首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Renal fibrosis is a process that is characterized by declining excretory renal function. The molecular mechanisms of fibrosis are not fully understood. Oxidative stress pathways were reported to be involved in renal tissue deterioration and fibrosis progression. In order to identify new molecular targets associated with oxidative stress and renal fibrosis, differential proteomics analysis was performed with established renal cell lines (TK173 and HK-2). The cells were treated with oxidative stress triggering factor H(2)O(2) and the proteome alterations were investigated. Two dimensional protein maps were generated and differentially expressed proteins were processed and identified using mass spectrometry analysis combined with data base search. Interestingly the increase of ROS in the renal cell lines upon H(2)O(2) treatment was accompanied by alteration of a large number of proteins, which could be classified in three categories: the first category grouped the proteins that have been described to be involved in fibrogenesis (e.g. ACTA2, VIN, VIM, DES, KRT, COL1A1, COL4A1), the second category, which was more interesting involved proteins of the oxidative stress pathway (PRDX1, PRDX2, PRDX6, SOD, PARK7, HYOU1), which were highly up-regulated under oxidative stress, and the third category represented proteins, which are involved in different other metabolic pathways. Among the oxidative stress proteins the up-regulation of PARK7 was accompanied by a shift in the pI as a result of oxidation. Knockdown of PARK7 using siRNA led to significant reduction in renal cell viability under oxidative stress. Under H(2)O(2) treatment the PARK7 knockdown cells showed up to 80% decrease in cell viability and an increase in apoptosis compared to the controls. These results highlight for the first time the important role of PARK7 in oxidative stress resistance in renal cells.  相似文献   

2.
Abstract Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain in relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine ( N -trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration.  相似文献   

3.
As part of the urinary concentrating mechanism, renal inner medullary epithelial (IME) cells are normally exposed to variable and often very high interstitial levels of NaCl and urea, yet they survive and function. We have been studying the mechanisms involved, using an established cell line (mIMCD3). Acute increase of NaCl or urea from 300 to >500 mOsmol/kg causes cell cycle delay and apoptosis. High NaCl, but not high urea, causes DNA double strand breaks. At 500-600 mOsmol/kg inhibition of DNA replication following high NaCl depends on activation of the tumor suppressor protein, p53, and provides time for DNA repair. If p53 expression is suppressed, cells continue to replicate DNA, and many of those cells die. At higher levels of NaCl (>650 mOsmol/kg) the mitochondria rapidly depolarize and most cells die within a few hours despite a high level of p53 protein (which, however, is less phosphorylated than at 500 mOsmol/kg). Since the levels of NaCl and urea that kill mIMCD3 cells are much lower than those that exist in vivo, we investigated the difference, using early passage mouse IME cells under various conditions. Passage 2 IME cells survive higher levels of NaCl and urea than do mIMCD3 cells, but still not levels as high as in vivo. However, when the osmolality is increased linearly over 20 h, as occurs in vivo, rather than as a single step, cell survival increases to levels close to those found in vivo. We conclude that a more gradual increase in osmolality provides time for accumulation of organic osmolytes and activation of heat shock protein, previously known to be important for cell survival.  相似文献   

4.
5.
6.
7.
8.
9.

Background and Aims

Seed germination is negatively affected by salinity, which is thought to be due to both osmotic and ion-toxicity effects. We hypothesize that salt is absorbed by seeds, allowing them to generate additional osmotic potential, and to germinate in conditions under which they would otherwise not be able to germinate.

Methods

Seeds of barley, Hordeum vulgare, were germinated in the presence of either pure water or one of five iso-osmotic solutions of polyethylene-glycol (PEG) or NaCl at 5, 12, 20 or 27 °C. Germination time courses were recorded and germination indices were calculated. Dry mass, water content and sodium concentration of germinating and non-germinating seeds in the NaCl treatments at 12 °C were measured. Fifty supplemental seeds were used to evaluate the changes in seed properties with time.

Key Results

Seeds incubated in saline conditions were able to germinate at lower osmotic potentials than those incubated in iso-osmotic PEG solutions and generally germinated faster. A positive correlation existed between external salinity and seed salt content in the saline-incubated seeds. Water content and sodium concentration increased with time for seeds incubated in NaCl. At higher temperatures, germination percentage and dry mass decreased whereas germination index and sodium concentration increased.

Conclusions

The results suggest that barley seeds can take up sodium, allowing them to generate additional osmotic potential, absorb more water and germinate more rapidly in environments of lower water potential. This may have ecological implications, allowing halophytic species and varieties to out-compete glycophytes in saline soils.  相似文献   

10.
11.
Banana (Musa spp.) multiple shoot meristems are an excellent model to study the meristem proteome. Using a 2-DE protocol developed for small amounts of tissue and MS-based cross species polypeptide identification, we have revealed the meristem proteome and investigated the influence of sucrose-mediated osmotic stress in a dehydration-tolerant variety. Proteins that were significantly up- or down-regulated due to the high-sucrose treatment were classified using non-parametric univariate statistics. Our results suggest that the maintenance of an osmoprotective intracellular sucrose concentration, the enhanced expression of particular genes of the energy-conserving glycolysis and the conservation of the cell wall integrity are essential to maintain homeostasis, to acclimate and to survive dehydration. By comparing the dehydration-tolerant variety with a dehydration-sensitive variety, we were able to distinguish several genotype-specific proteins (isoforms), and could associate the dehydration-tolerant variety with proteins involved in energy metabolism (e.g., phosphoglycerate kinase, phosphoglucomutase, UDP-glucose pyrophosphorylase) and proteins that are associated with stress adaptation (e.g., OSR40-like protein, abscisic stress ripening protein-like protein). This work shows that proteome analysis can be used successfully to perform quantitative difference analysis and to characterize genetic variations in a recalcitrant crop.  相似文献   

12.
13.
A new in situ microscope (ISM) was developed and tested to perform in-line monitoring of average cell volume and cell concentration in agitated cultures subjected to osmotic stress. The ISM is directly immersed into the agitated broth in a bioreactor and generates still images of cells by using pulsed luminescent diode illumination and a virtual probe volume defined by depth of focus. This technique allows the acquisition of microscopic still images without mechanical sampling techniques. The front end of the sensor fits into a standard 25-mm port and it can be steam sterilized together with the bioreactor. The automatic image evaluation generates signals of the cell concentration and the average cell volume with a time resolution of a few minutes per data point (if a 200 MHz PC is used). Without the need for evaluation, the images can be acquired and stored at a rate of one image per 0.6 s. Hansenula anomala was cultivated as batch fermentation and monitored inline with the ISM. The ISM signal of the cell concentration agreed well with referential growth curves that were obtained from counting with a hemocytometer. The ISM signal of the average cell volume shows a gradual volume reduction as a result of the aging of the culture, and it monitors an abrupt and strong cell contraction if osmotic shocks are generated in the bioreactor. Systematic in vitro studies of osmotic shocks were performed by applying the ISM to agitated culture samples of H. anomala. The volume signal of H. anomala during osmotic shocks showed a very fast cell contraction within less than a second. Within half an hour after the shocks, no signal drifts were observed, which would indicate volume restoration. These findings suggest that the ISM volume signal can be used as an inline indicator of osmotic stress in cell cultures.  相似文献   

14.
BACKGROUND: Helicobacter pylori infection is considered among the causative factors of urticaria and angioedema. Having conducted a study on 65 patients, Hungarian authors reported in 2001 that successful eradication of H. pylori is followed by a significant reduction in the number of attacks in patients with hereditary angioedema (HAE). The present study aimed to reinvestigate the relationship between H. pylori infection and the attack rate in the framework of an international collaborative study. MATERIALS AND METHODS: Within the framework of the PREHAEAT project launched by the European Union, further 152 patients were studied in seven collaborating centers, and participants of the earlier study were followed up in order to detect any relationship between H. pylori infection and the occurrence of attacks in patients suffered from HAE. RESULTS: The proportion of patients experiencing frequent (> or = 5 per year) abdominal attacks was higher (p = .002) among the H. pylori-infected participants of the international study who underwent eradication as compared to the rest of patients. Successful eradication of H. pylori significantly (p = .0006) reduced the number of attacks in these patients as well. Nine subjects of the previous Hungarian study who underwent eradication therapy for dyspepsia were followed up for an additional 4 years. In these patients, attack frequency remained consistently low. CONCLUSIONS: As shown by experience from the Hungarian and the international trial, the number of frequent, edematous abdominal attacks may decrease substantially following the eradication of H. pylori from HAE patients infected with this pathogen. Therefore, screening of patients with HAE for H. pylori infection seems warranted. Eradication of H. pylori may lead to a marked reduction in disease severity.  相似文献   

15.
16.
Yang J  Reth M 《FEBS letters》2010,584(24):4872-4877
To detect its cognate antigen, each B lymphocyte contains up to 120 000 B cell antigen receptor (BCR) complexes on its cell surface. How these abundant receptors remain silent on resting B cells and how they can be activated by a molecularly diverse set of ligands is poorly understood. The antigen-specific activation of the BCR is currently explained by the cross-linking model (CLM). This model predicts that the many BCR complexes on the surface of a B cell are dispersed signalling-inert monomers and that it is BCR dimerization that initiates signalling from the receptor. The finding that the BCR forms auto-inhibited oligomers on the surface of resting B cells falsifies these predictions of the CLM. We propose the dissociation activation model (DAM), which fits better with the existing body of experimental data.  相似文献   

17.
Characterization of the phosphoinositide 3-kinase-signaling pathway in a human renal tubular epithelial cell (TEC) line HKC-8 revealed high levels of Akt phosphorylation in serum-starved cultures. In contrast to Erk1/2, little additional phosphorylation of Akt was observed after cytokine or serum stimulation. Replacement of the conditioned medium attenuated Akt phosphorylation such that 90 min after the addition of warmed serum-free media, Akt phosphorylation had fallen sufficiently to allow an epidermal growth factor-stimulated increase to be detected readily. Although the mechanism by which the phosphoinositide 3-kinase/Akt pathway is activated in serum-starved TEC is unknown, the mediator responsible is secreted from these cells. Thus, conditioned media removed from a dish of quiescent TECs stimulated Akt phosphorylation in washed TEC cultures within 10 min. Biochemical characterization of the bioactive agent identified a heat labile factor of small apparent molecular mass. The basal level of Akt phosphorylation observed in serum-starved cultures was inhibited by wortmannin at concentrations that demonstrated its dependence on 3-phosphoinositide synthesis (IC(50) = 8 nm). Regular removal of conditioned media from TEC cultures and its replacement with serum free media resulted in a sustained attenuation of Akt phosphorylation. Interestingly, after 5 days of this treatment, washed TEC cultures contained a greater number of viable cells than cultures maintained in conditioned media throughout. This observation was not explained by a difference in the rate of DNA synthesis. Instead, the number of cells undergoing apoptosis increased markedly in the unwashed cultures. Consequently, we propose that in HKC-8 cells Akt phosphorylation is up-regulated in an effort to minimize cell death. This stress-activated response is initiated by a factor secreted into the conditioned medium that stimulates the phosphoinositide 3-kinase signaling pathway.  相似文献   

18.
19.
20.
The aim of this study was to identify proteins with aberrant expression in clear cell renal cell carcinoma (ccRCC), and elucidate their clinical utilities. The protein expression profiles of primary ccRCC tumor tissues and neighboring non-tumor tissues were obtained from 9 patients by two-dimensional difference gel electrophoresis and mass spectrometry. Comparative analysis of 3771 protein spots led to the identification of 73 proteins that were expressed at aberrant levels in tumor tissues compared with non-tumor tissues. Among these 73 proteins, we further focused on N-myc downstream-regulated gene 1 protein (NDRG1). NDRG1 expression is regulated by members of myc family as well as by p53, HIF1A, and SGK1. The biological and clinical significance of NDRG1 is controversial for various malignancies and no detailed studies on NDRG1 have been reported in ccRCC until our study. For the 82 newly enrolled ccRCC patients, immunohistochemical analysis revealed a significant association between nuclear NDRG1 and favorable prognosis (p < 0.05). Multivariate analysis demonstrated the role of NDRG1 as an independent factor of progression-free survival (p = 0.01). Subsequent in vitro gene suppression assay demonstrated that NDRG1 silencing significantly enhanced cell proliferation and invasion of RCC cells. The cytotoxic effects of NDRG1 up-regulation induced by an iron chelator were also confirmed. These findings suggest that nuclear NDRG1 has tumor suppressive effects, and the NDRG1 expression may have clinical values in ccRCC. Nuclear NDRG1 may provide additional insights on molecular backgrounds of ccRCC progression, and contribute to the development of novel therapeutic strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号