首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In all mammalian cells protein phosphatase-1 (PP1) exists in three isoforms, defined as α, γ1 and δ. Immunofluorescence studies with isoform-specific antibodies indicated that δ, but not α or γ1, is enriched at focal adhesions in HeLa cells, fibroblasts, endothelial cells and keratinocytes. This was confirmed also by interference reflection microscopy, which indicated that PP1δ was in areas of tight adhesion of the membrane to the extracellular matrix at sites where the microfilament cytoskeleton is organized. In all the cell types so far considered the PP1δ in focal adhesions represented only a small aliquot of the total PP1δ, which was predominantly localized to the nucleus. The association of PP1δ to focal adhesions was confirmed by the co-immunoprecipitation of PP1δ with the focal adhesion kinase pp125FAK and with the αv integrin. Comparison between the amount of PP1δ associated with focal adhesion proteins and that of PP1δ recovered in an anti-PP1δ immunoprecipitate confirmed that only a minor amount of the enzyme was associated with the focal adhesions. Since some focal adhesion proteins are phosphorylated on Ser/Thr, it is likely that PP1δ may be involved in the regulation of focal adhesion functions and particularly in the signaling pathway generated by cell-substratum adhesion.  相似文献   

2.
3.
ConclusionsWe identified a new isoform of cMLCK with a molecular mass of 61kDa(cMLCK-2) in mouse heart. In the C57BL/6N strain, only cMLCK-2 was expressed and the basal MLC2v phosphorylation levels and the phenylephrine-induced inotropic response were both smaller. We suggest that a lower phenylephrine-induced inotropic response may be caused by the lower basal MLC2v phosphorylation levels in this strain.  相似文献   

4.
Germline cyst formation is essential for the propagation of many organisms including humans and flies. The cytoplasm of germline cyst cells communicate with each other directly via large intercellular bridges called ring canals. Ring canals are often derived from arrested contractile rings during incomplete cytokinesis. However how ring canal formation, maintenance and growth are regulated remains unclear. To better understand this process, we carried out an unbiased genetic screen in Drosophila melanogaster germ cells and identified multiple alleles of flapwing (flw), a conserved serine/threonine-specific protein phosphatase. Flw had previously been reported to be unnecessary for early D. melanogaster oogenesis using a hypomorphic allele. We found that loss of Flw leads to over-constricted nascent ring canals and subsequently tiny mature ring canals, through which cytoplasmic transfer from nurse cells to the oocyte is impaired, resulting in small, non-functional eggs. Flw is expressed in germ cells undergoing incomplete cytokinesis, completely colocalized with the Drosophila myosin binding subunit of myosin phosphatase (DMYPT). This colocalization, together with genetic interaction studies, suggests that Flw functions together with DMYPT to negatively regulate myosin activity during ring canal formation. The identification of two subunits of the tripartite myosin phosphatase as the first two main players required for ring canal constriction indicates that tight regulation of myosin activity is essential for germline cyst formation and reproduction in D. melanogaster and probably other species as well.  相似文献   

5.
Using purified recombinant human ventricular myosin light chain 1 (HVMLC 1) as the antigen,three monoclonal antibodies,designated C8,C9 and B 12,were prepared.Immunoblot experiments demonstratedthat all monoclonal antibodies could react with the ventricular myosin light chain 1 isolated from differentsources,such as human,rat or pig.It was also demonstrated that C8 was directed against the NN part of theN-fragment (amino acid 1-40) of HVMLC1,and both C9 and B12 against the C-fragment (amino acid 99-195).The affinity constants of C8,C9 and B12 were 3.20×10~8,8.60×10~7 and 1.77×10~8 M~(-1),respectively,determined by non-competitive ELISA.The isotype of B12 was determined as lgG2a,whereas the isotype ofboth C8 and C9 were IgG1.In the presence of C9 or B12,the actin-activated Mg~(2 )ATPase activity of myosinwas greatly inhibited,but there was almost no effect on the Mg~(2 )ATPase activity for C8.B12 and C9 alsoinhibited the superprecipitation of porcine cardiac native actomyosin (myosin B) and reconstituted actomyosin,but C8 did not.The results indicate that all three monoclonal antibodies could bind the intact myosin molecule,but B12 and C9 might more easily react with epitopes located in the C-fragment of HVMLC1.The inhibitoryeffects of B 12 and C9 on ATPase activity and superprecipitation assays show that light chain 1,particularlythe C-fragment domain,is involved in the modulation of the actin-activated Mg~(2 )ATPase activity of myosinand,as a consequence,plays an essential role in the interaction of actin and myosin.  相似文献   

6.
Myosin V利用ATP水解所释放的自由能,朝肌动蛋白微丝正端作连续的定向运动,平均步长约为36nm。最近几年,诸多实验数据表明,myosin V步长并不固定为36nm,马达各步长值和相应步长出现概率的柱状图符合高斯分布;且在负载力大于2pN的情况下会出现“中间步长”和“后退步子”的现象。可根据已有实验数据,同时考虑马达在跃迁过程中所受的溶液摩擦阻力、常负载力和高斯随机力对其跃迁距离的影响,提出一种跃迁模型,并以此为基础对上述现象进行理论解释。  相似文献   

7.
8.
In addition to a conventional relaxed state, a fraction of myosins in the cardiac muscle exists in a low-energy consuming super-relaxed (SRX) state, which is kept as a reserve pool that may be engaged under sustained increased cardiac demand. The conventional relaxed and the super-relaxed states are widely assumed to correspond to a structure where myosin heads are in an open configuration, free to interact with actin, and a closed configuration, inhibiting binding to actin, respectively. Disruption of the myosin SRX population is an emerging model in different heart diseases, such as hypertrophic cardiomyopathy, which results in excessive muscle contraction, and stabilizing them using myosin inhibitors is budding as an attractive therapeutic strategy. Here we examined the structure–function relationships of two myosin ATPase inhibitors, mavacamten and para-nitroblebbistatin, and found that binding of mavacamten at a site different than para-nitroblebbistatin populates myosin into the SRX state. Para-nitroblebbistatin, binding to a distal pocket to the myosin lever arm near the nucleotide-binding site, does not affect the usual myosin SRX state but instead appears to render myosin into a new, perhaps much more inhibited, ‘ultra-relaxed’ state. X-ray scattering-based rigid body modeling shows that both mavacamten and para-nitroblebbistatin induce novel conformations in human β-cardiac heavy meromyosin that diverge significantly from the hypothetical open and closed states, and furthermore, mavacamten treatment causes greater compaction than para-nitroblebbistatin. Taken together, we conclude that mavacamten and para-nitroblebbistatin stabilize myosin in different structural states, and such states may give rise to different functional energy-sparing states.  相似文献   

9.
10.
Over the last decade, it has been established that G-protein-coupled receptors (GPCRs) signal not only through canonical G-protein-mediated mechanisms, but also through the ubiquitous cellular scaffolds β-arrestin-1 and β-arrestin-2. Previous studies have implicated β-arrestins as regulators of actin reorganization in response to GPCR stimulation while also being required for membrane protrusion events that accompany cellular motility. One of the most critical events in the active movement of cells is the cyclic phosphorylation and activation of myosin light chain (MLC), which is required for cellular contraction and movement. We have identified the myosin light chain phosphatase Targeting Subunit (MYPT-1) as a binding partner of the β-arrestins and found that β-arrestins play a role in regulating the turnover of phosphorylated myosin light chain. In response to stimulation of the angiotensin Type 1a Receptor (AT1aR), MLC phosphorylation is induced quickly and potently. We have found that β-arrestin-2 facilitates dephosphorylation of MLC, while, in a reciprocal fashion, β-arrestin 1 limits dephosphorylation of MLC. Intriguingly, loss of either β-arrestin-1 or 2 blocks phospho-MLC turnover and causes a decrease in the contraction of cells as monitored by atomic force microscopy (AFM). Furthermore, by employing the β-arrestin biased ligand [Sar1,Ile4,Ile8]-Ang, we demonstrate that AT1aR-mediated cellular motility involves a β-arrestin dependent component. This suggests that the reciprocal regulation of MLC phosphorylation status by β-arrestins-1 and 2 causes turnover in the phosphorylation status of MLC that is required for cell contractility and subsequent chemotaxic motility.  相似文献   

11.
Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.  相似文献   

12.
Nabiev  S. R.  Kopylova  G. V.  Shchepkin  D. V. 《Biophysics》2019,64(5):690-693
Biophysics - Abstract—In addition to troponin and tropomyosin, cardiac myosin-binding protein C (cMyBP-C), which has an effect on the function of myosin and thin filament activation, is...  相似文献   

13.
R Cooke 《Current biology : CB》1999,9(20):R773-R775
Previous crystal structures of the myosin head have shown two different conformations, postulated to be the beginning and the end of the actomyosin power stroke. A new crystal structure reveals a dramatically different conformation; but how does this conformation fit into the force-generating cycle of actomyosin interactions?  相似文献   

14.

Background

Hemostasis and thrombosis are regulated by agonist-induced activation of platelet integrin αIIbβ3. Integrin activation, in turn is mediated by cellular signaling via protein kinases and protein phosphatases. Although the catalytic subunit of protein phosphatase 1 (PP1c) interacts with αIIbβ3, the role of PP1c in platelet reactivity is unclear.

Methodology/Principal Findings

Using γ isoform of PP1c deficient mice (PP1cγ−/−), we show that the platelets have moderately decreased soluble fibrinogen binding and aggregation to low concentrations of thrombin or protease-activated receptor 4 (PAR4)-activating peptide but not to adenosine diphosphate (ADP), collagen or collagen-related peptide (CRP). Thrombin-stimulated PP1cγ−/− platelets showed decreased αIIbβ3 activation despite comparable levels of αIIbβ3, PAR3, PAR4 expression and normal granule secretion. Functions regulated by outside-in integrin αIIbβ3 signaling like adhesion to immobilized fibrinogen and clot retraction were not altered in PP1cγ−/− platelets. Thrombus formation induced by a light/dye injury in the cremaster muscle venules was significantly delayed in PP1cγ−/− mice. Phosphorylation of glycogen synthase kinase (GSK3)β-serine 9 that promotes platelet function, was reduced in thrombin-stimulated PP1cγ−/− platelets by an AKT independent mechanism. Inhibition of GSK3β partially abolished the difference in fibrinogen binding between thrombin-stimulated wild type and PP1cγ−/− platelets.

Conclusions/Significance

These studies illustrate a role for PP1cγ in maintaining GSK3β-serine9 phosphorylation downstream of thrombin signaling and promoting thrombus formation via fibrinogen binding and platelet aggregation.  相似文献   

15.
Molecular dynamics simulations and single molecule experiments are used to suggest that charged helices in the medial tail domain participate in myosin VI dimerization (Kim et al., 2010), which reinforces the mechanism that unfolding of the three helix bundle in the proximal tail serves as a lever arm extension.  相似文献   

16.

Introduction

The tyrosine phosphatase SHP-1 negatively influences endothelial function, such as VEGF signaling and reactive oxygen species (ROS) formation, and has been shown to influence angiogenesis during tissue ischemia. In ischemic tissues, hypoxia induced angiogenesis is crucial for restoring oxygen supply. However, the exact mechanism how SHP-1 affects endothelial function during ischemia or hypoxia remains unclear. We performed in vitro endothelial cell culture experiments to characterize the role of SHP-1 during hypoxia.

Results

SHP-1 knock-down by specific antisense oligodesoxynucleotides (AS-Odn) increased cell growth as well as VEGF synthesis and secretion during 24 hours of hypoxia compared to control AS-Odn. This was prevented by HIF-1α inhibition (echinomycin and apigenin). SHP-1 knock-down as well as overexpression of a catalytically inactive SHP-1 (SHP-1 CS) further enhanced HIF-1α protein levels, whereas overexpression of a constitutively active SHP-1 (SHP-1 E74A) resulted in decreased HIF-1α levels during hypoxia, compared to wildtype SHP-1. Proteasome inhibition (MG132) returned HIF-1α levels to control or wildtype levels respectively in these cells. SHP-1 silencing did not alter HIF-1α mRNA levels. Finally, under hypoxic conditions SHP-1 knock-down enhanced intracellular endothelial reactive oxygen species (ROS) formation, as measured by oxidation of H2-DCF and DHE fluorescence.

Conclusions

SHP-1 decreases half-life of HIF-1α under hypoxic conditions resulting in decreased cell growth due to diminished VEGF synthesis and secretion. The regulatory effect of SHP-1 on HIF-1α stability may be mediated by inhibition of endothelial ROS formation stabilizing HIF-1α protein. These findings highlight the importance of SHP-1 in hypoxic signaling and its potential as therapeutic target in ischemic diseases.  相似文献   

17.
Ki67 is a protein widely used as cell-proliferation marker, with its cellular functions being hardly unveiled. In this paper, we present the direct interaction between Ki67 and PP1γ, a protein phosphatase showing characteristic accumulation on anaphase chromosomes via the canonical PP1-binding motif within Ki67. In cells depleted of Ki67, PP1γ is targeted to anaphase chromosomes less efficiently. Additionally, overexpression of Ki67, but not a mutant form without the ability to bind PP1γ, induced ectopic localization of PP1γ οn metaphase chromosomes. These observations demonstrate that Ki67 is one factor that defines the cellular behavior of PP1γ in anaphase. To explore the specific roles of the subset of PP1γ recruited on chromosome via its interaction with Ki67 (PP1γ-Ki67), endogenous Ki67 was replaced with a Ki67 mutant deficient in its ability to interact with PP1γ. Although no obvious defects in the progression of mitosis were observed, the timing of dephosphorylation of the mutant Ki67 in anaphase was delayed, indicating that Ki67 itself is one of the substrates of PP1γ-Ki67.  相似文献   

18.
Mitogen-activated protein kinase phosphatase 1 (MKP-1) represses MAPK-driven signalling and plays an important anti-inflammatory role in asthma and airway remodelling. Although MKP-1 is corticosteroid-responsive and increased by cAMP-mediated signalling, the upregulation of this critical anti-inflammatory protein by long-acting β2-agonists and clinically-used corticosteroids has been incompletely examined to date. To address this, we investigated MKP-1 gene expression and protein upregulation induced by two long-acting β2-agonists (salmeterol and formoterol), alone or in combination with the corticosteroid fluticasone propionate (abbreviated as fluticasone) in primary human airway smooth muscle (ASM) cells in vitro. β2-agonists increased MKP-1 protein in a rapid but transient manner, while fluticasone induced sustained upregulation. Together, long-acting β2-agonists increased fluticasone-induced MKP-1 and modulated ASM synthetic function (measured by interleukin 6 (IL-6) and interleukin 8 (IL-8) secretion). As IL-6 expression (like MKP-1) is cAMP/adenylate cyclase-mediated, the long-acting β2-agonist formoterol increased IL-6 mRNA expression and secretion. Nevertheless, when added in combination with fluticasone, β2-agonists significantly repressed IL-6 secretion induced by tumour necrosis factor α (TNFα). Conversely, as IL-8 is not cAMP-responsive, β2-agonists significantly inhibited TNFα-induced IL-8 in combination with fluticasone, where fluticasone alone was without repressive effect. In summary, long-acting β2-agonists increase fluticasone-induced MKP-1 in ASM cells and repress synthetic function of this immunomodulatory airway cell type.  相似文献   

19.
Fc-receptor stimulation in myeloid cells results in increased oxygen consumption, termed the respiratory burst, which is coupled to a rapid and transient increase in tyrosine phosphorylation of cellular proteins. In a previous paper in this journal we showed that the protein tyrosine phosphatase (PTPase) inhibitors sodium orthovanadate and phenylarsine oxide (PAO) block the FcγRI-induced respiratory burst in interferon-γ-differentiated U937 cells (U937IF) while augmenting the FcγRI-induced tyrosine phosphorylation of cellular proteins. Herein we examine the effects of PTPase inhibitors on specific molecules involved in FcγRI signaling. We show that orthovanadate and PAO augmented the FcγRI-induced tyrosine phosphorylation of the adaptor protein CBL. CBL interactions with other phosphoproteins, among them SHC and CRKL, were also augmented in response to pretreatment with the PTPase inhibitors. SHC was tyrosine phosphorylated in response to FcγRI stimulation of U937IF cells and bound to the SH2 domain of GRB2 in a stimulation-dependent manner. In fusion protein pull-down experiments the interaction of SHC with the SH2 domain of GRB2 was increased in PTPase inhibitor pretreated U937IF cells in response to FcγRI stimulation. Our data support the hypothesis that a tyrosine dephosphorylation event is required for effective transmission of the FcγRI signal to result in activation of the myeloid respiratory burst response.  相似文献   

20.
Zusammenfassung Mit licht- und elektronenmikroskopischen Methoden wurde die Verteilung und Aktivität der unspezifischen alkalischen Phosphatase im Epithel der drei Vormägen der Ziege untersucht und gleichzeitig der Einfluß verschiedener Fixiermittel und unterschiedlicher Vorfixierungs- und Inkubationszeiten auf das Ergebnis der Enzymreaktion geprüft. Es wurde festgestellt, daß die alkalische Phosphatase bei allen untersuchten Proben nur im Stratum corneum, Stratum granulosum und Stratum spinosum superf. vorkommt. Verschiedene Vorfixierungen der Proben entweder mit Formol-Kalzium (24 Std) oder Glutaraldehyd (2, 5, 30, 120 min) bzw. OsO4 (2 oder 5 min) beeinflussen die Enzymverteilung und Reaktionsstärke nicht. Beim lichtmikroskopischen Nachweis wurde die maximale Reaktionsstärke bereits bei einer Inkubationszeit von 10 min bei Zimmertemperatur erreicht. Für den elektronenmikroskopischen Enzymnachweis war eine Inkubationszeit von 5 min bei 4° C am günstigsten. Die Reaktionsprodukte sind sowohl an den Zellmembranen als auch in Zellpartikeln lokalisiert. Die zellmembrangebundenen Reaktionsprodukte befinden sich bei allen mit Glutaraldehyd vorfixierten Proben an der äußeren Lamelle, bei kurzzeitiger Osmiumvorfixation (3 min) hingegen an der Innenseite der Plasmamembranen.
Cytochemical study of alkaline phosphatase activity in the goat forestomach epithelium
Summary Light and electron microscopic techniques were employed to study the distribution and intensity of the non-specific alkaline phosphatase activity in the epithelium of the three forestomachs of the goat. The effects on the enzyme reaction of different fixatives, prefixatives, and incubation times were determined.Alkaline phosphatase was found to be present only in the stratum corneum, stratum granulosum, and stratum spinosum superf. of each of the specimens. Different prefixation of the specimens, either by formol calcium (24 h), glutaraldehyde (2, 5, 30, 120 min), or osmium tetroxide (2 or 5 min) had no influence on the distribution of the enzyme and the intensity of its reaction. Maximal intensity of the reaction was obtained after an incubation period of 10 min at room temperature, as seen with the light microscope. To demonstrate the enzyme in sections in the electron microscope, an incubation period of 5 min at 4° C was found to be optimal. The products of the enzyme reaction were located on cell membranes and in cell particles. The membrane-bound reaction products in the specimens prefixed with glutaraldehyde were found on the outer surface of the plasma membrane; after a short prefixation with osmium tetroxide (3 min), they appeared on the inner surface of the plasma membrane.
Auszugsweise vorgetragen auf dem Kongreß der Europäischen Vereinigung der Veterinäranatomen vom 8.–10. September 1969 in Parma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号