首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most animal cell types regulate their cell volume after an osmotic volume change. The regulatory volume increase (RVI) occurs through uptake of NaCl and osmotically obliged water after osmotic shrinkage. However, apoptotic cells undergo persistent cell shrinkage without showing signs of RVI. Persistence of the apoptotic volume decrease is a prerequisite to apoptosis induction. We previously demonstrated that volume regulation is inhibited in human epithelial HeLa cells stimulated with the apoptosis inducer. Here, we studied signaling mechanisms underlying the apoptotic inhibition of RVI in HeLa cells. Hypertonic stimulation was found to induce phosphorylation of a Ser/Thr protein kinase Akt (protein kinase B). Shrinkage-induced Akt activation was essential for RVI induction because RVI was suppressed by an Akt inhibitor, expression of a dominant negative form of Akt, or small interfering RNA-mediated knockdown of Akt1 (but not Akt2). Staurosporine, tumor necrosis factor-α, or a Fas ligand inhibited both RVI and hypertonicity-induced Akt activation in a manner sensitive to a scavenger for reactive oxygen species (ROS). Any of apoptosis inducers also induced phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) in a ROS-dependent manner. Suppression of (ASK1) expression blocked the effects of apoptosis, in hypertonic conditions, on both RVI induction and Akt activation. Thus, it is concluded that in human epithelial cells, shrinkage-induced activation of Akt1 is involved in the RVI process and that apoptotic inhibition of RVI is caused by inhibition of Akt activation, which results from ROS-mediated activation of ASK1.  相似文献   

2.
3.
SSeCKS/Gravin/AKAP12 (“SSeCKS”) encodes a cytoskeletal protein that regulates G1 → S progression by scaffolding cyclins, protein kinase C (PKC) and PKA. SSeCKS is down-regulated in many tumor types including prostate, and when re-expressed in MAT-LyLu (MLL) prostate cancer cells, SSeCKS selectively inhibits metastasis by suppressing neovascularization at distal sites, correlating with its ability to down-regulate proangiogenic genes including Vegfa. However, the forced re-expression of VEGF only rescues partial lung metastasis formation. Here, we show that SSeCKS potently inhibits chemotaxis and Matrigel invasion, motility parameters contributing to metastasis formation. SSeCKS suppressed serum-induced activation of the Raf/MEK/ERK pathway, resulting in down-regulation of matrix metalloproteinase-2 expression. In contrast, SSeCKS had no effect on serum-induced phosphorylation of the Src substrate, Shc, in agreement with our previous data that SSeCKS does not inhibit Src kinase activity in cells. Invasiveness and chemotaxis could be restored by the forced expression of constitutively active MEK1, MEK2, ERK1, or PKCα. SSeCKS suppressed phorbol ester-induced ERK1/2 activity only if it encoded its PKC binding domain (amino acids 553–900), suggesting that SSeCKS attenuates ERK activation through a direct scaffolding of conventional and/or novel PKC isozymes. Finally, control of MLL invasiveness by SSeCKS is influenced by the actin cytoskeleton: the ability of SSeCKS to inhibit podosome formation is unaffected by cytochalasin D or jasplakinolide, whereas its ability to inhibit MEK1/2 and ERK1/2 activation is nullified by jasplakinolide. Our findings suggest that SSeCKS suppresses metastatic motility by disengaging activated Src and then inhibiting the PKC-Raf/MEK/ERK pathways controlling matrix metalloproteinase-2 expression and podosome formation.  相似文献   

4.
Signaling from small GTPases is a tightly regulated process. In this work we used a protein microarray screen to identify the Rac-specific GAP, ArhGAP15, as a substrate of the Rac effectors Pak1 and Pak2. In addition to serving as a substrate of Pak1/2, we found that ArhGAP15, via its PH domain, bound to these kinases. The association of ArhGAP15 to Pak1/2 resulted in mutual inhibition of GAP and kinase catalytic activity, respectively. Knock-down of ArhGAP15 resulted in activation of Pak1/2, both indirectly, as a result of Rac activation, and directly, as a result of disruption of the ArhGAP15/Pak complex. Our data suggest that ArhGAP15 plays a dual negative role in regulating small GTPase signaling, by acting at the level of the GTPase itself, as well interacting with its effector, Pak kinase.  相似文献   

5.
Phosphatidic acid (PA) is a critical mediator of mitogenic activation of mammalian target of rapamycin complex 1 (mTORC1) signaling, a master regulator of mammalian cell growth and proliferation. The mechanism by which PA activates mTORC1 signaling has remained unknown. Here, we report that PA selectively stimulates mTORC1 but not mTORC2 kinase activity in cells and in vitro. Furthermore, we show that PA competes with the mTORC1 inhibitor, FK506 binding protein 38 (FKBP38), for mTOR binding at a site encompassing the rapamycin-FKBP12 binding domain. This leads to PA antagonizing FKBP38 inhibition of mTORC1 kinase activity in vitro and rescuing mTORC1 signaling from FKBP38 in cells. Phospholipase D 1, a PA-generating enzyme that is an established upstream regulator of mTORC1, is found to negatively affect mTOR-FKBP38 interaction, confirming the role of endogenous PA in this regulation. Interestingly, removal of FKBP38 alone is insufficient to activate mTORC1 kinase and signaling, which require PA even when the FKBP38 level is drastically reduced by RNAi. In conclusion, we propose a dual mechanism for PA activation of mTORC1: PA displaces FKBP38 from mTOR and allosterically stimulates the catalytic activity of mTORC1.  相似文献   

6.
The nonreceptor protein-tyrosine kinase c-Src is frequently overexpressed and/or activated in a variety of cancers, including those of the breast. Several heterologous binding partners of c-Src have been shown to regulate its catalytic activity by relieving intramolecular autoinhibitory interactions. One such protein, p130Cas (Cas), is expressed at high levels in both breast cancer cell lines and breast tumors, providing a potential mechanism for c-Src activation in breast cancers. The Cas-binding protein BCAR3 (breast cancer antiestrogen resistance-3) is expressed at high levels in invasive breast cancer cell lines, and this molecule has previously been shown to coordinate with Cas to increase c-Src activity in COS-1 cells. In this study, we show for the first time using gain- and loss-of-function approaches that BCAR3 regulates c-Src activity in the endogenous setting of breast cancer cells. We further show that BCAR3 regulates the interaction between Cas and c-Src, both qualitatively as well as quantitatively. Finally, we present evidence that the coordinated activity of these proteins contributes to breast cancer cell adhesion signaling and spreading. Based on these data, we propose that the c-Src/Cas/BCAR3 signaling axis is a prominent regulator of c-Src activity, which in turn controls cell behaviors that lead to aggressive and invasive breast tumor phenotypes.  相似文献   

7.
p120-catenin is a multidomain intracellular protein, which mediates a number of cellular functions, including stabilization of cell-cell transmembrane cadherin complexes as well as regulation of actin dynamics associated with barrier function, lamellipodia formation, and cell migration via modulation of the activities of small GTPAses. One mechanism involves p120 catenin interaction with Rho GTPase activating protein (p190RhoGAP), leading to p190RhoGAP recruitment to cell periphery and local inhibition of Rho activity. In this study, we have identified a stretch of 23 amino acids within the C-terminal domain of p120 catenin as the minimal sequence responsible for the recruitment of p190RhoGAP (herein referred to as CRAD; catenin-RhoGAP association domain). Expression of the p120-catenin truncated mutant lacking the CRAD in endothelial cells attenuated effects of barrier protective oxidized phospholipid, OxPAPC. This effect was accompanied by inhibition of membrane translocation of p190RhoGAP, increased Rho signaling, as well as suppressed activation of Rac1 and its cytoskeletal effectors PAK1 (p21-activated kinase 1) and cortactin. Expression of p120 catenin-truncated mutant lacking CRAD also delayed the recovery process after thrombin-induced endothelial barrier disruption. Concomitantly, RhoA activation and downstream signaling were sustained for a longer period of time, whereas Rac signaling was inhibited. These data demonstrate a critical role for p120-catenin (amino acids 820–843) domain in the p120-catenin·p190RhoGAP signaling complex assembly, membrane targeting, and stimulation of p190RhoGAP activity toward inhibition of the Rho pathway and reciprocal up-regulation of Rac signaling critical for endothelial barrier regulation.  相似文献   

8.
The upstream signaling pathway leading to the activation of AMP-activated protein kinase (AMPK) by high density lipoprotein (HDL) and the role of AMPK in HDL-induced antiatherogenic actions were investigated. Experiments using genetic and pharmacological tools showed that HDL-induced activation of AMPK is dependent on both sphingosine 1-phosphate receptors and scavenger receptor class B type I through calcium/calmodulin-dependent protein kinase kinase and, for scavenger receptor class B type I system, additionally serine-threonine kinase LKB1 in human umbilical vein endothelial cells. HDL-induced activation of Akt and endothelial NO synthase, stimulation of migration, and inhibition of monocyte adhesion and adhesion molecule expression were dependent on AMPK activation. The inhibitory role of AMPK in the adhesion molecule expression and monocyte adhesion on endothelium of mouse aorta was confirmed in vivo and ex vivo. On the other hand, stimulation of ERK and proliferation were hardly affected by AMPK knockdown but completely inhibited by an N17Ras, whereas the dominant-negative Ras was ineffective for AMPK activation. In conclusion, dual HDL receptor systems differentially regulate AMPK activity through calcium/calmodulin-dependent protein kinase kinase and/or LKB1. Several HDL-induced antiatherogenic actions are regulated by AMPK, but proliferation-related actions are regulated by Ras rather than AMPK.  相似文献   

9.
We previously showed that thrombin induces interleukin (IL)-8/CXCL8 expression via the protein kinase C (PKC)α/c-Src-dependent IκB kinase α/β (IKKα/β)/NF-κB signaling pathway in human lung epithelial cells. In this study, we further investigated the roles of Rac1, phosphoinositide 3-kinase (PI3K), and Akt in thrombin-induced NF-κB activation and IL-8/CXCL8 expression. Thrombin-induced IL-8/CXCL8 release and IL-8/CXCL8-luciferase activity were attenuated by a PI3K inhibitor (LY294002), an Akt inhibitor (1-L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), and the dominant negative mutants of Rac1 (RacN17) and Akt (AktDN). Treatment of cells with thrombin caused activation of Rac and Akt. The thrombin-induced increase in Akt activation was inhibited by RacN17 and LY294002. Stimulation of cells with thrombin resulted in increases in IKKα/β activation and κB-luciferase activity; these effects were inhibited by RacN17, LY294002, an Akt inhibitor, and AktDN. Treatment of cells with thrombin induced Gβγ, p85α, and Rac1 complex formation in a time-dependent manner. These results imply that thrombin activates the Rac1/PI3K/Akt pathway through formation of the Gβγ, Rac1, and p85α complex to induce IKKα/β activation, NF-κB transactivation, and IL-8/CXCL8 expression in human lung epithelial cells.  相似文献   

10.
11.
The adaptor protein APPL1 (adaptor protein containing pleckstrin homology (PH), phosphotyrosine binding (PTB), and leucine zipper motifs) was first identified as a binding protein of AKT2 by yeast two-hybrid screening. APPL1 was subsequently found to bind to several membrane-bound receptors and was implicated in their signal transduction through AKT and/or MAPK pathways. To determine the unambiguous role of Appl1 in vivo, we generated Appl1 knock-out mice. Here we report that Appl1 knock-out mice are viable and fertile. Appl1-null mice were born at expected Mendelian ratios, without obvious phenotypic abnormalities. Moreover, Akt activity in various fetal tissues was unchanged compared with that observed in wild-type littermates. Studies of isolated Appl1−/− murine embryonic fibroblasts (MEFs) showed that Akt activation by epidermal growth factor, insulin, or fetal bovine serum was similar to that observed in wild-type MEFs, although Akt activation by HGF was diminished in Appl1−/− MEFs. To rule out a possible redundant role played by the related Appl2, we used small interfering RNA to knock down Appl2 expression in Appl1−/− MEFs. Unexpectedly, cell survival was unaffected under normal culture conditions, and activation of Akt was unaltered following epidermal growth factor stimulation, although Akt activity did decrease further after HGF stimulation. Furthermore, we found that Appl proteins are required for HGF-induced cell survival and migration via activation of Akt. Our studies suggest that Appl1 is dispensable for development and only participate in Akt signaling under certain conditions.  相似文献   

12.
Activation of epidermal akt by diverse mouse skin tumor promoters   总被引:1,自引:0,他引:1  
Akt is a serine/threonine kinase involved in a variety of cellular responses, including cell proliferation and cell survival. Recent studies from our laboratory suggest that Akt signaling may play an important role in skin tumor promotion. To explore this premise, we examined epidermal Akt activation and signaling in response to chemically diverse skin tumor promoters. Mice received single or multiple applications of 12-O-tetradecanoylphorbol-13-acetate (TPA), okadaic acid, or chrysarobin. All three tumor promoters were able to activate epidermal Akt as early as 1 h after treatment. Activation of Akt following tumor promoter treatment led to enhanced downstream signaling, including hyperphosphorylation of glycogen synthase kinase-3beta and Bad. Structure activity studies with phorbol ester analogues revealed that the magnitude of activation paralleled tumor-promoting activity. In cultured primary keratinocytes, TPA treatment also led to activation of Akt. Activation of the epidermal growth factor receptor (EGFR) seemed to underlie the ability of TPA to activate Akt as both PD153035, an inhibitor of EGFR, and GW2974, a dual-specific inhibitor of both EGFR and erbB2, were able to effectively reduce TPA-induced Akt phosphorylation as well as TPA-stimulated EGFR and erbB2 tyrosine phosphorylation in a dose-dependent manner. Furthermore, inhibition of protein kinase C (PKC) activity blocked TPA-stimulated heparin-binding EGF production and EGFR transactivation. Inhibition of PKC also led to a decreased association of Akt with the PP2A catalytic subunit, leading to increased Akt phosphorylation. However, combination of EGFR inhibitor and PKC inhibitor completely abrogated TPA-induced activation of Akt. Collectively, the current results support the hypothesis that elevated Akt activity and subsequent activation of downstream signaling pathways contribute significantly to skin tumor promotion. In addition, signaling through the EGFR via EGFR homodimers or EGFR/erbB2 heterodimers may be the primary event leading to Akt activation during tumor promotion in mouse skin.  相似文献   

13.
Lysophosphatidic acid (LPA) is a major serum lysophospholipid that stimulates cell migration in diverse cell types including ovarian cancer cells. We report here that in the absence of Gi function, LPA induces inhibition, rather than stimulation, of cellular Rac activity, lamellipodium formation, and cell migration in response to insulin like growth factor I (IGF-I) in Chinese hamster ovary (CHO) cells, which solely express LPA1 as a LPA receptor. The inhibitory effects of LPA are abrogated by the expression of either Galpha13 C-terminal peptide or C3 toxin pretreatment, but not a Rho kinase inhibitor. Without PTX pretreatment, LPA stimulates Rac and cell migration yet similarly activates Rho, indicating that Rho activation by itself is not sufficient for inhibition of cell migration. Conversely, the expression of a dominant negative Rac mutant sufficiently mimics the LPA inhibition of cell migration. LPA inhibits IGF I-induced Akt activation by only 40% in a manner dependent on Rho kinase. These results demonstrate that inhibition of Gi function converts LPA regulation on Rac and cell migration to an inhibitory mode, which is mediated by G13 and Rho but not Rho kinase, and raise a possibility of Gi as a new therapeutic target for LPA-dependent tumor progression.  相似文献   

14.
The Crohn's disease and early onset sarcoidosis susceptibility protein, NOD2, coordinates innate immune signaling pathways. Because dysregulation of this coordination can lead to inflammatory disease, maintaining appropriate activation of the NOD2 signaling pathway is paramount in immunologic homeostasis. In this work, we identify the atypical tumor necrosis factor-associated factor (TRAF) family member, TRAF4, as a key negative regulator of NOD2 signaling. TRAF4 inhibits NOD2-induced NF-κB activation and directly binds to NOD2 to inhibit NOD2-induced bacterial killing. We find that two consecutive glutamate residues in NOD2 are required for interaction with TRAF4 and inhibition of NOD2 signaling because mutation of these residues abrogated both TRAF4 binding and inhibition of NOD2. This work identifies a novel negative regulator of NOD2 signaling. Additionally, it defines a TRAF4 binding motif within NOD2 involved in termination of innate immune signaling responses.  相似文献   

15.
Phospholipase D (PLD), a major source of lipid second messengers (phosphatidic acid, diglycerides) in many cell types, is tightly regulated by protein kinases, but only a few of them have been identified. We show here that protein kinase B (AKT) is a novel major signaling effector of PLD activity induced by the formylpeptide f-Met-Leu-Phe (fMLP) in human neutrophil-like HL-60 cells (dHL-60 cells). AKT inhibition with the selective antagonist AKTib1/2 almost completely prevented fMLP-mediated activity of PLD, its upstream effector ERK1/2, but not p38 MAPK. Immunoprecipitation studies show that phosphorylated AKT, ERK, and PLD2 form a complex induced by fMLP, which can be prevented by AKTib1/2. In cell-free systems, AKT1 stimulated PLD activity via activation of ERK. AKT1 actually phosphorylated ERK2 as a substrate (Km 1 μm). Blocking AKT activation with AKTib1/2 also prevented fMLP- but not phorbol 12-myristate 13-acetate-mediated NADPH oxidase activation (respiratory burst, RB) of dHL-60 cells. Impaired RB was associated with defective membrane translocation of NADPH oxidase components p67phox and p47phox, ERK, AKT1, AKT2, but not AKT3. Depletion of AKT1 or AKT2 with antisense oligonucleotides further indicates a partial contribution of both isoforms in fMLP-induced activation of ERK, PLD, and RB, with a predominant role of AKT1. Thus, formylpeptides induce sequential activation of AKT, ERK1/2, and PLD, which represents a novel signaling pathway. A major primarily role of this AKT signaling pathway also emerges in membrane recruitment of NOX2 components p47phox, p67phox, and ERK, which may contribute to assembly and activation of the RB motor system, NADPH oxidase.  相似文献   

16.
The formation and directional guidance of neurites involves dynamic regulation of Rho family GTPases. Rac and Cdc42 promote neurite outgrowth, whereas Rho activation causes neurite retraction. Here we describe a role for collapsin response mediator protein (Crmp-2), a neuronal protein implicated in axonal outgrowth and a component of the semaphorin 3A pathway, in switching GTPase signaling when expressed in combination with either dominant active Rac or Rho. In neuroblastoma N1E-115 cells, co-expression of Crmp-2 with dominant active RhoA V14 induced Rac morphology, cell spreading and ruffling (and the formation of neurites). Conversely, co-expression of Crmp-2 with dominant active Rac1 V12 inhibited Rac morphology, and in cells already expressing Rac1 V12, Crmp-2 caused localized peripheral collapse, involving Rho (and Cdc42) activation. Rho kinase was a pivotal regulator of Crmp-2; Crmp-2 phosphorylation was required for Crmp-2/Rac1 V12 inhibition, but not Crmp-2/RhoA V14 induction, of Rac morphology. Thus Crmp-2, regulated by Rho kinase, promotes outgrowth and collapse in response to active Rho and Rac, respectively, reversing their usual morphological effects and providing a mechanism for dynamic modulation of growth cone guidance.  相似文献   

17.
18.
The normal human breast epithelial cell line, MCF10A, was used to investigate the mechanism by which high-density inhibits EGF-dependent cell cycle progression. EGF-dependent Akt activation was found to be transient in high-density cells and sustained in low-density cells. High-density cells also showed decreased EGF receptor (EGFR) autophosphorylation, decreased retinoblastoma protein phosphorylation, and increased p27 protein expression. Although EGFR activation was decreased in the high-density cells, the activation was sufficient to stimulate EGFR substrates comparable to low-density cells. EGF-dependent activation of the Erk1/2 pathway and the upstream activators of Akt (Gab1, erbB3, PI3 kinase, and PDK1) showed no density dependency. Antagonists of Akt activity provided further evidence that regulation of Akt activation is the critical signal transduction step controlling EGF-dependent cell cycle progression. Both adenovirus-mediated expression of dominant-negative Akt and inhibition of PI3 kinase-mediated Akt activation with LY294002 blocked cell cycle progression of low-density cells. In summary, we report the novel finding that high-density blocks EGF-dependent cell cycle progression by inhibiting EGF signaling at the level of EGF-dependent Akt activation rather than at the level of EGFR activation.  相似文献   

19.
The importance of reversible protein phosphorylation to cellular regulation cannot be overstated. In eukaryotic cells, protein kinase/phosphatase signaling pathways regulate a staggering number of cellular processes, including cell proliferation, cell death (apoptosis, necroptosis, necrosis), metabolism (at both the cellular and organismal levels), behavior and neurological function, development, and pathogen resistance. Although protein phosphorylation as a mode of eukaryotic cell regulation is familiar to most biochemists, many are less familiar with protein kinase/phosphatase signaling networks that function in prokaryotes. In this thematic minireview series, we present four minireviews that cover the important field of prokaryotic protein phosphorylation.  相似文献   

20.
Our previous work has shown that the membrane microdomain-associated flotillin proteins are potentially involved in epidermal growth factor (EGF) receptor signaling. Here we show that knockdown of flotillin-1/reggie-2 results in reduced EGF-induced phosphorylation of specific tyrosines in the EGF receptor (EGFR) and in inefficient activation of the downstream mitogen-activated protein (MAP) kinase and Akt signaling. Although flotillin-1 has been implicated in endocytosis, its depletion affects neither the endocytosis nor the ubiquitination of the EGFR. However, EGF-induced clustering of EGFR at the cell surface is altered in cells lacking flotillin-1. Furthermore, we show that flotillins form molecular complexes with EGFR in an EGF/EGFR kinase-independent manner. However, knockdown of flotillin-1 appears to affect the activation of the downstream MAP kinase signaling more directly. We here show that flotillin-1 forms a complex with CRAF, MEK1, ERK, and KSR1 (kinase suppressor of RAS) and that flotillin-1 knockdown leads to a direct inactivation of ERK1/2. Thus, flotillin-1 plays a direct role during both the early phase (activation of the receptor) and late (activation of MAP kinases) phase of growth factor signaling. Our results here unveil a novel role for flotillin-1 as a scaffolding factor in the regulation of classical MAP kinase signaling. Furthermore, our results imply that other receptor-tyrosine kinases may also rely on flotillin-1 upon activation, thus suggesting a general role for flotillin-1 as a novel factor in receptor-tyrosine kinase/MAP kinase signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号