首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three-dimensional (3D) focusing of particles in microchannels has been a long-standing issue in the design of biochemical/biomedical microdevices. Current microdevices for 3D cell or bioparticle focusing involve complex channel geometries in view of their fabrication because they require multiple layers and/or sheath flows. This paper proposes a simple method for 3D focusing of red blood cells (RBCs) in a single circular microcapillary, without any sheath flows, which is inspired from the fluid dynamics phenomenon in that a spherical particle lagging behind a Poiseuille flow migrates toward and along the channel axis. More explicitly, electrophoresis of RBCs superimposed on the pressure-driven flow is utilized to generate an RBC migration mode analogous to this phenomenon. A particle-tracking scheme with a sub-pixel resolution is implemented to spatially position red blood cells flowing through the channel, so that a probability density function (PDF) is constructed to evaluate the tightness of the cell focusing. Above a specific strength of the electric field, approximately 90% of the sheep RBCs laden in the flow are tightly focused within a beam diameter that is three times the cell dimension. Particle shape effect on the focusing is discussed by making comparisons between the RBCs and the spherical particles. The lateral migration velocity, predicted by an existing theoretical model, is in good agreement with the present experimental data. It is noteworthy that 3D focusing of non-spherical particles, such as RBCs, has been achieved in a circular microchannel, which is a significant improvement over previous focusing methodologies.  相似文献   

2.
A new method for the preperative and analytical electrophoresis of cells   总被引:1,自引:0,他引:1  
In this paper, a new method is described for the horizontal electrophoresis of cells on a density cushion under near-isopycnic conditions. When cell sedimentation is minimized, the electrophoresis of red blood cells (RBC) used as model cells within an anti-convective porous matrix (with pores over 300 μm in diameter) was capable of separating a mixture of human and chicken RBC according to their electrophoretic mobilities. Samples taken from the separated RBC bands show over 90% purity for each species. The simultaneous electrophoresis of several RBC samples carried out under identical conditions permitted the use of comparative data based on the electrophoretic mobility of cells which differ in their surface properties. We believe that this relatively simple system, in which cell sedimentation and convection are minimized, has the potential to be modified and adapted for the separation of other cell types/organelles.  相似文献   

3.
Cell–cell fusion is an important biological and pathological event. There are limited techniques for studying both the process of cell–cell fusion and the fate of fused cells. We have developed a non-invasive assay for the temporal analysis of cell–cell fusion, quantification of fused cells, and isolation of fused cells. Briefly, cells are transfected with either the T7 bacteriophage RNA polymerase, or yellow fluorescent protein (YFP) driven by a T7 specific promoter. Cells are mixed and induced to fuse. When cells expressing T7 RNA polymerase and T7 promoter driven YFP (T7-YFP) fuse and the cellular contents mix, the YFP is expressed. These YFP-positive cells can be detected with a fluorescent microscope, quantified by flow cytometry, or collected using fluorescence associated cell sorting. Isolated YFP-positive cells can be monitored to determine the fate of fused cells, specifically for the rates of growth, transformation, and changes in chromosome number.  相似文献   

4.
RNA-binding proteins (RBPs) control RNA fate from synthesis to decay. Since their cellular expression levels frequently do not reflect their in vivo activity, methods are needed to assess the steady state RNA-binding activity of RBPs as well as their responses to stimuli. While electrophoresis mobility shift assays (EMSA) have been used for such determinations, their results serve at best as proxies for the RBP activities in living cells. Here, we describe a quantitative dual fluorescence method to analyze protein–mRNA interactions in vivo. Known or candidate RBPs are fused to fluorescent proteins (eGFP, YFP), expressed in cells, cross-linked in vivo to RNA by ultraviolet light irradiation, and immunoprecipitated, after lysis, with a single chain antibody fragment directed against eGFP (GFP-binding protein, GBP). Polyadenylated RNA-binding activity of fusion proteins is assessed by hybridization with an oligo(DT) probe coupled with a red fluorophore. Since UV light is directly applied to living cells, the assay can be used to monitor dynamic changes in RNA-binding activities in response to biological or pharmacological stimuli. Notably, immunoprecipitation and hybridization can also be performed with commercially available GBP-coupled 96-well plates (GFP-multiTrap), allowing highly parallel RNA-binding measurements in a single experiment. Therefore, this method creates the possibility to conduct in vivo high-throughput RNA-binding assays. We believe that this fast and simple radioactivity-free method will find many useful applications in RNA biology.  相似文献   

5.
We calculated the three‐dimensional optical stress distribution and the resulting deformation on a biconcave human red blood cell (RBC) in a pair of parallel optical trap. We assumed a Gaussian intensity distribution with a spherical wavefront for each trapping beam and calculated the optical stress from the momentum transfer associated with the reflection and refraction of the incident photons at each interface. The RBC was modelled as a biconcave thin elastic membrane with uniform elasticity and a uniform thickness of 0.25 μm. The resulting cell deformation was determined from the optical stress distribution by finite element software, Comsol Structure Mechanics Module, with Young's modulus (E) as a fitting parameter in order to fit the theoretical results for cell elongation to our experimental data. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Following erythrophagocytosis (EP) of senescent red blood cells (RBCs), heme iron is recycled to the plasma by tissue macrophages. This process is critical for mammalian iron homeostasis but remains elusive. We characterized a cellular model using artificially-aged murine RBCs and murine bone marrow-derived macrophages (BMDMs) and study mRNA and protein expression of HO-1, ferroportin and ferritin after EP. In vitro ageing of RBCs was obtained by raising intracellular calcium concentration. These RBCs exhibit several features of erythrocyte senescence including externalization of phosphatidyl-serine, specific binding and phagocytosis by BMDMs. During the first hours of EP, we observed a rapid increase of HO-1 and ferroportin mRNAs and proteins, whereas ferritin protein expression was progressively induced with no major changes in RNA levels. At later stages after EP, a different pattern of expression was observed with a net decrease of ferroportin, a sustained high level of HO-1, and a strong increase in ferritins. Taken together, these results suggest that after EP, iron is rapidly extracted from heme and exported by ferroportin. Surprisingly, the gene expression profile at late stages after EP, which is indicative of iron storage, is reminiscent of what is observed in inflammation. However, phagocytosis of artificially-aged red blood cells seems to repress the proinflammatory response of macrophages.  相似文献   

7.
The compaction of DNA by the HU protein from Thermotoga maritima (TmHU) is analysed on a single-molecule level by the usage of an optical tweezers-assisted force clamp. The condensation reaction is investigated at forces between 2 and 40 pN applied to the ends of the DNA as well as in dependence on the TmHU concentration. At 2 and 5 pN, the DNA compaction down to 30% of the initial end-to-end distance takes place in two regimes. Increasing the force changes the progression of the reaction until almost nothing is observed at 40 pN. Based on the results of steered molecular dynamics simulations, the first regime of the length reduction is assigned to a primary level of DNA compaction by TmHU. The second one is supposed to correspond to the formation of higher levels of structural organisation. These findings are supported by results obtained by atomic force microscopy.  相似文献   

8.
Alteration of the adhesive and mechanical properties of red blood cells caused by infection with the malaria parasite Plasmodium falciparum underpin both its survival and extreme pathogenicity. A unique family of parasite putative exported kinases, collectively called FIKK (Phenylalanine (F) – Isoleucine (I) – Lysine (K) – Lysine (K)), has recently been implicated in these pathophysiological processes, however, their precise function in P. falciparum-infected red blood cells or their likely role in malaria pathogenesis remain unknown. Here, for the first time, we demonstrate that one member of the FIKK family, FIKK4.2, can function as an active kinase and is localised in a novel and distinct compartment of the parasite-infected red blood cell which we have called K-dots. Notably, targeted disruption of the gene encoding FIKK4.2 (fikk4.2) dramatically alters the parasite’s ability to modify and remodel the red blood cells in which it multiplies. Specifically, red blood cells infected with fikk4.2 knockout parasites were significantly less rigid and less adhesive when compared with red blood cells infected with normal parasites from which the transgenic clones had been derived, despite expressing similar levels of the major cytoadhesion ligand, PfEMP1, on the red blood cell surface. Notably, these changes were accompanied by dramatically altered knob-structures on infected red blood cells that play a key role in cytoadhesion which is responsible for much of the pathogenesis associated with falciparum malaria. Taken together, our data identifies FIKK4.2 as an important kinase in the pathogenesis of P. falciparum malaria and strengthens the attractiveness of FIKK kinases as targets for the development of novel next-generation anti-malaria drugs.  相似文献   

9.
野生动物的保护手段主要包括就地保护、易地保护与离体保护。精原干细胞(SSCs)是雄性动物维持生殖能力的根本,既能通过自我更新产生新细胞,也能通过分化产生精子,在小熊猫(Ailurus fulgens)离体保护方面具有广阔的应用前景。动物睾丸中精原干细胞数量极少,分离纯化与体外培养对于其研究和应用至关重要。本研究选择整合素α6(ITGA6)蛋白作为精原干细胞分子标记,采用免疫磁珠分选(MACS)技术富集了3月龄小熊猫睾丸中的ITGA6阳性细胞。流式细胞术检测发现分选后ITGA6阳性细胞纯度可达74.27% ± 8.73%,显著高于分选前(32.60% ± 3.06%)。将分选后的细胞接种到层粘连蛋白包被的细胞培养板中,用含胶质细胞源性神经营养因子(GDNF)、表皮细胞生长因子(EGF)与成纤维细胞生长因子(bFGF)的培养基进行体外培养。培养10 d后,在显微镜下可观察到典型的精原干细胞集落,结合逆转录PCR(RT-PCR)和细胞免疫荧光染色发现这些细胞集落特异性表达精原干细胞分子标记蛋白ITGA6、早幼粒细胞白血病锌指蛋白(PLZF)和胸腺细胞分化抗原1(THY1),同时也表达生殖细胞标记蛋白VASA和DAZL。本研究结果证实,ITGA6可作为小熊猫精原干细胞的分子标记用于细胞分选富集,同时初步建立的培养体系也为小熊猫精子发生机制与应用研究提供材料。  相似文献   

10.
We have developed a on-chip single-cell microcultivation assay as a means of observing the adaptation process of single bacterial cells during nutrient concentration changes. This assay enables the direct observation of single cells captured in microchambers made on thin glass slides and having semipermeable membrane lids, in which cells were kept isolated with optical tweezers. After changing a medium of 0.2% (w/v) glucose concentration to make it nutrient-free 0.9% NaCl medium, the growth of all cells inserted into the medium stopped within 20 min, irrespective of their cell cycles. When a nutrient-rich medium was restored, the cells started to grow again, even after the medium had remained nutrient-free for 42 h. The results indicate that the cell's growth and division are directly related to their nutrient condition. The growth curve also indicates that the cells keep their memory of what their growth and division had been before they stopped growing.  相似文献   

11.
Proteins that can interact with multiple partners play central roles in the network of protein-protein interactions. They are called hub proteins, and recently it was suggested that an abundance of intrinsically disordered regions on their surfaces facilitates their binding to multiple partners. However, in those studies, the hub proteins were identified as proteins with multiple partners, regardless of whether the interactions were transient or permanent. As a result, a certain number of hub proteins are subunits of stable multi-subunit proteins, such as supramolecules. It is well known that stable complexes and transient complexes have different structural features, and thus the statistics based on the current definition of hub proteins will hide the true nature of hub proteins. Therefore, in this paper, we first describe a new approach to identify proteins with multiple partners dynamically, using the Protein Data Bank, and then we performed statistical analyses of the structural features of these proteins. We refer to the proteins as transient hub proteins or sociable proteins, to clarify the difference with hub proteins. As a result, we found that the main difference between sociable and nonsociable proteins is not the abundance of disordered regions, in contrast to the previous studies, but rather the structural flexibility of the entire protein. We also found greater predominance of charged and polar residues in sociable proteins than previously reported.  相似文献   

12.
13.
H Ozaki  H Nagase  N Urakawa 《FEBS letters》1984,173(1):196-198
Palytoxin (PTX), a highly toxic and sugar-containing substance isolated from Palythoa tuberculosa, caused K+ release from rabbit red blood cells. Cardiac glycosides, such as ouabain, convallatoxin, cymarin, digoxin and digitoxin, inhibited the PTX-induced K+ release. Their corresponding aglycones did not inhibit the K+ release, but antagonized the inhibitory effect of the glycosides. All these cardiotonic steroids equally inhibited the activity of (Na+ + K+)-ATPase prepared from hog cerebral cortex. These results suggest that the sugar moiety of the cardiac glycosides is important for the inhibitory effect on the K+ release induced by PTX and that the inhibition is not related to their inhibitory potency on the (Na+ + K+)-ATPase activity.  相似文献   

14.
It is recognized now that intrinsically disordered proteins (IDPs), which do not have unique 3D structures as a whole or in noticeable parts, constitute a significant fraction of any given proteome. IDPs are characterized by an astonishing structural and functional diversity that defines their ability to be universal regulators of various cellular pathways. Programmed cell death (PCD) is one of the most intricate cellular processes where the cell uses specialized cellular machinery and intracellular programs to kill itself. This cell-suicide mechanism enables metazoans to control cell numbers and to eliminate cells that threaten the animal''s survival. PCD includes several specific modules, such as apoptosis, autophagy, and programmed necrosis (necroptosis). These modules are not only tightly regulated but also intimately interconnected and are jointly controlled via a complex set of protein–protein interactions. To understand the role of the intrinsic disorder in controlling and regulating the PCD, several large sets of PCD-related proteins across 28 species were analyzed using a wide array of modern bioinformatics tools. This study indicates that the intrinsic disorder phenomenon has to be taken into consideration to generate a complete picture of the interconnected processes, pathways, and modules that determine the essence of the PCD. We demonstrate that proteins involved in regulation and execution of PCD possess substantial amount of intrinsic disorder. We annotate functional roles of disorder across and within apoptosis, autophagy, and necroptosis processes. Disordered regions are shown to be implemented in a number of crucial functions, such as protein–protein interactions, interactions with other partners including nucleic acids and other ligands, are enriched in post-translational modification sites, and are characterized by specific evolutionary patterns. We mapped the disorder into an integrated network of PCD pathways and into the interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathway.  相似文献   

15.
Signaling of semaphorin ligands via their plexin–neuropilin receptors is involved in tissue patterning in the developing embryo. These proteins play roles in cell migration and adhesion but are also important in disease etiology, including in cancer angiogenesis and metastasis. While some structures of the soluble domains of these receptors have been determined, the conformations of the full-length receptor complexes are just beginning to be elucidated, especially within the context of the plasma membrane. Pulsed-interleaved excitation fluorescence cross-correlation spectroscopy allows direct insight into the formation of protein–protein interactions in the membranes of live cells. Here, we investigated the homodimerization of neuropilin-1 (Nrp1), plexin A2, plexin A4, and plexin D1 using pulsed-interleaved excitation fluorescence cross-correlation spectroscopy. Consistent with previous studies, we found that Nrp1, plexin A2, and plexin A4 are present as dimers in the absence of exogenous ligand. Plexin D1, on the other hand, was monomeric under similar conditions, which had not been previously reported. We also found that plexin A2 and A4 assemble into a heteromeric complex. Stimulation with semaphorin 3A or semaphorin 3C neither disrupts nor enhances the dimerization of the receptors when expressed alone, suggesting that activation involves a conformational change rather than a shift in the monomer–dimer equilibrium. However, upon stimulation with semaphorin 3C, plexin D1 and Nrp1 form a heteromeric complex. This analysis of interactions provides a complementary approach to the existing structural and biochemical data that will aid in the development of new therapeutic strategies to target these receptors in cancer.  相似文献   

16.
The movements of red blood cells (RBC), suspended in plasma, on plastic, glass, rhodium metal plate, siliconized glass, and siliconized rhodium were recorded on cinéfilm and analyzed. Values for the drag coefficient were calculated, using Einstein's theory of Brownian movement, and compared with the theoretical Stokes' hydrodynamic drag. The difference between the computed and Stokes' values gave the frictional coefficient or resistance resulting from the interaction of the cells, with the test surface. Of the three uncoated test surfaces, plastic was found to have the least interaction with the RBC. The frictional coefficient for plastic was found to be 1.75×10−7 N s m−1 compared with a value of 2.82×10−7 N s m−1 for rhodium metal, which had the largest interaction. Upon siliconization of the test surfaces, the interaction decreased by 40%. Reduction in the pH of the suspending plasma increased the interaction between the cells and the uncoated test surfaces, but the pH effect of diminished when the surfaces were siliconized.  相似文献   

17.
Comprised of two aptamers connected by a short nucleotide linker, the glycine riboswitch was the first example of naturally occurring RNA elements reported to bind small organic molecules cooperatively. Earlier works have shown binding of glycine to the second aptamer allows tertiary interactions to be made between the two aptamers, which facilitates binding of a separate glycine molecule to the first aptamer, leading to glycine-binding cooperativity. Prompted by a distinctive protection pattern in the linker region of a minimal glycine riboswitch construct, we have identified a highly conserved (>90%) leader-linker duplex involving leader nucleotides upstream of the previously reported consensus glycine riboswitch sequences. In >50% of the glycine riboswitches, the leader-linker interaction forms a kink-turn motif. Characterization of three glycine ribsowitches showed that the leader-linker interaction improved the glycine-binding affinities by 4.5- to 86-fold. In-line probing and native gel assays with two aptamers in trans suggested synergistic action between glycine-binding and interaptamer interaction during global folding of the glycine riboswitch. Mutational analysis showed that there appeared to be no ligand-binding cooperativity in the glycine riboswitch when the leader-linker interaction is present, and the previously measured cooperativity is simply an artifact of a truncated construct missing the leader sequence.  相似文献   

18.
Acanthocytic red blood cells in patients with abetalipoproteinemia have a decreased membrane fluidity that is associated with increased sphingomyelin/phosphatidylcholine (SM/PC)§ ratios. Here we describe studies designed to gain better insight into (i) the interrelationship between the composition of lipoprotein and red blood cell membrane in abetalipo-proteinemia patients and normal controls; and (ii) how the differences in lipid composition of the red blood cell membrane affect its fluidity. The increased SM/PC ratio found in abetalipoproteinemia plasma high density lipoproteins (HDL) (3 times greater than controls) was paralleled by an increase in this ratio in acanthocytic red cells, but to a lesser degree (almost twice greater than control red cells). Cholesterol/phospholipid mole ratios (C/P) were increased 3-fold in abetalipoproteinemia HDL, but only slightly increased in red cells compared to controls values. As in the controls, 80–85% of abetalipo-proteinemia red cell sphingomyelin was found to be in the outer half of the erythrocyte membrane. Membrane fluidity was defined in terms of microviscosity ({ie116-1}) between 5 and 42°C by the fluorescent polarization of 1,6-diphenylhexatriene (DPH) present in erythrocyte ghost membranes. At all temperatures, membrane microviscosity was higher in abetalipoproteinemia ghosts than controls, but these differences decreased at higher temperatures (12.34 vs 9.79 poise, respectively, at 10°C; 4.63 vs 4.04 poise at 37°C). These differences were eliminated after oxidation of all membrane cholesterol to cholest-4-en-3-one by incubation with cholesterol oxidase. Following cholesterol oxidation, the membrane microviscosity decreased in patient ghosts more than in normal red blood cells so that at all temperatures no significant differences were present relative to control ghosts, in which the apparent microviscosity was also diminished but to a lesser degree. Therefore, although increased SM/PC ratios in abetalipoproteinemia may be responsible for decreased erythrocyte membrane fluidity, these effects are dependent upon normal interactions of cholesterol with red cell phospholipid.  相似文献   

19.
Blood platelets when activated are involved in the mechanisms of hemostasis and thrombosis, and their migration toward injured vascular endothelium necessitates interaction with red blood cells (RBCs). Rheology co-factors such as a high hematocrit and a high shear rate are known to promote platelet mass transport toward the vessel wall. Hemodynamic conditions promoting RBC aggregation may also favor platelet migration, particularly in the venous system at low shear rates. The aim of this study was to confirm experimentally the impact of RBC aggregation on platelet-sized micro particle migration in a Couette flow apparatus. Biotin coated micro particles were mixed with saline or blood with different aggregation tendencies, at two shear rates of 2 and 10 s−1 and three hematocrits ranging from 20 to 60%. Streptavidin membranes were respectively positioned on the Couette static and rotating cylinders upon which the number of adhered fluorescent particles was quantified. The platelet-sized particle adhesion on both walls was progressively enhanced by increasing the hematocrit (p < 0.001), reducing the shear rate (p < 0.001), and rising the aggregation of RBCs (p < 0.001). Particle count was minimum on the stationary cylinder when suspended in saline at 2 s−1 (57 ± 33), and maximum on the rotating cylinder at 60% hematocrit, 2 s−1 and the maximum dextran-induced RBC aggregation (2840 ± 152). This fundamental study is confirming recent hypotheses on the role of RBC aggregation on venous thrombosis, and may guide molecular imaging protocols requiring injecting active labeled micro particles in the venous flow system to probe human diseases.  相似文献   

20.
 An improved optical method was developed to determine cell weight concentrations using a micro-plate reader. Light absorbance was measured by a vertical light beam, which can minimize the cell settling effect found in traditional optical measurements with a horizontal light beam. The use of well plates not only requires very small sample sizes, but also handles a large number of samples at the same time. Absorbance measurements were linearly related to cell weight over the full range of batch culture growth. Received: 4 Jannuary 1999 / Revision received: 23 March 1999 / Accepted: 14 April 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号