共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
毕赤酵母作为细胞工厂在小分子代谢产物发酵和蛋白制品生物合成中扮演着重要角色,具有极其重要的工业应用价值。随着CRISPR/Cas9等新型编辑工具的开发和应用,对毕赤酵母细胞工厂进行多基因高效率的工程化改造已成为可能。本文首先对毕赤酵母工程化改造的遗传操作技术和目标方向进行了归纳总结,其次介绍了毕赤酵母作为细胞工厂的应用现状,同时探讨了毕赤酵母细胞工厂的优点及缺陷,并对其发展方向作出展望;以期为未来的毕赤酵母工程化改造研究提供参考和启示,推动毕赤酵母细胞工厂在生物产业中的创新应用。 相似文献
7.
二十碳五烯酸(eicosapentaenoic acid, EPA)是一种ω-3长链多不饱和脂肪酸,因其多种生理活性而备受关注。EPA的传统来源是从深海鱼油中提取,但随着鱼类资源的枯竭和环境污染的加剧,该方法越来越不可持续。为了寻找可持续的绿色生产方式,本研究构建了毕赤酵母异源合成EPA的细胞工厂,通过敲除脂肪酸下游代谢途径和竞争途径提高了工程菌株的总脂肪酸(total fatty acids, TFAs)的积累,同时强化了C16/18延伸酶、C18/20延伸酶和去饱和酶的表达,工程菌株在以葡萄糖为碳源的条件下积累了677.34 mg/L TFAs、60.81 mg/L EPA。进一步过表达以上3种关键酶,EPA的产量达到68.89 mg/L。同时,使用醇氧化酶启动子PAOX1替换3个关键酶的葡萄糖启动子PGAP探究了甲醇诱导下的EPA的合成水平,EPA的产量达到75.21 mg/L。本研究首次实现了在毕赤酵母中从头合成EPA,为构建利用一碳资源甲醇生产EPA的细胞工厂提供了有益参考。 相似文献
8.
蓝细菌是一类能进行放氧光合作用的原核微生物,具有生长速度快、光合效率高、易于基因遗传操作等特点。它们能够将捕获的光能和二氧化碳转化为生物能源分子,在解决当前社会面临的能源紧缺和环境污染等问题上有着重要的理论和应用研究价值。近年来,随着合成生物学的迅猛发展,构建以蓝细菌为底盘的“人工细胞工厂”用于合成各类生物能源和精细化学产品取得了令人瞩目的成绩。重点介绍了应用合成生物学构建蓝细菌细胞合成工厂的研究进展,并对“光合自养型细胞工厂”面临的两大问题——产物毒性问题以及细胞内氧化胁迫问题进行了重点讨论。 相似文献
9.
在各种组学及其相应的网络研究相对成熟的基础上,集成各组学网络的细胞整合型网络或全细胞网络将大大提高对生物表型的预测能力,并成为代谢工程决策的有力武器.本文在阐述了细胞工厂设计中应该考虑细胞整合网络之后,综述了细胞整合网络的重建、分析、设计方法方面的有关问题,并进一步就研究细胞整合网络涉及的数据库、软件平台、并行计算几方面的作用作了介绍. 相似文献
10.
需钠弧菌Vibrionatriegens作为近几年发展起来的一种新型生长快速底盘细胞,在合成生物学领域展现出良好的应用前景。基因组编辑是合成生物学研究中不可或缺的遗传操作手段。但是,开展需钠弧菌的合成生物学研究仍然有待进一步发展精准、高效的基因组编辑系统。针对这个问题,首先对6株需钠弧菌的生理表型进行检测,选取生长快速、表型稳定的CICC 10908菌株作为基因组编辑研究的宿主细胞。其次,建立并优化需钠弧菌自然转化系统。优化后的系统将筛选标记基因cat-sacB或KanR整合到需钠弧菌染色体上的同源重组效率分别达到4×10–5和4×10–4。再次,在优化的自然转化系统基础上,利用双向选择性筛选方法,建立了精准、高效的需钠弧菌基因组无痕编辑体系。通过测试,基因敲除、回补、插入和替换这4种不同类型基因编辑的阳性率分别为93.8%、100%、95.7%和100%。最后,需钠弧菌可以实现质粒的高效转化和消除。该工作为需钠弧菌合成生物学研究提供精准、高效的基因组无痕编辑手段。 相似文献
11.
12.
13.
Supported by the tools of contemporary synthetic biology, the field of metabolic engineering has advanced in its overarching purpose of contributing efficient bioprocesses for the synthesis of biochemicals by addressing a number of cell and process parameters. The morphology and spatial organization of bacterial biocatalysts has been somewhat overlooked in such endeavors. The shape, size, and surface features of bacteria are maintained over evolutionary timescales and, under tight control of complex genetic programs, are faithfully reproduced each generation—and offer a phenomenal target for manipulations. This review discusses how these structural traits of bacteria can be exploited for designing efficient biocatalysts based on specific morphologies of both single cells and natural and artificial communities (e.g., catalytic biofilms). Examples are presented on how morphologies and physical forms of bacterial cell factories can be programmed while engineering their biochemical activities. The concept of synthetic morphology opens up strategies for industrial purposes and holds the potential to improve the economic feasibility of some bioprocesses by endowing bacteria with emergent, useful spatial properties. By entertaining potential applications of synthetic morphology in the future, this review outlines how multicellular organization and bacterial biorobots can be programmed to fulfill complex tasks in several fields. 相似文献
14.
Jens Nielsen 《Biotechnology journal》2019,14(9)
For thousands of years, the yeast Saccharomyces cerevisiae (S. cerevisiae) has served as a cell factory for the production of bread, beer, and wine. In more recent years, this yeast has also served as a cell factory for producing many different fuels, chemicals, food ingredients, and pharmaceuticals. S. cerevisiae, however, has also served as a very important model organism for studying eukaryal biology, and even today many new discoveries, important for the treatment of human diseases, are made using this yeast as a model organism. Here a brief review of the use of S. cerevisiae as a model organism for studying eukaryal biology, its use as a cell factory, and how advances in systems biology underpin developments in both these areas, is provided. 相似文献
15.
微生物化学品工厂以工程化设计理念,通过最优合成途径设计、生化网络重构、新元件创制及与途径-细胞-环境适配,重塑自然生产线,实现化学品的精准、定量、高效合成。作为一种颠覆性化学品生产新模式,微生物化学品工厂对构建工业经济发展的可再生原料路线、推进物质财富的绿色增长具有重大意义,成为发达国家科技竞争和产业发展的重点。为了集中展现微生物化学品工厂领域取得的最新进展,并促进生物制造产业的快速进步,《生物工程学报》特组织出版“微生物化学品工厂”专刊,汇集了国内科研工作者在材料单体、医药中间体、功能食品配料、有机酸生物合成以及非粮原料开发利用方面的最新研究成果,为微生物化学品工厂的高质量发展提供借鉴与指导。 相似文献
16.
Ting Wei Tee Anupam Chowdhury Costas D. Maranas Jacqueline V. Shanks 《Biotechnology and bioengineering》2014,111(5):849-857
Increasing demand for petroleum has stimulated industry to develop sustainable production of chemicals and biofuels using microbial cell factories. Fatty acids of chain lengths from C6 to C16 are propitious intermediates for the catalytic synthesis of industrial chemicals and diesel‐like biofuels. The abundance of genetic information available for Escherichia coli and specifically, fatty acid metabolism in E. coli, supports this bacterium as a promising host for engineering a biocatalyst for the microbial production of fatty acids. Recent successes rooted in different features of systems metabolic engineering in the strain design of high‐yielding medium chain fatty acid producing E. coli strains provide an emerging case study of design methods for effective strain design. Classical metabolic engineering and synthetic biology approaches enabled different and distinct design paths towards a high‐yielding strain. Here we highlight a rational strain design process in systems biology, an integrated computational and experimental approach for carboxylic acid production, as an alternative method. Additional challenges inherent in achieving an optimal strain for commercialization of medium chain‐length fatty acids will likely require a collection of strategies from systems metabolic engineering. Not only will the continued advancement in systems metabolic engineering result in these highly productive strains more quickly, this knowledge will extend more rapidly the carboxylic acid platform to the microbial production of carboxylic acids with alternate chain‐lengths and functionalities. Biotechnol. Biotechnol. Bioeng. 2014;111: 849–857. © 2014 Wiley Periodicals, Inc. 相似文献
17.
18.
Andrés Moya Rosario Gil Amparo Latorre Juli Peretó Maria Pilar Garcillán-Barcia & Fernando de la Cruz 《FEMS microbiology reviews》2009,33(1):225-235
Recent technical and conceptual advances in the biological sciences opened the possibility of the construction of newly designed cells. In this paper we review the state of the art of cell engineering in the context of genome research, paying particular attention to what we can learn on naturally reduced genomes from either symbiotic or free living bacteria. Different minimal hypothetically viable cells can be defined on the basis of several computational and experimental approaches. Projects aiming at simplifying living cells converge with efforts to make synthetic genomes for minimal cells. The panorama of this particular view of synthetic biology lead us to consider the use of defined minimal cells to be applied in biomedical, bioremediation, or bioenergy application by taking advantage of existing naturally minimized cells. 相似文献