首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
利用高脂饲料诱导的肥胖大鼠模型,研究了茶多酚通过调节过氧化物酶体增殖物激活受体防治肥胖症的机制.结果表明,茶多酚能够明显降低肥胖大鼠的体重、肝重及血清和肝脏甘油三酯的含量;同时,茶多酚在皮下和内脏白色脂肪组织中分别增高和降低过氧化物酶体增殖物激活受体的表达水平.另外,茶多酚可以上调皮下白色脂肪组织、内脏白色脂肪组织及褐色脂肪组织中过氧化物酶体增殖物激活受体的表达,并增加褐色脂肪组织中脂肪-氧化相关酶的表达.以上结果表明,茶多酚防治肥胖症的机制与其调节过氧化物酶体增殖物激活受体的相关通路有关.  相似文献   

2.
哺乳动物体内存在着褐色脂肪组织。有别于白色脂肪组织储存能量的功能,褐色脂肪组织的主要功能是通过产热作用来维持机体的能量代谢平衡。陆续有研究阐明调控褐色脂肪组织分化与能量代谢过程的分子机制,逐渐揭示了褐色脂肪组织分化与能量代谢过程中涉及的信号通路与转录调控。这不仅让我们更好地理解褐色脂肪组织在能量代谢调控中的重要作用,而且为基于褐色脂肪组织的肥胖治疗提供了理论依据。本文阐述了近年来研究发现的褐色脂肪组织分化与代谢过程中发挥重要作用的信号通路与转录调控,并讨论了多种基于针对褐色脂肪组织的肥胖治疗手段的有效性与可行性。  相似文献   

3.
郭云涛  苗向阳 《遗传》2015,37(3):240-249
MicroRNA(miRNA)是近年来在真核生物中发现的一类长约22nt的内源性非编码RNA,在动物中主要通过抑制靶mRNA翻译,在转录后水平调控基因表达。动物体内有两种类型的脂肪组织:褐色和白色脂肪,白色脂肪以甘油三脂形式贮存能量,而褐色脂肪利用甘油三酯产生能量。褐色脂肪因其对肥胖的拮抗作用而对研究肥胖等代谢疾病具有重要意义,大量研究表明miRNA在褐色脂肪细胞分化中扮演着重要角色,其自身也受到多种转录因子和环境因子调控,这个复杂的调控网络维持了体内脂肪组织稳态。文章主要综述了miRNA在褐色脂肪细胞分化中的最新研究进展,以期为利用miRNA进行肥胖、糖尿病等相关疾病及其并发症的治疗提供新思路。  相似文献   

4.
脂肪组织是动物的主要能量储存器官,同时也是重要的内分泌器官,能够调控机体能量稳态.对于反刍家畜而言,脂肪组织关系到御寒能力、免疫力、繁殖力、肉品质、饲料转化效率等多个生存与生产相关的重要性状.动物脂肪组织储存于皮下、内脏、肌间、肌内和骨骼等5个主要部位.依据脂肪细胞的类型又可以分为白色脂肪组织和褐色脂肪组织两大类.目前针对肉用牛、绵羊白色脂肪组织的发育规律方面的研究较为全面,而褐色脂肪组织的研究相对较少.针对反刍动物皮下、肌内等部位脂肪已建立了生产评价体系,但尚无针对褐色脂肪的评价标准.本文从动物健康与生产实际两个方面出发,分析了肉用牛、绵羊脂肪组织特性、发育规律及其鉴定与评价方法.  相似文献   

5.
线粒体在包括脂肪组织在内的新陈代谢器官中扮演重要角色。脂肪组织包括白色脂肪组织(white adipose tissue, WAT)和棕色脂肪组织(brown adipose tissue, BAT),这两种组织功能相反。白色脂肪组织储存多余的能量,棕色脂肪组织则通过线粒体进行非颤栗性产热来消耗能量。在受到寒冷时、β-肾上腺素能受体激动剂或运动刺激时,白色脂肪组织棕色化形成形态与功能类似棕色脂肪细胞的米色脂肪细胞。在脂肪细胞中,线粒体调节脂肪细胞分化、脂质稳态、支链氨基酸代谢、产热作用以及白色脂肪组织棕色化,因此高活性的线粒体对于脂肪细胞的功能至关重要。研究表明,脂肪组织线粒体功能障碍与肥胖和2型糖尿病等代谢性疾病高度相关。肥胖时线粒体功能紊乱,表现为线粒体生物合成和活性降低、活性氧产生过量以及自噬增加,从而对脂肪组织功能产生不利影响。因此,调节脂肪组织线粒体功能的干预措施将有助于治疗肥胖。研究发现,运动是预防和改善肥胖的重要方法,通过增加线粒体生物合成和活性,改善脂肪组织氧化应激并抑制自噬,从而促进机体代谢。本文深入探讨了脂肪组织线粒体的功能、线粒体紊乱的表现形式以及运动的调控效应,将加深对运动减肥的理解与认识,同时为肥胖症的治疗提供新的方向和思路。  相似文献   

6.
人体内褐色脂肪组织及其生理功能   总被引:2,自引:0,他引:2  
褐色脂肪组织(brown adipose tissue,BAT)在小型哺乳动物的非颤抖性产热、体温调节以及体重维持等方面都具有重要的生理功能.在人类中,曾一度认为褐色脂肪组织只在新生儿中存在,在成人体中不存在或数量甚微而没有生理意义.随着医学科技的发展,2009年采用监测癌症及癌症转移的氟化脱氧葡萄糖正电子发射计算机断层显像技术-X射线断层显像技术(18F-FDG PET-CT)检测到在成年人体内也存在功能性的褐色脂肪组织,此发现颠覆了传统的观念,也为人类对抗肥胖提供了新靶标.本文就褐色脂肪组织在人类体内的存在及其潜在的生理意义进行了概述.  相似文献   

7.
脂肪组织纤维化是脂肪组织功能障碍的重要标志。胰岛素抵抗和能量代谢障碍与其密切相关。本文从肥胖症人群或动物模型脂肪组织的组成,脂肪纤维化的发病机制和影响进行综述。从低氧、炎症、PDGFR-α+CD9high脂肪祖细胞、基质钙粘蛋白-11等方面阐述了脂肪纤维化的发病机制,为深入研究脂肪组织纤维化发病机制及肥胖症的治疗提供新的方向。  相似文献   

8.
肥胖症是指能量的摄入大于消耗,造成体内脂肪过度积聚而引发的疾病,肥胖症已成为一种发病率逐年增加的流行疾病,许多代谢性疾病均与肥胖密切相关。目前对于肥胖症的治疗主要有药物、手术和行为学治疗三方面,本文介绍肥胖的药物治疗。  相似文献   

9.
刘雅南  冯文焕 《生物磁学》2011,(20):3997-4000
肥胖症是指能量的摄入大于消耗,造成体内脂肪过度积聚而引发的疾病,肥胖症已成为一种发病率逐年增加的流行疾病,许多代谢性疾病均与肥胖密切相关。目前对于肥胖症的治疗主要有药物、手术和行为学治疗三方面,本文介绍肥胖的药物治疗。  相似文献   

10.
Myostatin(肌肉抑制素)在机体内主要担任负调节作用。研究表明Myostatin对骨骼肌、褐色脂肪组织和白色脂肪组织都产生负调节作用,具体表现为抑制骨骼肌细胞生长、抑制褐色脂肪细胞分化和降低白色脂肪褐色化。该文综述了Myostatin对骨骼肌、褐色脂肪和白色脂肪影响及其机制的最新研究进展,并介绍了一些以Myostatin/Smad信号通路作为靶点来治疗肥胖及其相关代谢疾病的研究成果。  相似文献   

11.
The obesity epidemic has intensified efforts to understand the mechanisms controlling adipose tissue development. Adipose tissue is generally classified as white adipose tissue (WAT), the major energy storing tissue, or brown adipose tissue (BAT), which mediates non-shivering thermogenesis. It is hypothesized that brite adipocytes (brown in white) may represent a third adipocyte class. The recent realization that brown fat exist in adult humans suggests increasing brown fat energy expenditure could be a therapeutic strategy to combat obesity. To understand adipose tissue development, several groups are tracing the origins of mature adipocytes back to their adult precursor and embryonic ancestors. From these studies emerged a model that brown adipocytes originate from a precursor shared with skeletal muscle that expresses Myf5-Cre, while all white adipocytes originate from a Myf5-negative precursors. While this provided a rational explanation to why BAT is more metabolically favorable than WAT, recent work indicates the situation is more complex because subsets of white adipocytes also arise from Myf5-Cre expressing precursors. Lineage tracing studies further suggest that the vasculature may provide a niche supporting both brown and white adipocyte progenitors; however, the identity of the adipocyte progenitor cell is under debate. Differences in origin between adipocytes could explain metabolic heterogeneity between depots and/or influence body fat patterning particularly in lipodystrophy disorders. Here, we discuss recent insights into adipose tissue origins highlighting lineage-tracing studies in mice, how variations in metabolism or signaling between lineages could affect body fat distribution, and the questions that remain unresolved. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

12.
Hypothalamic inflammation and dysfunction are common features of experimental obesity. An imbalance between caloric intake and energy expenditure is generated as a consequence of this inflammation, leading to the progressive increase of body adiposity. Thermogenesis, is one of the main functions affected by obesity-linked hypothalamic dysfunction and the complete characterization of the mechanisms involved in this process may offer new therapeutic perspectives for obesity. The brown adipose tissue is an important target for hypothalamic action in thermogenesis. This tissue has been thoroughly studied in rodents and hibernating mammals; however, until recently, its advocated role in human thermogenesis was neglected due to the lack of substantial evidence of its presence in adult humans. The recent demonstration of the presence of functional brown adipose tissue in adult humans has renovated the interest in this tissue. Here, we review some of the work that shows how inflammation and dysfunction of the hypothalamus can control brown adipose tissue activity and how this can impact on whole body thermogenesis and energy expenditure.  相似文献   

13.
An increase in energy intake and/or a decrease in energy expenditure lead to fat storage, causing overweight and obesity phenotypes. The objective of this review was to analyse, for the first time using a systematic approach, all published evidence from the past 8 years regarding the molecular pathways linking non‐shivering thermogenesis and obesity in mammals, focusing on mechanisms involved in brown adipose tissue development. Two major databases were scanned from 2006 to 2013 using ‘brown adipose tissue’ AND ‘uncoupling protein‐1’ AND ‘mammalian thermoregulation’ AND ‘obesity’ as key words. A total of 61 articles were retrieved using the search criteria. The available research used knockout methodologies, various substances, molecules and agonist treatments, or different temperature and diet conditions, to assess the molecular pathways linking non‐shivering thermogenesis and obesity. By integrating the results of the evaluated animal and human studies, our analysis identified specific molecules that enhance non‐shivering thermogenesis and metabolism by: (i) stimulating ‘brite’ (brown‐like) cell development in white adipose tissue; (ii) increasing uncoupling protein‐1 expression in brite adipocytes; and (iii) augmenting brown and/or brite adipose tissue mass. The latter can be also increased through low temperature, hibernation and/or molecules involved in brown adipocyte differentiation. Cold stimuli and/or certain molecules activate uncoupling protein‐1 in the existing brown adipocytes, thus increasing total energy expenditure by a magnitude proportional to the number of available brown adipocytes. Future research should address the interplay between body mass, brown adipose tissue mass, as well as the main molecules involved in brite cell development.  相似文献   

14.
Brown adipose tissue is a thermogenic organ that dissipates stored energy as heat to maintain body temperature. This process may also provide protection from development of diet-induced obesity. We report that the bioactive lipid mediator lysophosphatidic acid (LPA) markedly decreases differentiation of cultured primary brown adipocyte precursors, whereas potent selective inhibitors of the LPA-generating enzyme autotaxin (ATX) promote differentiation. Transgenic mice overexpressing ATX exhibit reduced expression of brown adipose tissue-related genes in peripheral white adipose tissue and accumulate significantly more fat than wild-type controls when fed a high-fat diet. Our results indicate that ATX and its product LPA are physiologically relevant negative regulators of brown fat adipogenesis and are consistent with a model in which a decrease in mature peripheral brown adipose tissue results in increased susceptibility to diet-induced obesity in mice.  相似文献   

15.
Feeding acafeteria diet to mice resulted in an increased energy intake of approximately 30% and this led to increases in the wet weight, total protein content , and total cytochrome oxidase activity of interscapular and dorso-cervical brown adipose tissue. Surgical removal of interscapular brown adipose tissue, followed by cafeteria feeding, gave rise to an elevation in dorso-cervical brown adipose tissue wet weight, total protein content, and total cytochrome oxidase activity, compared to intact cafeteria-fed mice. Cafeteria feeding with or without the removal of interscapular brown adipose tissue did not lead to significant increases in body weight compared to stock-fed control mice, but both cafeteria-fed groups of mice showed significant elevations in body fat content indicating that the induced hyperphagia led to a relative obesity in the cafeteria-fed groups. The results presented are consistent with an increased thermogenic activity in the brown adipose tissue of cafeteria-fed mice, and the effect of the removal of interscapular brown adipose tissue further indicates the quantitative importance of the tissue in the control of body weight.  相似文献   

16.
Developmental origin of fat: tracking obesity to its source   总被引:8,自引:0,他引:8  
Gesta S  Tseng YH  Kahn CR 《Cell》2007,131(2):242-256
The development of obesity not only depends on the balance between food intake and caloric utilization but also on the balance between white adipose tissue, which is the primary site of energy storage, and brown adipose tissue, which is specialized for energy expenditure. In addition, some sites of white fat storage in the body are more closely linked than others to the metabolic complications of obesity, such as diabetes. In this Review, we consider how the developmental origins of fat contribute to its physiological, cellular, and molecular heterogeneity and explore how these factors may play a role in the growing epidemic of obesity.  相似文献   

17.
18.
19.
Obesity is a pandemic disorder that can be defined as a chronic excess of adipose tissue that increases the risk of suffering chronic diseases such as, diabetes, arterial hypertension, stroke and some forms of cancer. We now know that adipose tissue, aside from being an energy store, is also an important endocrine and metabolic organ. Recently, new mechanisms that control obesity have been identified, such as the equilibrium between white and brown adipose tissue, the localization of adipose mass (visceral or ventral), and the presence of adipose and mesenchymal stem cells. In this review, we describe the implication of these stem cell types in the normal physiology and dysfunction of adipose tissue. These stem cells provide a potential target for modulating the response of the body to obesity and diabetes, as well as a potential tool for regenerative medicine.  相似文献   

20.
The rising prevalence of obesity has become a worldwide health concern. Obesity usually occurs when there is an imbalance between energy intake and energy expenditure. However, energy expenditure consists of several components, including metabolism, physical activity, and thermogenesis. Toll-like receptor 4 (TLR4) is a transmembrane pattern recognition receptor, and it is abundantly expressed in the brain. Here, we showed that pro-opiomelanocortin (POMC)-specific deficiency of TLR4 directly modulates brown adipose tissue thermogenesis and lipid homeostasis in a sex-dependent manner. Deleting TLR4 in POMC neurons is sufficient to increase energy expenditure and thermogenesis resulting in reduced body weight in male mice. POMC neuron is a subpopulation of tyrosine hydroxylase neurons and projects into brown adipose tissue, which regulates the activity of sympathetic nervous system and contributes to thermogenesis in POMC-TLR4-KO male mice. By contrast, deleting TLR4 in POMC neurons decreases energy expenditure and increases body weight in female mice, which affects lipolysis of white adipose tissue (WAT). Mechanistically, TLR4 KO decreases the expression of the adipose triglyceride lipase and lipolytic enzyme hormone-sensitive lipase in WAT in female mice. Furthermore, the function of immune-related signaling pathway in WAT is inhibited because of obesity, which exacerbates the development of obesity reversely. Together, these results demonstrate that TLR4 in POMC neurons regulates thermogenesis and lipid balance in a sex-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号