首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.

Background and Aims

Recent research on the history of Platanus reveals that hybridization phenomena occurred in the central American species. This study has two goals: to help resolve the evolutive puzzle of central American Platanus, and to test the potential of real-time polymerase chain reaction (PCR) for detecting ancient hybridization.

Methods

Sequencing of a uniparental plastid DNA marker [psbA-trnH(GUG) intergenic spacer] and qualitative and quantitative single nucleotide polymorphism (SNP) genotyping of biparental nuclear ribosomal DNA (nrDNA) markers [LEAFY intron 2 (LFY-i2) and internal transcribed spacer 2 (ITS2)] were used.

Key Results

Based on the SNP genotyping results, several Platanus accessions show the presence of hybridization/introgression, including some accessions of P. rzedowskii and of P. mexicana var. interior and one of P. mexicana var. mexicana from Oaxaca (= P. oaxacana). Based on haplotype analyses of the psbA-trnH spacer, five haplotypes were detected. The most common of these is present in taxa belonging to P. orientalis, P. racemosa sensu lato, some accessions of P. occidentalis sensu stricto (s.s.) from Texas, P. occidentalis var. palmeri, P. mexicana s.s. and P. rzedowskii. This is highly relevant to genetic relationships with the haplotypes present in P. occidentalis s.s. and P. mexicana var. interior.

Conclusions

Hybridization and introgression events between lineages ancestral to modern central and eastern North American Platanus species occurred. Plastid haplotypes and qualitative and quantitative SNP genotyping provide information critical for understanding the complex history of Mexican Platanus. Compared with the usual molecular techniques of sub-cloning, sequencing and genotyping, real-time PCR assay is a quick and sensitive technique for analysing complex evolutionary patterns.  相似文献   

2.

Background and Aims Adansonia

comprises nine species, six of which are endemic to Madagascar. Genetic relationships between the Malagasy species remain unresolved due to conflicting results between nuclear and plastid DNA variation. Morphologically intermediate individuals between distinct species have been identified, indicative of interspecific hybridization. In this paper, microsatellite data are used to identify potential cases of hybridization and to provide insights into the evolutionary history of the genus on Madagascar.

Methods

Eleven microsatellites amplified with new primers developed for Adansonia rubrostipa were used to analyse 672 individuals collected at 27 sites for the six Malagasy species and morphologically intermediate individuals. Rates of individual admixture were examined using three Bayesian clustering programs, STRUCTURE, BAPS and NewHybrids, with no a priori species assignment.

Key Results

Population differentiation was coherent, with recognized species boundaries. In the four Malagasy species of section Longitubae, 8·0, 9·0 and 9·5 % of individuals with mixed genotypes were identified by BAPS, NewHybrids and STRUCTURE, respectively. At sites with sympatric populations of A. rubrostipa and A. za, NewHybrids indicated these individuals to be F2 and, predominantly, backcrosses with both parental species. In northern Madagascar, two populations of trees combining A. za and A. perrieri morphology and microsatellite alleles were identified in the current absence of the parental species.

Conclusions

The clear genetic differentiation observed between the six species may reflect their adaptation to different assortments of climate regimes and habitats during the colonization of the island. Microsatellite variation reveals that hybridization probably occurred in secondary contact between species of section Longitubae. This type of hybridization may also have been involved in the differentiation of a local new stabilized entity showing specific microsatellite alleles and morphological characters, suggesting a potential role of hybridization in the recent history of diversification on Madagascar.  相似文献   

3.

Background and Aims

The cool temperate rainforests of Australia were much reduced in range during the cold and dry glacial periods, although genetic evidence indicates that two key rainforest species, Nothofagus cunninghamii and Tasmannia lanceolata, survived within multiple locations and underwent only local range expansions at the end of the Last Glacial. To better understand the glacial response of a co-occurring but wind-dispersed and less cold-tolerant rainforest tree species, Atherosperma moschatum, a chloroplast phylogeographic study was undertaken.

Methods

A total of 3294 bp of chloroplast DNA sequence was obtained for 155 samples collected from across the species'' range.

Key Results

The distribution of six haplotypes observed in A. moschatum was geographically structured with an inferred ancestral haplotype restricted to Tasmania, while three non-overlapping and endemic haplotypes were found on the mainland of south-eastern Australia. Last glacial refugia for A. moschatum are likely to have occurred in at least one location in western Tasmania and in Victoria and within at least two locations in the Great Dividing Range of New South Wales. Nucleotide diversity of A. moschatum was lower (π = 0·00021) than either N. cunninghamii (0·00101) or T. lanceolata (0·00073), and was amongst the lowest recorded for any tree species.

Conclusions

This study provides evidence for past bottlenecks having impacted the chloroplast diversity of A. moschatum as a result of the species narrower climatic niche during glacials. This hypothesis is supported by the star-like haplotype network and similar estimated rates of chloroplast DNA substitution for A. moschatum and the two more cold tolerant and co-occurring species that have higher chloroplast diversity, N. cunninghamii and T. lanceolata.  相似文献   

4.

Background and Aims

In the Mediterranean basin, the Italian peninsula has been suggested to be one of the most important glacial refugia for temperate tree species. The orchid genus Epipactis is widely represented in the Italian peninsula by widespread species and several endemic, localized taxa, including selfing and outcrossing taxa. Here the phylogenetic and phylogeographic relationships in a group of closely related taxa in Epipactis are investigated with the aim of understanding the role of this refugial area for cladogenesis and speciation in herbaceous species, such as terrestrial orchids.

Methods

Ribosomal DNA (rDNA) was employed to assess phylogenetic relationships, and plastid sequence variation in the rbcLaccD spacer was used to reveal phylogeographic patterns among plastid haplotypes using a parsimony network.

Key Results

Low genetic variation and shared ribotypes were detected in rDNA, whereas high levels of sequence variation and a strong phylogeographic structure were found in the examined plastid region. The parsimony plastid haplotype network identified two main haplotype groups, one including E. atrorubens/microphylla/muelleri/leptochila and the other including all accessions of E. helleborine and several localized and endemic taxa, with a combination of widespread and rare haplotypes detected across the Italian peninsula. A greater genetic divergence separated the Italian and other European accessions of E. helleborine.

Conclusions

Phylogenetic and phylogeographic patterns support a working hypothesis in which the Italian peninsula has only recently been colonized by Epipactis, probably during the most recent phase of the Quaternary age and, nevertheless, it acted as a remarkable centre of diversification for this orchid lineage. Changes in pollination strategy and recurrent shifts in mating system (from allogamy to autogamy) could have represented the mechanism promoting this rapid diversification and the observed high taxonomic complexity detected in the E. helleborine species complex.  相似文献   

5.

Background and Aims

At least seven species of Agave, including A. parryi, were cultivated prehistorically in Arizona, serving as important sources of food and fibre. Many relict populations from ancient cultivation remain in the modern landscape, offering a unique opportunity to study pre-Columbian plant manipulation practices. This study examined genetic and morphological variation in six A. p. var. huachucensis populations of unknown origin to compare them with previous work on A. parryi populations of known origin, to infer their cultivation history and to determine whether artificial selection is evident in populations potentially managed by early agriculturalists.

Methods

Six A. p. var. huachucensis and 17 A. parryi populations were sampled, and morphometric, allozyme and microsatellite data were used to compare morphology and genetic structure in purportedly anthropogenic and wild populations, as well as in the two taxa. Analysis of molecular variance and Bayesian clustering were performed to partition variation associated with taxonomic identity and hypothesized evolutionary history, to highlight patterns of similarity among populations and to identify potential wild sources for the planting stock.

Key Results A

p. var. huachucensis and A. parryi populations differed significantly both morphologically and genetically. Like A. parryi, wild A. p. var. huachucensis populations were more genetically diverse than the inferred anthropogenic populations, with greater expected heterozygosity, percentage of polymorphic loci and number of alleles. Inferred anthropogenic populations exhibited many traits indicative of past active cultivation: greater morphological uniformity, fixed heterozygosity for several loci (non-existent in wild populations), fewer multilocus genotypes and strong differentiation among populations.

Conclusions

Where archaeological information is lacking, the genetic signature of many Agave populations in Arizona can be used to infer their evolutionary history and to identify potentially fruitful sites for archaeological investigation of ancient settlements and cultivation practices. The same approach can clearly be adopted for other species in similar situations.  相似文献   

6.
7.

Background and Aims

Asexual organisms are more widespread in previously glaciated areas than their sexual relatives (‘geographical parthenogenesis’). In plants, this pattern is probably dependent on reproductive isolation and stability of cytotypes within their respective distribution areas. Both partial apomixis and introgressive hybridization potentially destabilize the spatial separation of sexual and apomictic populations. The wide distribution of apomicts may be further enhanced by uniparental reproduction which is advantageous for colonization. These factors are studied in the alpine species Ranunculus kuepferi.

Methods

Geographical distribution, diversity and mode of reproduction of cytotypes were assessed using flow cytometry and flow cytometric seed screening on samples from 59 natural populations of Ranunculus kuepferi. Seed set of cytotypes was compared in the wild.

Key Results

Diploid sexuals are confined to the south-western parts of the Alps, while tetraploid apomicts dominate in previously glaciated and in geographically isolated areas despite a significantly lower fertility. Other cytotypes (3x, 5x and 6x) occur mainly in the sympatric zone, but without establishing populations. The tetraploids are predominantly apomictic, but also show a partial apomixis via an uncoupling of apomeiosis and parthenogenesis in the seed material. Both pseudogamy and autonomous endosperm formation are observed which may enhance uniparental reproduction.

Conclusions

Diploids occupy a glacial relic area and resist introgression of apomixis, probably because of a significantly higher seed set. Among the polyploids, only apomictic tetraploids form stable populations; the other cytotypes arising from partial apomixis fail to establish, probably because of minority cytotype disadvantages. Tetraploid apomicts colonize previously devastated and also distant areas via long-distance dispersal, confirming Baker''s law of an advantage of uniparental reproduction. It is concluded that stability of cytotypes and of modes of reproduction are important factors for establishing a pattern of geographical parthenogenesis.  相似文献   

8.

Background and Aims

Experimental crosses between the diploid woodland strawberry (Fragaria vesca L.) and the octoploid garden strawberry (F. × ananassa Duch.) can lead to the formation of viable hybrids. However, the extent of such hybrid formation under natural conditions is unknown, but is of fundamental interest and importance in the light of the potential future cultivation of transgenic strawberries. A hybrid survey was therefore conducted in the surroundings of ten farms in Switzerland and southern Germany, where strawberries have been cultivated for at least 10 years and where wild strawberries occur in the close vicinity.

Methods

In 2007 and 2008, 370 wild F. vesca plants were sampled at natural populations around farms and analysed with microsatellite markers. In 2010, natural populations were revisited and morphological traits of 3050 F. vesca plants were inspected. DNA contents of cell nuclei of morphologically deviating plants were estimated by flow cytometry to identify hybrids. As controls, 50 hybrid plants from interspecific hand-crosses were analysed using microsatellite analysis and DNA contents of cell nuclei were estimated by flow cytometry.

Key Results

None of the wild samples collected in 2007 and 2008 contained F. × ananassa microsatellite markers, while all hybrids from hand-crosses clearly contained markers of both parent species. Morphological inspection of wild populations carried out in 2010 and subsequent flow cytometry of ten morphologically deviating plants revealed no hybrids.

Conclusions

Hybrid formation or hybrid establishment in natural populations in the survey area is at best a rare event.  相似文献   

9.
10.

Background and Aims

Interspecific Diphasiastrum hybrids have been assumed to be homoploid and to produce well-formed spores serving sexual reproduction. If this were the case, forms intermediate between hybrids and parents or hybrid swarms should be expected. The purpose of this study was: (1) to check whether homoploidy consistently applies to the three hybrids throughout their Central European range; (2) to examine whether their genome sizes confirm their parentage as assumed by morphology; and (3) to perform a screening for detection of ploidy levels other than diploid and variation in DNA content due to backcrossing.

Methods

Flow cytometry was used first to measure the relative DNA values [with 4′,6-diamidino-2-phenylindole (DAPI) staining] and ploidy level as a general screening, and secondly to determine the absolute DNA 2C values [with propidium iodide (PI) staining] in a number of selected samples with the main focus on the hybrids.

Key Results

A considerable variation of DNA 2C values (5·26–7·52 pg) was detected between the three European Diphasiastrum species. The values of the diploid hybrids are highly constant without significant variation between regions. They are also intermediate between their assumed parents and agree closely with those calculated from their putative parents. This confirms their hybrid origin, assumed parentage and homoploid status. Considerably higher DNA amounts (9·48–10·30 pg) were obtained for three populations, suggesting that these represent triploid hybrids, an interpretation that is strongly supported by their morphology.

Conclusions

Diploid hybrids have retained their genetic and morphological identites throughout their Central European range, and thus no indications for diploid backcrossing were found. The triploid hybrids have probably originated from backcrossing between a diploid gametophyte of a hybrid (derived from a diplospore) and a haploid gametophyte of a diploid parental species. By repeated crossing events, reticulate evolution patterns arise that are similar to those known for a number of ferns.  相似文献   

11.
12.

Background and Aims

Studies examining patterns and processes of speciation in South America are fewer than in North America and Europe. One of the least well documented processes has been progenitor–derivative speciation. A particularly instructive example occurs in the southern Andes in the genus Pozoa (Apiaceae, Azorelloideae), which consists of only two diploid outcrossing species, the widespread P. coriacea and the geographically and ecologically restricted P. volcanica. This paper tests the hypothesis that the latter species originated from the former through local geographical and ecological isolation by progenitor–derivative speciation.

Methods

DNA sequences were analysed from Pozoa and the related South American genera Asteriscium, Eremocharis and Gymnophyton from non-coding regions of the plastid genome, ndhF-rpl32 and rpl32-trnL, plus incorporation of previously reported rpl16 intron and trnD-trnT intergenic spacer sequences. Amplified fragment length polymorphism (AFLP) data from 105 individuals in 21 populations throughout the entire range of distribution of the genus were used for estimation of genetic diversity, divergence and SplitsTree network analysis. Ecological factors, including habitat and associated species, were also examined.

Key Results

Pozoa coriacea is more similar genetically to the outgroup genera, Asteriscium and Eremocharis, than is P. volcanica. At the population level, only P. volcanica is monophyletic, whereas P. coriacea is paraphyletic. Analyses of genetic differentiation among populations and genetic divergence and diversity of the species show highest values in P. coriacea and clear reductions in P. volcanica. Pozoa coriacea occurs in several types of high elevation habitats, whereas P. volcanica is found only in newly formed open volcanic ash zones.

Conclusions

All facts support that Pozoa represents a good example of progenitor–derivative speciation in the Andes of southern South America.  相似文献   

13.

Background and Aims

Genotype by environment (G × E) interactions are important for the long-term persistence of plant species in heterogeneous environments. It has often been suggested that disease is a key factor for the maintenance of genotypic diversity in plant populations. However, empirical evidence for this contention is scarce. Here virus infection is proposed as a possible candidate for maintaining genotypic diversity in their host plants.

Methods

The effects of White clover mosaic virus (WClMV) on the performance and development of different Trifolium repens genotypes were analysed and the G × E interactions were examined with respect to genotype-specific plant responses to WClMV infection. Thus, the environment is defined as the presence or absence of the virus.

Key Results

WClMV had a negative effect on plant performance as shown by a decrease in biomass and number of ramets. These effects of virus infection differ greatly among host genotypes, representing a strong G × E interaction. Moreover, the relative fitness and associated ranking of genotypes changed significantly between control and virus treatments. This shift in relative fitness among genotypes suggests the potential for WClMV to provoke differential selection on T. repens genotypes, which may lead to negative frequency-dependent selection in host populations.

Conclusions

The apparent G × E interaction and evident repercussions for relative fitness reported in this study stress the importance of viruses for ecological and evolutionary processes and suggest an important role for viruses in shaping population dynamics and micro-evolutionary processes.  相似文献   

14.
Lee YI  Chang FC  Chung MC 《Annals of botany》2011,108(1):113-121

Background and Aims

Lady''s slipper orchids (Paphiopedilum) are of high value in floriculture, and interspecific hybridization has long been used for breeding improved cultivars; however, information regarding the genome affinities of species and chromosome pairing behaviour of the hybrids remains almost unknown. The present work analyses the meiotic behaviour of interspecific hybrids by genomic in situ hybridization and cytologically evaluates the genomic relationships among parental species.

Methods

Eight interspecific F1 hybrids of Paphiopedilum species in various subgenera or sections were investigated in this study. The chromosome behaviour in meiosis of these interspecific hybrids was analysed and subjected to genomic in situ hybridization and fluorescent in situ hybridization.

Key Results

Genomic in situ hybridization was demonstrated as an efficient method to differentiate between Paphiopedilum genomes and to visualize the chromosome pairing affinities in interspecific F1 hybrids, clarifying the phylogenetic distances among these species. Comparatively regular chromosome pairing observed in the hybrids of P. delenatii × P. bellatulum, P. delenatii × P. rothschildianum and P. rothschildianum × P. bellatulum suggested high genomic affinities and close relationships between parents of each hybrid. In contrast, irregular chromosome associations, such as univalents, trivalents and quadrivalents occurred frequently in the hybrids derived from distant parents with divergent karyotypes, such as P. delenatii × P. callosum, P. delenatii × P. glaucophyllum, P. rothschildianum × P. micranthum and P. rothschildianum × P. moquetteanum. The existence of multivalents and autosyndesis demonstrated by genomic in situ hybridization in this study indicates that some micro-rearrangements and other structural alterations may also play a part in differentiating Paphiopedilum species at chromosomal level, demonstrated as different chromosome pairing affinities in interspecific hybrids.

Conclusions

The results indicate that genome homology and the interaction of genetic factors, but not chromosome number nor karyotype similarity, determine the chromosome pairing behaviour in Paphiopedilum hybrids.  相似文献   

15.

Background and Aims

The gene flow through pollen or seeds governs the extent of spatial genetic structure in plant populations. Another factor that can contribute to this pattern is clonal growth. The perennial species Arabidopsis lyrata ssp. petraea (Brassicaceae) is a self-incompatible, clonal species found in disjunctive populations in central and northern Europe.

Methods

Fourteen microsatellite markers were employed to study the level of kinship and clonality in a high-altitude mountain valley at Spiterstulen, Norway. The population has a continuous distribution along the banks of the River Visa for about 1·5 km. A total of 17 (10 m × 10 m) squares were laid out in a north–south transect following the river on both sides.

Key Results

It is shown that clonal growth is far more common than previously shown in this species, although the overall size of the genets is small (mean diameter = 6·4 cm). Across the whole population there is no indication of isolation by distance, and spatial genetic structure is only visible on fine spatial scales. In addition, no effect of the river on the spatial distribution of genotypes was found.

Conclusions

Unexpectedly, the data show that populations of small perennials like A. lyrata can behave like panmictic units across relatively large areas at local sites, as opposed to earlier findings in central Europe.  相似文献   

16.

Background and Aims

Grevillea rhizomatosa is a spreading shrub which exhibits multiple breeding strategies within a narrow area in the fire-prone heathlands of eastern Australia. Reproductive strategies include self-compatibility, self-incompatibility and clonality (with and without sterility). The close proximity of contrasting breeding systems provides an opportunity to explore the evolution of sterility and to compare and contrast the origins of genotypic diversity (recombinant or somatic) against degrees of sexual expression.

Methods

ISSR markers for 120 band positions (putative loci) were used to compare genetic diversity among five populations at a macro-scale of 5 m between samples (n = 244 shrubs), and at a micro-scale of nearest neighbours for all plants in five 25-m2 quadrats with contrasting fertilities (n = 162 shrubs). Nearest-neighbour sampling included several clusters of connected ramets. Matrix incompatibility (MIC) analyses were used to evaluate the relative contribution of recombination and somatic mutation to genotype diversity.

Key Results

High levels of genotypic diversity were found in all populations regardless of fertilities (fertile populations, G/N ≥ 0·94; sterile populations, G/N ≥ 0·97) and most sterile populations had a unique genetic profile. Somatic mutations were detected along connected ramets in ten out of 42 ramet clusters. MIC analyses showed that somatic mutations have contributed to diversity in all populations and particularly so in sterile populations.

Conclusions

Somatic mutations contribute significantly to gene diversity in sterile populations of Grevillea rhizomatosa, the accumulation of which is the likely cause of male and female sterility. High levels of genetic diversity therefore may not always be synonymous with sexual fitness and genetic health. We hypothesize that frequent fires drive selection for clonal reproduction, at the cost of flowering such that sexual functions are not maintained through selection, and the build-up of somatic mutations in meristems results in high genotype diversity at the cost of pollen and ovule fertilities.  相似文献   

17.

Background and aims

South America and Oceania possess numerous floristic similarities, often confirmed by morphological and molecular data. The carnivorous Drosera meristocaulis (Droseraceae), endemic to the Neblina highlands of northern South America, was known to share morphological characters with the pygmy sundews of Drosera sect. Bryastrum, which are endemic to Australia and New Zealand. The inclusion of D. meristocaulis in a molecular phylogenetic analysis may clarify its systematic position and offer an opportunity to investigate character evolution in Droseraceae and phylogeographic patterns between South America and Oceania.

Methods Drosera meristocaulis

was included in a molecular phylogenetic analysis of Droseraceae, using nuclear internal transcribed spacer (ITS) and plastid rbcL and rps16 sequence data. Pollen of D. meristocaulis was studied using light microscopy and scanning electron microscopy techniques, and the karyotype was inferred from root tip meristem.

Key Results

The phylogenetic inferences (maximum parsimony, maximum likelihood and Bayesian approaches) substantiate with high statistical support the inclusion of sect. Meristocaulis and its single species, D. meristocaulis, within the Australian Drosera clade, sister to a group comprising species of sect. Bryastrum. A chromosome number of 2n = approx. 32–36 supports the phylogenetic position within the Australian clade. The undivided styles, conspicuous large setuous stipules, a cryptocotylar (hypogaeous) germination pattern and pollen tetrads with aperture of intermediate type 7–8 are key morphological traits shared between D. meristocaulis and pygmy sundews of sect. Bryastrum from Australia and New Zealand.

Conclusions

The multidisciplinary approach adopted in this study (using morphological, palynological, cytotaxonomic and molecular phylogenetic data) enabled us to elucidate the relationships of the thus far unplaced taxon D. meristocaulis. Long-distance dispersal between southwestern Oceania and northern South America is the most likely scenario to explain the phylogeographic pattern revealed.  相似文献   

18.

Background and Aims

Successful establishment of newly formed polyploid species depends on several interlinked genetic and ecological factors. These include genetic diversity within and among individuals, chromosome behaviour and fertility, novel phenotypes resulting from novel genomic make-up and expression, intercytotypic and interspecific competition, and adaptation to distinct habitats. The allotetraploid rock fern Asplenium majoricum is known from one small population in Valencia, Spain, and several larger populations on the Balearic island of Majorca. In Valencia, it occurs sympatrically with its diploid parents, A. fontanum subsp. fontanum and A. petrarchae subsp. bivalens, and their diploid hybrid A. × protomajoricum. This highly unusual situation allowed the study of polyploid genetic diversity and its relationship to the formation and establishment of nascent polyploid lineages.

Methods

Genetic variation for isozyme and chloroplast DNA markers was determined for A. majoricum and A. × protomajoricum sampled thoroughly from known sites in Majorca and Valencia. Results were compared with variation determined previously for the diploid parent taxa.

Key Results

A highly dynamic system with recurring diploid hybrid and allotetraploid formation was discovered. High diversity in the small Valencian A. majoricum population indicates multiple de novo origins from diverse parental genotypes, but most of these lineages become extinct without becoming established. The populations on Majorca most probably represent colonization(s) from Valencia rather than an in situ origin. Low genetic diversity suggests that this colonization may have occurred only once.

Conclusions

There is a striking contrast in success of establishment of the Majorcan and Valencian populations of A. majoricum. Chance founding of populations in a habitat where neither A. fontanum subsp. fontanum nor A. petrarchae subsp. bivalens occurs appears to have been a key factor enabling the establishment of A. majoricum on Majorca. Successful establishment of this polyploid is probably dependent on geographic isolation from diploid progenitor competition.  相似文献   

19.

Background and Aims

Previous work on the pantropical genus Ixora has revealed an Afro-Madagascan clade, but as yet no study has focused in detail on the evolutionary history and morphological trends in this group. Here the evolutionary history of Afro-Madagascan Ixora spp. (a clade of approx. 80 taxa) is investigated and the phylogenetic trees compared with several key morphological traits in taxa occurring in Madagascar.

Methods

Phylogenetic relationships of Afro-Madagascan Ixora are assessed using sequence data from four plastid regions (petD, rps16, rpoB-trnC and trnL-trnF) and nuclear ribosomal external transcribed spacer (ETS) and internal transcribed spacer (ITS) regions. The phylogenetic distribution of key morphological characters is assessed. Bayesian inference (implemented in BEAST) is used to estimate the temporal origin of Ixora based on fossil evidence.

Key Results

Two separate lineages of Madagascan taxa are recovered, one of which is nested in a group of East African taxa. Divergence in Ixora is estimated to have commenced during the mid Miocene, with extensive cladogenesis occurring in the Afro-Madagascan clade during the Pliocene onwards.

Conclusions

Both lineages of Madagascan Ixora exhibit morphological innovations that are rare throughout the rest of the genus, including a trend towards pauciflorous inflorescences and a trend towards extreme corolla tube length, suggesting that the same ecological and selective pressures are acting upon taxa from both Madagascan lineages. Novel ecological opportunities resulting from climate-induced habitat fragmentation and corolla tube length diversification are likely to have facilitated species radiation on Madagascar.  相似文献   

20.

Background and Aims

‘Loxoscaphoid’ Asplenium species are morphologically a remarkably distinct group of Aspleniaceae. Except for two preliminary chromosome counts of Asplenium theciferum, the cytology of this group of species has, however, been largely unstudied.

Methods

Chromosome counts were obtained by acetocarmine squash preparations of one mitotic cell and several meiotic cells. Relative DNA content of gametophytic and sporophytic cells was determined by flow cytometry. The phylogenetic placement of A. loxoscaphoides, A. rutifolium s.l. and A. theciferum s.l. was investigated through an analysis of rbcL sequences.

Key Results

The dysploid base number is reported to be x = 35 in Asplenium centrafricanum, A. loxoscaphoides, A. sertularioides and A. theciferum. Analysis of rbcL sequences confirms that ‘loxoscaphoids’ nest robustly within Asplenium. Several high ploidy levels exceeding the tetraploid level were found in A. theciferum s.l. and A. rutifolium s.l. All taxa proved to be sexual.

Conclusions

Four base numbers are known at present for Aspleniaceae: x = 39, 38, 36 and 35. The dysploid base number x = 35 found in the ‘loxoscaphoid’ Asplenium spp. sheds a novel light on the cytoevolution of the whole family. We postulate a recurrent descending dysploid evolution within Aspleniaceae, leading to speciation at the (sub)generic and species/group level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号