首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Sirtuin 2 (SIRT2), a member of the sirtuin family of proteins, plays an important role in cell survival. However, the biological function of SIRT2 protein is unclear with respect to inflammation and oxidative stress. In this study, we examined the protective effects of SIRT2 on inflammation and oxidative stress-induced cell damage using a cell permeative PEP-1–SIRT2 protein. Purified PEP-1–SIRT2 was transduced into RAW 264.7 cells in a time- and dose-dependent manner and protected against lipopolysaccharide- and hydrogen peroxide (H2O2)-induced cell death and cytotoxicity. Also, transduced PEP-1–SIRT2 significantly inhibited the expression of cytokines as well as the activation of NF-κB and mitogen-activated protein kinases (MAPKs). In addition, PEP-1–SIRT2 decreased cellular levels of reactive oxygen species (ROS) and of cleaved caspase-3, whereas it elevated the expression of antioxidant enzymes such as MnSOD, catalase, and glutathione peroxidase. Furthermore, topical application of PEP-1–SIRT2 to 12-O-tetradecanoylphorbol 13-acetate-treated mouse ears markedly inhibited expression levels of COX-2 and proinflammatory cytokines as well as the activation of NF-κB and MAPKs. These results demonstrate that PEP-1–SIRT2 inhibits inflammation and oxidative stress by reducing the levels of expression of cytokines and ROS, suggesting that PEP-1–SIRT2 may be a potential therapeutic agent for various disorders related to ROS, including skin inflammation.  相似文献   

3.
4.
The Notch signaling regulator Numblike (Numbl) is expressed in the brain, but little is known regarding its role in the pathophysiology of glial cells. In this paper, we report that Numbl expression was down-regulated in high-grade human glioma tissue samples and glioblastoma cell lines. To investigate the role of Numbl in glioma migration and invasion, we generated human glioma cell lines in which Numbl was either overexpressed or depleted. Overexpression of Numbl suppressed, while elimination of Numbl promoted, the migration and invasion of glioma cells. Numbl inhibited glioma migration and invasion by dampening NF-κB activity. Furthermore, Numbl interacted directly with tumor necrosis factor receptor-associated factor 5 (TRAF5), which signals upstream and is required for the activation of NF-κB, and committed it to proteasomal degradation by promoting K48-linked polyubiquitination of TRAF5. In conclusion, our data suggest that Numbl negative regulates glioma cell migration and invasion by abrogating TRAF5-induced activation of NF-κB.  相似文献   

5.
Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear.Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells.Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.  相似文献   

6.
The eukaryotic cell responds to various forms of environmental stress by adjusting the rates of mRNA translation thus facilitating adaptation to the assaulting stress. One of the major pathways that control protein synthesis involves the phosphorylation of the α-subunit of eukaryotic initiation factor eIF2 at serine 51. Different forms of DNA damage were shown to induce eIF2α phosphorylation by using PERK, GCN2 or PKR. However, the specificity of the eIF2α kinases and the biological role of eIF2α phosphorylation pathway in the DNA damage response (DDR) induced by chemotherapeutics are not known. Herein, we show that PKR is the eIF2α kinase that responds to DDR induced by doxorubicin. We show that activation of PKR integrates two signaling pathways with opposing biological outcomes. More specifically, induction of eIF2α phosphorylation has a cytoprotective role, whereas activation of c-jun N-terminal kinase (JNK) by PKR promotes cell death in response to doxorubicin. We further show that the proapoptotic effects of JNK activation prevail over the cytoprotection mediated by eIF2α phosphorylation. These findings reveal that PKR can be an important inducer of cell death in response to chemotherapies through its ability to act independently of eIF2α phosphorylation.  相似文献   

7.
8.
9.
10.
11.
Oxidative stress-mediated cell death in cardiomyocytes reportedly plays an important role in many cardiac pathologies. Our previous report demonstrated that mitochondrial SIRT3 plays an essential role in mediating cell survival in cardiac myocytes, and that resveratrol protects cardiomyocytes from oxidative stress-induced apoptosis by activating SIRT3. However, the exact mechanism by which SIRT3 prevents oxidative stress remains unknown. Here, we show that exposure of H9c2 cells to 50 μM H2O2 for 6 h caused a significant increase in cell death and the down-regulation of SIRT3. Reactive oxygen species (ROS)-mediated NF-κB activation was involved in this SIRT3 down-regulation. The SIRT3 activator, resveratrol, which is considered an important antioxidant, protected against H2O2-induced cell death, whereas the SIRT inhibitor, nicotinamide, enhanced cell death. Moreover, resveratrol negatively regulated H2O2-induced NF-κB activation, whereas nicotinamide enhanced H2O2-induced NF-κB activation. We also found that SOD2, Bcl-2 and Bax, the downstream genes of NF-κB, were involved in this pathological process. These results suggest that SIRT3 protects cardiomyocytes exposed to oxidative stress from apoptosis via a mechanism that may involve the NF-κB pathway.  相似文献   

12.
Interleukin-1 (IL-1) induces the internalization of its cognate receptor from the plasma membrane. However, it has remained elusive as to how this mechanism affects the IL-1-induced signal transduction. In this study, we used small-molecule inhibitors of receptor endocytosis to analyze the effects on IL-1-induced signal transduction pathways. We demonstrate that the inhibition of endocytosis down-modulates IL-1-induced NF-κB-dependent gene expression at a level downstream of nuclear translocation and DNA binding of NF-κB. Moreover, we report that the reduced NF-κB-dependent gene expression disrupts feedback inhibition loops terminating the activation of mitogen-activated protein kinases and down-regulating the expression of IL-1-induced mRNAs. Collectively, we show that the inhibition of endocytosis causes a dysregulation of IL-1-induced signal transduction and gene expression demonstrating an important role for receptor internalization in IL-1 signaling.  相似文献   

13.
14.
15.
16.
17.

Background  

At the beginning of neurogenesis, massive brain cell death occurs and more than 50% of cells are eliminated by apoptosis along with neuronal differentiation. However, few studies were conducted so far regarding the regulation of neural progenitor cells (NPCs) death during development. Because of the physiological role of cell death during development, aberration of normal apoptotic cell death is detrimental to normal organogenesis.  相似文献   

18.

Back ground

Stress-induced phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2α), involved in translation, promotes cell suicide or survival. Since multiple signaling pathways are implicated in cell death, the present study has analyzed the importance of PKC activation in the stress-induced eIF2α phosphorylation, caspase activation and cell death in the ovarian cells of Spodoptera frugiperda (Sf9) and in their extracts.

Methods

Cell death is analyzed by flow cytometry. Caspase activation is measured by Ac-DEVD-AFC hydrolysis and also by the cleavage of purified recombinant PERK, an endoplasmic reticulum-resident eIF2α kinase. Status of eIF2α phosphorylation and cytochrome c levels are analyzed by western blots.

Results

PMA, an activator of PKC, does not promote cell death or affect eIF2α phosphorylation. However, PMA enhances late stages of UV-irradiation or cycloheximide-induced caspase activation, eIF2α phosphorylation and apoptosis in Sf9 cells. PMA also enhances cytochrome c-induced caspase activation and eIF2α phosphorylation in cell extracts. These changes are mitigated more efficiently by caspase inhibitor, z-VAD-fmk, than by calphostin, an inhibitor of PKC. In contrast, tunicamycin-induced eIF2α phosphorylation that does not lead to caspase activation or cell death is unaffected by PMA, z-VAD-fmk or by calphostin.

Conclusions

While caspase activation is a cause and consequence of eIF2α phosphorylation, PKC activation that follows caspase activation further enhances caspase activation, eIF2α phosphorylation, and cell death in Sf9 cells.

General significance

Caspases can activate multiple signaling pathways to enhance cell death.  相似文献   

19.

Objectives

To investigate the functional roles of bone marrow stromal cell antigen 2 (BST2) in gastric cancer (GC) cells and its implications in the development of GC patients.

Results

BST2 was frequently overexpressed in GC tissues compared with the adjacent non-tumorous tissues, and high BST2 expression was correlated with tumor stage and lymphatic metastasis. Furthermore, in vitro experiments demonstrated that knockdown of BST2 by siRNA inhibited cell proliferation, induced apoptosis and repressed cell motility in GC cells. In addition, the pro-tumor function of BST2 in GC was mediated partly through the NF-κB signaling.

Conclusion

BST2 possesses the oncogenic potential in GC by regulating the proliferation, apoptosis, and migratory ability of GC cells, thereby BST2 could be a potential therapeutic target for the treatment of GC.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号