All three substrate tRNAs carry a 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) residue at position 34 (wobble position) of which the mcm(5) group is required for efficient cleavage. However, the different cleavage efficiencies of mcm(5)s(2)U(34)-containing tRNAs suggest that additional features of these tRNAs affect cleavage. In the present study, we show that a stable anticodon stem and the anticodon loop are the minimal requirements for cleavage by gamma-toxin. A synthetic minihelix RNA corresponding to the anticodon stem loop (ASL) of the natural substrate [see text] is cleaved at the same position as the natural substrate. In [see text], the nucleotides U(34)U(35)C(36)A(37)C(38) are required for optimal gamma-toxin cleavage, whereas a purine at position 32 or a G in position 33 dramatically reduces the cleavage of the ASL. Comparing modified and partially modified forms of E. coli and yeast [see text] reinforced the strong stimulatory effects of the mcm(5) group, revealed a weak positive effect of the s(2) group and a negative effect of the bacterial 5-methylaminomethyl (mnm(5)) group. The data underscore the high specificity of this yeast tRNA toxin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号