共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Pauline Douglas Jianing Zhong Ruiqiong Ye Greg B. G. Moorhead Xingzhi Xu Susan P. Lees-Miller 《Molecular and cellular biology》2010,30(6):1368-1381
The catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) plays a major role in the repair of DNA double-strand breaks (DSBs) by nonhomologous end joining (NHEJ). We have previously shown that DNA-PKcs is autophosphorylated in response to ionizing radiation (IR) and that dephosphorylation by a protein phosphatase 2A (PP2A)-like protein phosphatase (PP2A, PP4, or PP6) regulates the protein kinase activity of DNA-PKcs. Here we report that DNA-PKcs interacts with the catalytic subunits of PP6 (PP6c) and PP2A (PP2Ac), as well as with the PP6 regulatory subunits PP6R1, PP6R2, and PP6R3. Consistent with a role in the DNA damage response, silencing of PP6c by small interfering RNA (siRNA) induced sensitivity to IR and delayed release from the G2/M checkpoint. Furthermore, siRNA silencing of either PP6c or PP6R1 led to sustained phosphorylation of histone H2AX on serine 139 (γ-H2AX) after IR. In contrast, silencing of PP6c did not affect the autophosphorylation of DNA-PKcs on serine 2056 or that of the ataxia-telangiectasia mutated (ATM) protein on serine 1981. We propose that a novel function of DNA-PKcs is to recruit PP6 to sites of DNA damage and that PP6 contributes to the dephosphorylation of γ-H2AX, the dissolution of IR-induced foci, and release from the G2/M checkpoint in vivo.DNA double-strand breaks (DSBs) are the most cytotoxic form of DNA damage. In human cells there are two main pathways for the repair of DSBs, namely, nonhomologous end joining (NHEJ) and homologous recombination (HR) (reviewed in reference 26). In the initial phase of NHEJ, DSBs are detected by the Ku70/80 heterodimer, which leads to recruitment of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and stimulation of its serine/threonine protein kinase activity. Upon autophosphorylation, DNA-PKcs undergoes a conformational change and dissociates from the DSB (25), providing other DNA repair proteins with access to the damage site (reviewed in reference 33). Another physiological substrate of DNA-PK is a histone H2A variant, H2AX. DNA-PKcs and the related protein kinase ATM (ataxia-telangiectasia mutated) both contribute to DNA damage-induced phosphorylation of H2AX on serine 139 to form γ-H2AX (51), which acts as a recruitment platform for MDC1, 53BP1, and other proteins involved in the DNA damage response and cell cycle checkpoint activation (7, 52).While the effects of phosphorylation on the repair process have been well documented, comparatively little is known about the role of serine/threonine phosphoprotein phosphatases (PPPs) in the DNA damage response. Within the PPP family, the catalytic subunits of PP2A (PP2Ac), PP4 (PP4c), and PP6 (PP6c) are most closely related and form a subgroup referred to as the PP2A-like protein phosphatases (reviewed in reference 40). In vitro, the PP2A-like enzymes display similar sensitivities to small-molecule inhibitors such as okadaic acid and microcystin (27, 45, 53). The specificity of PP2Ac, PP4c, and PP6c function in vivo is derived from a group of regulatory subunits that, with the exception of α4/TAP42 and TIP41, are unique to each enzyme (12, 13, 27, 45, 49). PP2Ac associates with a scaffolding A-α or A-β subunit and additional B-type subunits, while four direct binding partners and several other complex partners unique to PP4c have been characterized (12). The Saccharomyces cerevisiae homologue of PP6c, known as Sit4, interacts with three related proteins: the Sit4-associated proteins SAP155, SAP185, and SAP190, each of which contains a conserved domain known as the SAPs domain (32, 50). The SAPs domain is present in three human orthologues designated PP6R1, PP6R2, and PP6R3, which are therefore considered PP6c regulatory subunits, and each has been shown to bind independently to PP6c (48). More recently, three ankyrin repeat-containing proteins (ARS-A, ARS-B, and ARS-C) were identified as PP6R1 binding partners. One of these, ARS-A, has been shown to dock all three SAPs domain proteins (50), suggesting that, like PP2Ac, PP6c forms stable heterotrimers in vivo and that together these subunits define PP6 function.We have previously shown that inhibition of PP2A-like protein phosphatase activity by okadaic acid increases the phosphorylation status of DNA-PKcs and decreases its protein kinase activity (20), thus implicating PP2A-like phosphatases in the regulation of DNA-PK activity in vivo. More recently, both PP4 and PP2A have been shown to play roles in the DNA damage response by dephosphorylating γ-H2AX (14, 15, 28, 42). However, the potential role of PP6 in γ-H2AX dephosphorylation has not been addressed.Here we show that DNA-PKcs interacts with PP2Ac and PP6c, as well as with the PP6c regulatory subunits, PP6R1, PP6R2, and PP6R3. Depletion of PP6c by small interfering RNA (siRNA) induces sensitivity to ionizing radiation (IR) and delayed release from the G2/M checkpoint. Furthermore, siRNA silencing of either PP6c or PP6R1 leads to sustained phosphorylation of γ-H2AX after DNA damage. Together, our studies reveal that a novel and previously unrecognized function of DNA-PKcs may be to recruit PP6 to sites of DNA damage and that PP6 regulates the phosphorylation status of γ-H2AX, the dissolution of IR-induced foci, and release from the G2/M checkpoint. 相似文献
4.
Zhou B Arnett DR Yu X Brewster A Sowd GA Xie CL Vila S Gai D Fanning E Chen XS 《The Journal of biological chemistry》2012,287(32):26854-26866
DNA polymerase α-primase (Pol-prim) plays an essential role in eukaryotic DNA replication, initiating synthesis of the leading strand and of each Okazaki fragment on the lagging strand. Pol-prim is composed of a primase heterodimer that synthesizes an RNA primer, a DNA polymerase subunit that extends the primer, and a regulatory B-subunit (p68) without apparent enzymatic activity. Pol-prim is thought to interact with eukaryotic replicative helicases, forming a dynamic multiprotein assembly that displays primosome activity. At least three subunits of Pol-prim interact physically with the hexameric replicative helicase SV40 large T antigen, constituting a simple primosome that is active in vitro. However, structural understanding of these interactions and their role in viral chromatin replication in vivo remains incomplete. Here, we report the detailed large T antigen-p68 interface, as revealed in a co-crystal structure and validated by site-directed mutagenesis, and we demonstrate its functional importance in activating the SV40 primosome in cell-free reactions with purified Pol-prim, as well as in monkey cells in vivo. 相似文献
5.
Deepti Chaturvedi Michael S. Cohen Jack Taunton Tarun B. Patel 《The Journal of biological chemistry》2009,284(35):23670-23681
Previously, we showed that interactions between p90RSK1 (RSK1) and the subunits of type I protein kinase A (PKA) regulate the activity of PKA and cellular distribution of active RSK1 (Chaturvedi, D., Poppleton, H. M., Stringfield, T., Barbier, A., and Patel, T. B. (2006) Mol. Cell Biol. 26, 4586–4600). Here we examined the role of the PKARIα subunit of PKA in regulating RSK1 activation and cell survival. In mouse lung fibroblasts, silencing of the PKARIα increased the phosphorylation and activation of RSK1, but not of RSK2 and RSK3, in the absence of any stimulation. Silencing of PKARIα also decreased the nuclear accumulation of active RSK1 and increased its cytoplasmic content. The increased activation of RSK1 in the absence of any agonist and changes in its subcellular redistribution resulted in increased phosphorylation of its cytoplasmic substrate BAD and increased cell survival. The activity of PKA and phosphorylation of BAD (Ser-155) were also enhanced when PKARIα was silenced, and this, in part, contributed to increased cell survival in unstimulated cells. Furthermore, we show that RSK1, PKA subunits, D-AKAP1, and protein phosphatase 2A catalytic subunit (PP2Ac) exist in a complex, and dissociation of RSK1 from D-AKAP1 by either silencing of PKARIα, depletion of D-AKAP1, or by using a peptide that competes with PKARIα for binding to AKAPs, decreased the amount of PP2Ac in the RSK1 complex. We also demonstrate that PP2Ac is one of the phosphatases that dephosphorylates RSK, but not ERK1/2. Thus, in unstimulated cells, the increased phosphorylation and activation of RSK1 after silencing of PKARIα or depletion of D-AKAP1 are due to decreased association of PP2Ac in the RSK1 complex.Cyclic AMP-dependent protein kinase (PKA)3 plays a pivotal role in manifesting an array of biological actions ranging from cell proliferation and tumorigenesis to increased inotropic and chronotropic effects in the heart as well as regulation of long term potentiation and memory. The PKA holoenzyme is a heterotetramer and consists of two catalytic (PKAc) subunits bound to a dimer of regulatory subunits. To date, four isoforms of the PKAc (PKAcα, PKAcβ, PKAcγ, and PKAcδ) and four isoforms of the regulatory subunits (RIα, RIβ, RIIα, and RIIβ) have been described (1). The various isoforms of PKA subunits are expressed differently in a tissue- and cell-specific manner (2). In addition to binding and inhibiting the activity of PKAc via their pseudo substrate region (3–6), the R subunits also interact with PKA-anchoring proteins (AKAPs) and facilitate the localization of PKA in specific subcellular compartments (7, 8). More than 50 AKAP family members have been described, and although most of these have a higher affinity for the RII subunits (9), certain AKAPs such as D-AKAP1 and D-AKAP2 preferentially bind the PKARIα subunit (10–12). Because the AKAPs also bind other signaling molecules such as phosphatases (PP2B) and kinases (protein kinase C), they act as scaffolds to organize and integrate specific signaling events within specific compartments in the cells (7, 8, 13, 14).We have shown that the PKARIα and PKAcα subunits of PKA interact with the inactive and active forms of p90RSK1 (RSK1), respectively (15). Binding of inactive RSK1 to PKARIα decreases the interactions between PKARIα and PKAc, whereas the association of active RSK1 with PKAc increases interactions between PKARIα and PKAc such that larger amounts of cAMP are required to activate PKAc in the presence of active RSK1 (15). Moreover, the indirect (via subunits of PKA) interaction of RSK1 with AKAPs is required for the nuclear localization of active RSK1 (15), and disruption of the interactions of RSK1·PKA complex from AKAPs results in increased cytoplasmic distribution of active RSK1 with a concomitant increase in phosphorylation of its cytosolic substrates such as BAD and reduced cellular apoptosis (15). These findings show the functional and biological significance of RSK1·PKA·AKAP interactions.Besides inhibiting PKAc activity, the physiological role of PKARIα is underscored by the findings that mutations in the PKAR1A gene that result in haploinsufficiency of PKARIα are the underlying cause of Carney complex (CNC) (16, 17). CNC is an autosomal dominant multiple neoplasia syndrome in which myxomas of the skin, heart, and/or vicera are recurrent and also associated with high incidence of endocrine and ovarian tumors as well as Schwannomas (18–20). The majority of patients with the multiple neoplasia CNC syndrome harbor mutations in the PKAR1A gene (21) that result in PKARIα haploinsufficiency. Importantly, however, loss of heterozygosity or alterations in PKA activity may not contribute toward the tumorigenicity in either CNC patients or mouse model of CNC (21). This suggests that loss of function(s) of PKARIα other than inhibition of PKA activity is(are) involved in the enhanced tumorigenicity in CNC patients and in the murine CNC model.Because RSK1 regulates cell growth, survival, and tumorigenesis (22–27), and because its subcellular localization and ability to inhibit apoptosis is regulated by its interactions via PKARIα with AKAPs (15), we reasoned that in conditions such as CNC where PKARIα levels are decreased, the increase in tumorigenicity may emanate from aberrant regulation of the activity and/or subcellular localization of RSK1. Therefore, herein we have investigated whether PKARIα regulates the activation of RSK1 and its biological functions. Decreasing expression of PKARIα by small interfering RNA (siRNA) enhanced the activation of RSK1, but not RSK2 or RSK3, in the absence of an agonist such as EGF. This was accompanied by an increase in the cytoplasmic localization of the active RSK1 and enhanced cell survival in the absence of any growth factor. Silencing of PKARIα also increased PKAc activity and while part of the anti-apoptotic response could be attributed to an increase in PKAc activity, activation of RSK1 under basal conditions contributed significantly to cell survival. The elevation in RSK1 activity upon PKARIα silencing was not due to increased PKAc activity. Rather the activation of RSK1 in the absence of PKARIα was due to a decrease in PP2A in the RSK1 complex. These findings demonstrate a novel role for PKARIα in the regulation of RSK1 activation, a key enzyme that mediates the downstream actions of the ERK1/2 cascade. 相似文献
6.
Dong-Il Kim Mooseok Kang Sangyeol Kim Juhwan Lee Yongsoo Park Iksoo Chang Byung-Chang Suh 《Biophysical journal》2015,109(5):922-935
The auxiliary β subunit plays an important role in the regulation of voltage-gated calcium (CaV) channels. Recently, it was revealed that β2e associates with the plasma membrane through an electrostatic interaction between N-terminal basic residues and anionic phospholipids. However, a molecular-level understanding of β-subunit membrane recruitment in structural detail has remained elusive. In this study, using a combination of site-directed mutagenesis, liposome-binding assays, and multiscale molecular-dynamics (MD) simulation, we developed a physical model of how the β2e subunit is recruited electrostatically to the plasma membrane. In a fluorescence resonance energy transfer assay with liposomes, binding of the N-terminal peptide (23 residues) to liposome was significantly increased in the presence of phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). A mutagenesis analysis suggested that two basic residues proximal to Met-1, Lys-2 (K2) and Trp-5 (W5), are more important for membrane binding of the β2e subunit than distal residues from the N-terminus. Our MD simulations revealed that a stretched binding mode of the N-terminus to PS is required for stable membrane attachment through polar and nonpolar interactions. This mode obtained from MD simulations is consistent with experimental results showing that K2A, W5A, and K2A/W5A mutants failed to be targeted to the plasma membrane. We also investigated the effects of a mutated β2e subunit on inactivation kinetics and regulation of CaV channels by PIP2. In experiments with voltage-sensing phosphatase (VSP), a double mutation in the N-terminus of β2e (K2A/W5A) increased the PIP2 sensitivity of CaV2.2 and CaV1.3 channels by ∼3-fold compared with wild-type β2e subunit. Together, our results suggest that membrane targeting of the β2e subunit is initiated from the nonspecific electrostatic insertion of N-terminal K2 and W5 residues into the membrane. The PS-β2e interaction observed here provides a molecular insight into general principles for protein binding to the plasma membrane, as well as the regulatory roles of phospholipids in transporters and ion channels. 相似文献
7.
《The Journal of biological chemistry》2013,288(39):28357
8.
Thomas J. J?nsson Lynnette C. Johnson W. Todd Lowther 《The Journal of biological chemistry》2009,284(48):33305-33310
Oxidative stress can damage the active site cysteine of the antioxidant enzyme peroxiredoxin (Prx) to the sulfinic acid form, Prx-SO2−. This modification leads to inactivation. Sulfiredoxin (Srx) utilizes a unique ATP-Mg2+-dependent mechanism to repair the Prx molecule. Using selective protein engineering that involves disulfide bond formation and site-directed mutagenesis, a mimic of the enzyme·substrate complex has been trapped. Here, we present the 2.1 Å crystal structure of human Srx in complex with PrxI, ATP, and Mg2+. The Cys52 sulfinic acid moiety was substituted by mutating this residue to Asp, leading to a replacement of the sulfur atom with a carbon atom. Because the Srx reaction cannot occur, the structural changes in the Prx active site that lead to the attack on ATP may be visualized. The local unfolding of the helix containing C52D resulted in the packing of Phe50 in PrxI within a hydrophobic pocket of Srx. Importantly, this structural rearrangement positioned one of the oxygen atoms of Asp52 within 4.3 Å of the γ-phosphate of ATP bound to Srx. These observations support a mechanism where phosphorylation of Prx-SO2− is the first chemical step. 相似文献
9.
Zi-Zhen Wu De-Pei Li Shao-Rui Chen Hui-Lin Pan 《The Journal of biological chemistry》2009,284(52):36453-36461
Aminopyridines such as 4-aminopyridine (4-AP) are widely used as voltage-activated K+ (Kv) channel blockers and can improve neuromuscular function in patients with spinal cord injury, myasthenia gravis, or multiple sclerosis. Here, we present novel evidence that 4-AP and several of its analogs directly stimulate high voltage-activated Ca2+ channels (HVACCs) in acutely dissociated neurons. 4-AP, 4-(aminomethyl)pyridine, 4-(methylamino)pyridine, and 4-di(methylamino)pyridine profoundly increased HVACC, but not T-type, currents in dissociated neurons from the rat dorsal root ganglion, superior cervical ganglion, and hippocampus. The widely used Kv channel blockers, including tetraethylammonium, α-dendrotoxin, phrixotoxin-2, and BDS-I, did not mimic or alter the effect of 4-AP on HVACCs. In HEK293 cells expressing various combinations of N-type (Cav2.2) channel subunits, 4-AP potentiated Ca2+ currents primarily through the intracellular β3 subunit. In contrast, 4-AP had no effect on Cav3.2 channels expressed in HEK293 cells. Furthermore, blocking Kv channels did not mimic or change the potentiating effects of 4-AP on neurotransmitter release from sensory and motor nerve terminals. Thus, our findings challenge the conventional view that 4-AP facilitates synaptic and neuromuscular transmission by blocking Kv channels. Aminopyridines can directly target presynaptic HVACCs to potentiate neurotransmitter release independent of Kv channels. 相似文献
10.
11.
12.
Biophysics - Abstract—In addition to troponin and tropomyosin, cardiac myosin-binding protein C (cMyBP-C), which has an effect on the function of myosin and thin filament activation, is... 相似文献
13.
14.
Guorong Li Coralia Luna Jianming Qiu David L. Epstein Pedro Gonzalez 《The Journal of biological chemistry》2010,285(8):5461-5471
MicroRNA 183 (miR-183) has been reported to inhibit tumor invasiveness and is believed to be involved in the development and function of ciliated neurosensory organs. We have recently found that expression of miR-183 increased after the induction of cellular senescence by exposure to H2O2. To gain insight into the biological roles of miR-183 we investigated two potential novel targets: integrin β1 (ITGB1) and kinesin 2α (KIF2A). miR-183 significantly decreased the expression of ITGB1 and KIF2A measured by Western blot. Targeting of the 3′-untranslated region (3′-UTR) of ITGB1 and KIF2A by miR-183 was confirmed by luciferase assay. Transfection with miR-183 led to a significant decrease in cell invasion and migration capacities of HeLa cells that could be rescued by expression of ITGB1 lacking the 3′-UTR. Although miR-183 had no effects on cell adhesion in HeLa cells, it significantly decreased adhesion to laminin, gelatin, and collagen type I in normal human diploid fibroblasts and human trabecular meshwork cells. These effects were also rescued by expression of ITGB1 lacking the 3′-UTR. Targeting of KIF2A by miR-183 resulted in some increase in the formation of cells with monopolar spindles in HeLa cells but not in human diploid fibroblast or human trabecular meshwork cells. The regulation of ITGB1 expression by miR-183 provides a new mechanism for the anti-metastatic role of miR-183 and suggests that this miRNA could influence the development and function in neurosensory organs, and contribute to functional alterations associated with cellular senescence in human diploid fibroblasts and human trabecular meshwork cells. 相似文献
15.
Yi Qian Intaek Lee Wang-Sik Lee Meiqian Qian Mariko Kudo William M. Canfield Peter Lobel Stuart Kornfeld 《The Journal of biological chemistry》2010,285(5):3360-3370
UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is an α2β2γ2 hexamer that mediates the first step in the synthesis of the mannose 6-phosphate recognition marker on lysosomal acid hydrolases. Using a multifaceted approach, including analysis of acid hydrolase phosphorylation in mice and fibroblasts lacking the γ subunit along with kinetic studies of recombinant α2β2γ2 and α2β2 forms of the transferase, we have explored the function of the α/β and γ subunits. The findings demonstrate that the α/β subunits recognize the protein determinant of acid hydrolases in addition to mediating the catalytic function of the transferase. In mouse brain, the α/β subunits phosphorylate about one-third of the acid hydrolases at close to wild-type levels but require the γ subunit for optimal phosphorylation of the rest of the acid hydrolases. In addition to enhancing the activity of the α/β subunits toward a subset of the acid hydrolases, the γ subunit facilitates the addition of the second GlcNAc-P to high mannose oligosaccharides of these substrates. We postulate that the mannose 6-phosphate receptor homology domain of the γ subunit binds and presents the high mannose glycans of the acceptor to the α/β catalytic site in a favorable manner. 相似文献
16.
17.
Yuya Sato Toshihiko Uemura Keisuke Morimitsu Ryoko Sato-Nishiuchi Ri-ichiroh Manabe Junichi Takagi Masashi Yamada Kiyotoshi Sekiguchi 《The Journal of biological chemistry》2009,284(21):14524-14536
Integrin α8β1 interacts with a variety of Arg-Gly-Asp (RGD)-containing ligands in the extracellular matrix. Here, we examined the binding activities of α8β1 integrin toward a panel of RGD-containing ligands. Integrin α8β1 bound specifically to nephronectin with an apparent dissociation constant of 0.28 ± 0.01 nm, but showed only marginal affinities for fibronectin and other RGD-containing ligands. The high-affinity binding to α8β1 integrin was fully reproduced with a recombinant nephronectin fragment derived from the RGD-containing central “linker” segment. A series of deletion mutants of the recombinant fragment identified the LFEIFEIER sequence on the C-terminal side of the RGD motif as an auxiliary site required for high-affinity binding to α8β1 integrin. Alanine scanning mutagenesis within the LFEIFEIER sequence defined the EIE sequence as a critical motif ensuring the high-affinity integrin-ligand interaction. Although a synthetic LFEIFEIER peptide failed to inhibit the binding of α8β1 integrin to nephronectin, a longer peptide containing both the RGD motif and the LFEIFEIER sequence was strongly inhibitory, and was ∼2,000-fold more potent than a peptide containing only the RGD motif. Furthermore, trans-complementation assays using recombinant fragments containing either the RGD motif or LFEIFEIER sequence revealed a clear synergism in the binding to α8β1 integrin. Taken together, these results indicate that the specific high-affinity binding of nephronectin to α8β1 integrin is achieved by bipartite interaction of the integrin with the RGD motif and LFEIFEIER sequence, with the latter serving as a synergy site that greatly potentiates the RGD-driven integrin-ligand interaction but has only marginal activity to secure the interaction by itself.Integrins are a family of adhesion receptors that interact with a variety of extracellular ligands, typically cell-adhesive proteins in the extracellular matrix (ECM).2 They play mandatory roles in embryonic development and the maintenance of tissue architectures by providing essential links between cells and the ECM (1). Integrins are composed of two non-covalently associated subunits, termed α and β. In mammals, 18 α and 8 β subunits have been identified, and combinations of these subunits give rise to at least 24 distinct integrin heterodimers. Based on their ligand-binding specificities, ECM-binding integrins are classified into three groups, namely laminin-, collagen- and RGD-binding integrins (2, 3), of which the RGD-binding integrins have been most extensively investigated. The RGD-binding integrins include α5β1, α8β1, αIIbβ3, and αV-containing integrins, and have been shown to interact with a variety of ECM ligands, such as fibronectin and vitronectin, with distinct binding specificities.The α8 integrin subunit was originally identified in chick nerves (4). Integrin α8β1 is expressed in the metanephric mesenchyme and plays a crucial role in epithelial-mesenchymal interactions during the early stages of kidney morphogenesis. Disruption of the α8 gene in mice was found to be associated with severe defects in kidney morphogenesis (5) and stereocilia development (6). To date, α8β1 integrin has been shown to bind to fibronectin, vitronectin, osteopontin, latency-associated peptide of transforming growth factor-β1, tenascin-W, and nephronectin (also named POEM) (7–13), among which nephronectin is believed to be an α8β1 integrin ligand involved in kidney development (10).Nephronectin is one of the basement membrane proteins whose expression and localization patterns are restricted in a tissue-specific and developmentally regulated manner (10, 11). Nephronectin consists of five epidermal growth factor-like repeats, a linker segment containing the RGD cell-adhesive motif (designated RGD-linker) and a meprin-A5 protein-receptor protein-tyrosine phosphatase μ (MAM) domain (see Fig. 3A). Although the physiological functions of nephronectin remain only poorly understood, it is thought to play a role in epithelial-mesenchymal interactions through binding to α8β1 integrin, thereby transmitting signals from the epithelium to the mesenchyme across the basement membrane (10). Recently, mice deficient in nephronectin expression were produced by homologous recombination (14). These nephronectin-deficient mice frequently displayed kidney agenesis, a phenotype reminiscent of α8 integrin knock-out mice (14), despite the fact that other RGD-containing ligands, including fibronectin and osteopontin, were expressed in the embryonic kidneys (9, 15). The failure of the other RGD-containing ligands to compensate for the deficiency of nephronectin in the developing kidneys suggests that nephronectin is an indispensable α8β1 ligand that plays a mandatory role in epithelial-mesenchymal interactions during kidney development.Open in a separate windowFIGURE 3.Binding activities of α8β1 integrin to nephronectin and its fragments. A, schematic diagrams of full-length nephronectin (NN) and its fragments. RGD-linker and RGD-linker (GST), the central RGD-containing linker segments expressed in mammalian and bacterial expression systems, respectively; PRGDV, a short RGD-containing peptide modeled after nephronectin and expressed as a GST fusion protein (see Fig. 4A for the peptide sequence). The arrowheads indicate the positions of the RGD motif. B, purified recombinant proteins were analyzed by SDS-PAGE in 7–15% gradient (left and center panels) and 12% (right panels) gels, followed by Coomassie Brilliant Blue (CBB) staining, immunoblotting with an anti-FLAG mAb, or lectin blotting with PNA. The quantities of proteins loaded were: 0.5 μg (for Coomassie Brilliant Blue staining) and 0.1 μg (for blotting with anti-FLAG and PNA) in the left and center panels;1 μg in the right panel. C, recombinant proteins (10 nm) were coated on microtiter plates and assessed for their binding activities toward α8β1 integrin (10 nm) in the presence of 1 mm Mn2+. The backgrounds were subtracted as described in the legend to Fig. 2. The results represent the mean ± S.D. of triplicate determinations. D, titration curves of α8β1 integrin bound to full-length nephronectin (NN, closed squares), the RGD-linker segments expressed in 293F cells (RGD-linker, closed triangles) and E. coli (RGD-linker (GST), open triangles), the MAM domain (MAM, closed diamonds), and the PRGDV peptide expressed as a GST fusion protein in E. coli (PRGDV (GST), open circles). The assays were performed as described in the legend to Fig. 2B. The results represent the means of duplicate determinations.Although ligand recognition by RGD-binding integrins is primarily determined by the RGD motif in the ligands, it is the residues outside the RGD motif that define the binding specificities and affinities toward individual integrins (16, 17). For example, α5β1 integrin specifically binds to fibronectin among the many RGD-containing ligands, and requires not only the RGD motif in the 10th type III repeat but also the so-called “synergy site” within the preceding 9th type III repeat for fibronectin recognition (18). Recently, DiCara et al. (19) demonstrated that the high-affinity binding of αVβ6 integrin to its natural ligands, e.g. foot-and-mouth disease virus, requires the RGD motif immediately followed by a Leu-Xaa-Xaa-Leu/Ile sequence, which forms a helix to align the two conserved hydrophobic residues along the length of the helix. Given the presence of many naturally occurring RGD-containing ligands, it is conceivable that the specificities of the RGD-binding integrins are dictated by the sequences flanking the RGD motif or those in neighboring domains that come into close proximity with the RGD motif in the intact ligand proteins. However, the preferences of α8β1 integrin for RGD-containing ligands and how it secures its high-affinity binding toward its preferred ligands remain unknown.In the present study, we investigated the binding specificities of α8β1 integrin toward a panel of RGD-containing cell-adhesive proteins. Our data reveal that nephronectin is a preferred ligand for α8β1 integrin, and that a LFEIFEIER sequence on the C-terminal side of its RGD motif serves as a synergy site to ensure the specific high-affinity binding of nephronectin to α8β1 integrin. 相似文献
18.
Francisca C. Gushiken Han Hyojeong Subhashree Pradhan Kimberly W. Langlois Nawaf Alrehani Miguel A. Cruz Rolando E. Rumbaut K. Vinod Vijayan 《PloS one》2009,4(12)
Background
Hemostasis and thrombosis are regulated by agonist-induced activation of platelet integrin αIIbβ3. Integrin activation, in turn is mediated by cellular signaling via protein kinases and protein phosphatases. Although the catalytic subunit of protein phosphatase 1 (PP1c) interacts with αIIbβ3, the role of PP1c in platelet reactivity is unclear.Methodology/Principal Findings
Using γ isoform of PP1c deficient mice (PP1cγ−/−), we show that the platelets have moderately decreased soluble fibrinogen binding and aggregation to low concentrations of thrombin or protease-activated receptor 4 (PAR4)-activating peptide but not to adenosine diphosphate (ADP), collagen or collagen-related peptide (CRP). Thrombin-stimulated PP1cγ−/− platelets showed decreased αIIbβ3 activation despite comparable levels of αIIbβ3, PAR3, PAR4 expression and normal granule secretion. Functions regulated by outside-in integrin αIIbβ3 signaling like adhesion to immobilized fibrinogen and clot retraction were not altered in PP1cγ−/− platelets. Thrombus formation induced by a light/dye injury in the cremaster muscle venules was significantly delayed in PP1cγ−/− mice. Phosphorylation of glycogen synthase kinase (GSK3)β-serine 9 that promotes platelet function, was reduced in thrombin-stimulated PP1cγ−/− platelets by an AKT independent mechanism. Inhibition of GSK3β partially abolished the difference in fibrinogen binding between thrombin-stimulated wild type and PP1cγ−/− platelets.Conclusions/Significance
These studies illustrate a role for PP1cγ in maintaining GSK3β-serine9 phosphorylation downstream of thrombin signaling and promoting thrombus formation via fibrinogen binding and platelet aggregation. 相似文献19.
20.
Beltramo Dante M. Fernandez Mariana Nuñez Alonso Alejandra del C. Sironi Juan J. Barra Héctor S. 《Neurochemical research》1997,22(4):385-389
We demonstrate here that brain purified tubulin can be dissociated into and subunits at pH > 10 and that the subunits can be separated by using the Triton X-114 phase separation system. After phase partition at pH > 10, tubulin but not tubulin behaves as a hydrophobic compound appearing in the detergent rich phase. After three extractions of the alkaline aqueous phase with Triton X-114, about 90% of the tubulin was recovered in the detergent rich phase. The hydrophobic behavior observed for tubulin after its dissociation at pH 11.5 was not due to an irreversible change of the protein, because when the detergent rich phase containing tubulin was diluted with a buffer solution at pH 7.3 and the solution allowed to partition again, -tubulin is recovered in the aqueous phase. The detergent in the aqueous phase of the and tubulin preparations can be removed up to 90% by 12 h dialysis. The and subunits of tubulin from kidney and liver behave, in this phase separation system, like those of brain tubulin. 相似文献