首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.Wnt pathways play major roles in cell-fate specification, proliferation and differentiation, cell polarity, and morphogenesis (Clevers 2006; van Amerongen and Nusse 2009). Signaling is initiated in the responding cell by the interaction of Wnt ligands with different receptors and coreceptors, including Frizzled, LRP5/6, ROR1/2, RYK, PTK7, and proteoglycans (Angers and Moon 2009; Kikuchi et al. 2009; MacDonald et al. 2009). Receptor activation is accompanied by the phosphorylation of Dishev-elled (Yanagawa et al. 1995), which appears to transduce the signal to both the cell membrane and the nucleus (Cliffe et al. 2003; Itoh et al. 2005; Bilic et al. 2007). Another common pathway component is β-catenin, an abundant component of adherens junctions (Nelson and Nusse 2004; Grigoryan et al. 2008). In response to signaling, β-catenin associates with T-cell factors (TCFs) and translocates to the nucleus to stimulate Wnt target gene expression (Behrens et al. 1996; Huber et al. 1996; Molenaar et al. 1996).This β-catenin-dependent activation of specific genes is often referred to as the “canonical” pathway. In the absence of Wnt signaling, β-catenin is destroyed by the protein complex that includes Axin, GSK3, and the tumor suppressor APC (Clevers 2006; MacDonald et al. 2009). Wnt proteins, such as Wnt1, Wnt3, and Wnt8, stimulate Frizzled and LRP5/6 receptors to inactivate this β-catenin destruction complex, and, at the same time, trigger the phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2 (HIPK2) (Hikasa et al. 2010; Hikasa and Sokol 2011). Both β-catenin stabilization and the regulation of TCF protein function by phosphorylation appear to represent general strategies that are conserved in multiple systems (Sokol 2011). Thus, the signaling pathway consists of two branches that together regulate target gene expression (Fig. 1).Open in a separate windowFigure 1.Conserved Wnt pathway branches and components. In the absence of Wnt signals, glycogen synthase kinase 3 (GSK3) binds Axin and APC to form the β-catenin destruction complex. Some Wnt proteins, such as Wnt8 and Wnt3a, stimulate Frizzled and LRP5/6 receptors to inhibit GSK3 activity and stabilize β-catenin (β-cat). Stabilized β-cat forms a complex with T-cell factors (e.g., TCF1/LEF1) to activate target genes. Moreover, GSK3 inhibition leads to target gene derepression by promoting TCF3 phosphorylation by homeodomain-interacting protein kinase 2 (HIPK2) through an unknown mechanism, for which β-catenin is required as a scaffold. This phosphorylation results in TCF3 removal from target promoters and gene activation. Other Wnt proteins, such as Wnt5a and Wnt11, use distinct receptors such as ROR2 and RYK, in addition to Frizzled, to control the the cytoskeletal organization through core planar cell polarity (PCP) proteins, small GTPases (Rho/Rac/Cdc42), and c-Jun amino-terminal kinase (JNK).Other Wnt proteins, such as Wnt5a or Wnt11, strongly affect the cytoskeletal organization and morphogenesis without stabilizing β-catenin (Torres et al. 1996; Angers and Moon 2009; Wu and Mlodzik 2009). These “noncanonical” ligands do not influence TCF3 phosphorylation (Hikasa and Sokol 2011), but may use distinct receptors such as ROR1/2 and RYK instead of or in addition to Frizzled (Hikasa et al. 2002; Lu et al. 2004; Mikels and Nusse 2006; Nishita et al. 2006, 2010; Schambony and Wedlich 2007; Grumolato et al. 2010; Lin et al. 2010; Gao et al. 2011). In such cases, signaling mechanisms are likely to include planar cell polarity (PCP) components, such as Vangl2, Flamingo, Prickle, Diversin, Rho GTPases, and c-Jun amino-terminal kinases (JNKs), which do not directly affect β-catenin stability (Fig. 1) (Sokol 2000; Schwarz-Romond et al. 2002; Schambony and Wedlich 2007; Komiya and Habas 2008; Axelrod 2009; Itoh et al. 2009; Tada and Kai 2009; Sato et al. 2010; Gao et al. 2011). This simplistic dichotomy of the Wnt pathway does not preclude some Wnt ligands from using both β-catenin-dependent and -independent routes in a context-specific manner.Despite the existence of many pathway branches, only the β-catenin-dependent branch has been implicated in body-axis specification. Recent experiments in lower vertebrates have identified additional pathway components and targets and provided new insights into the underlying mechanisms.  相似文献   

2.
Aided by advances in technology, recent studies of neural precursor identity and regulation have revealed various cell types as contributors to ongoing cell genesis in the adult mammalian brain. Here, we use stem-cell biology as a framework to highlight the diversity of adult neural precursor populations and emphasize their hierarchy, organization, and plasticity under physiological and pathological conditions.The adult mammalian brain displays remarkable structural plasticity by generating and incorporating new neural cell types into an already formed brain (Kempermann and Gage 1999). Largely restricted within the subventricular zone (SVZ) along the lateral ventricle and the subgranular zone (SGZ) in the dentate gyrus (DG), neural genesis is thought to arise from neural stem cells (NSCs) (Ming and Song 2011). Stem cells are defined by hallmark functions: capacity to self-renew, maintenance of an immature state over a long duration, and ability to generate specialized cell types (Fig. 1). These features distinguish stem cells from committed progenitor cells that more readily differentiate into specialized cell types (Fig. 1). Stem and progenitor cells (collectively called precursors) are additionally characterized by their lineage capacity. For example, multipotential neural precursors generate neurons and glia, whereas unipotential cells produce only one cell type, such as neurons (Gage 2000; Ma et al. 2009). The classical NSC definition is based on cell culture experiments in which a single cell can self-renew and generate neurons, astrocytes, and oligodendrocytes (Gage 2000; Ma et al. 2009). Yet, reprogramming studies have raised the question of whether cultured lineage-restricted neural progenitors acquire additional potential not evident in vivo (Palmer et al. 1999; Kondo and Raff 2000; Gabay et al. 2003). As a result, various lineage models have been proposed to explain cell generation in the adult brain (Fig. 1) (Ming and Song 2011). In one model, bona fide adult stem cells generate multiple lineages at the individual cell level. In another, cell genesis represents a collective property from a mixed population of unipotent progenitors. Importantly, these models are not mutually exclusive as evidence for the coexistence of multiple precursors has been observed in several adult somatic tissues, in which one population preferentially maintains homeostasis and another serves as a cellular reserve (Li and Clevers 2010; Mascre et al. 2012). Recent technical advances, including single-cell lineage tracing (Kretzschmar and Watt 2012), have made it possible to dissect basic cellular and behavioral processes of neural precursors in vivo (Fig. 4) (Bonaguidi et al. 2012). In this work, we review our current knowledge of precursor cell identity, hierarchical organization, and regulation to examine the diverse origins of cell genesis in the adult mammalian brain.Open in a separate windowFigure 1.Models of generating cell diversity in the adult tissues. (A,B) Definitions of stem and progenitor cells. In A, quiescent stem cells (Sq) become active stem cells (Sa) that proliferate to generate different types of specialized cells (C1, C2, C3) and new stem cells (S). The active stem cell can return to quiescence and remain quiescent over long periods of time. In B, lineage-restricted progenitor cells lacking self-renewal capacity (P1, P2, P3) each give rise to distinct populations of specialized cells (C1, C2, C3). (C) Generation of specialized cells in a tissue could be explained by three models. (1) The stem-cell model, in which multipotent stem cells give rise to all the specialized cells in the tissue. (2) The progenitor cell model, in which diverse, lineage-restricted progenitor cells give rise to different cell types in the tissue. (3) A hybrid model, in which a mixture of stem cells and lineage-restricted progenitor cells generate specialized cells of the adult tissue.

Table 1.

Comparison of different methods used to study the generation of new cells in the adult mammalian nervous system
(1) In vivo imaging allows real-time visualization of cells in their natural environment.
(2) Lineage tracing is the utilization of transgenic animals to label single precursor cells and retrospectively analyze the fate choices made by these cells.
(3) Fate mapping entails the study of lineage decision made by populations of cells, utilizing either using transgenic animals or administration of thymidine analogues.
(4) Adenovirus, lentivirus, and retrovirus, when injected into the brain, can be used to trace single cells or population of cells depending on the virus used and the amount of virus injected into the animals.
(5) Transplantation of precursor cells is a useful tool to examine the intrinsic and extrinsic regulation of precursor cells in the brain.
(6–7) Ex vivo methods involve sections in the brain being maintained in culture media, whereas in in vitro studies, the dissociated cells are cultured either as neurospheres or in a monolayer culture system.
Open in a separate windowOpen in a separate windowFigure 4.Regulation of neural precursor plasticity within the classical neurogenic zones. Schematic illustration of example factors and manipulations known to regulate cell genesis in the adult subgranular zone (SGZ) (A) and subventricular zone (SVZ) (B). Numbers denote examples known to affect lineage decisions at the stage indicated in the figure. (A) Stem-cell loss occurs when their proliferation is highly induced, such as through Notch and FoxO deletion (1) (Paik et al. 2009; Renault et al. 2009; Ehm et al. 2010; Imayoshi et al. 2010), or in aged mice (2) (Kuhn et al. 1996; Encinas et al. 2011; Villeda et al. 2011). Mobilization of quiescent radial glia-like cells (RGLs) occurs during voluntary running (3) (Kempermann et al. 1997; van Praag et al. 1999); brain injury, such as injection of the antimitotic drug Ara-C (Seri et al. 2001) (4) or seizure-inducing Kainic acid (5) (Steiner et al. 2008; Jiruska et al. 2013). Molecular inhibitors of RGL activation include SFRP3 and GABA signaling (6) (Song et al. 2012; Jang et al. 2013). Kainic acid-induced seizures activate nonradial progenitor cells (7) (Lugert et al. 2010). Increasing Akt signaling or decreasing tonic GABA signaling alters the division mode of RGLs, fostering the symmetric fate (8) (Bonaguidi et al. 2011; Song et al. 2012). Ectopic expression of Ascl1 changes the fate of intermediate progenitor cells (IPCs) to generate oligodendrocyte progenitor cells (OPCs) (9) (Jessberger et al. 2008) and demyelination injury induces OPC proliferation (10) (Nait-Oumesmar et al. 1999; Menn et al. 2006; Hughes et al. 2013). Stab wound, stroke and ischemic injuries activate astrocytes into reactive astroglia (11) (reviewed in Robel et al. 2011). (B) In the SVZ excessive activation (1) (Paik et al. 2009; Renault et al. 2009; Ehm et al. 2010; Imayoshi et al. 2010) and aging (2) (Kuhn et al. 1996; Molofsky et al. 2006; Villeda et al. 2011) leads to stem-cell loss. Ara-C promotes RGL cell-cycle entry (3) (Doetsch et al. 1999) and stroke injury activates the normally quiescent ependymal cells (4) (Johansson et al. 1999; Coskun et al. 2008; Carlen et al. 2009). Infusion of EGF increases production of astroglia and OPCs while reducing proliferation of IPCs (5) (Craig et al. 1996; Kuhn et al. 1997). Demyelination injury increases OPC proliferation (6) and doublecortin (DCX)+ neural progenitors to swich fate into OPCs (7) (Nait-Oumesmar et al. 1999; Menn et al. 2006; Jablonska et al. 2010; Hughes et al. 2013). Manipulation of the Sonic hedgehog (SHH) signaling pathway can change the fate of a subset of neural progenitors from granule cell (GC) neurons to periglomerular cell (PGC) neurons (8) (Ihrie et al. 2011). Stab wound, stroke, and ischemic injuries activate astrocytes into reactive astroglia (9) (reviewed in Robel et al. 2011).  相似文献   

3.
4.
Fibronectin (FN) is a multidomain protein with the ability to bind simultaneously to cell surface receptors, collagen, proteoglycans, and other FN molecules. Many of these domains and interactions are also involved in the assembly of FN dimers into a multimeric fibrillar matrix. When, where, and how FN binds to its various partners must be controlled and coordinated during fibrillogenesis. Steps in the process of FN fibrillogenesis including FN self-association, receptor activities, and intracellular pathways have been under intense investigation for years. In this review, the domain organization of FN including the extra domains and variable region that are controlled by alternative splicing are described. We discuss how FN–FN and cell–FN interactions play essential roles in the initiation and progression of matrix assembly using complementary results from cell culture and embryonic model systems that have enhanced our understanding of this process.As a ubiquitous component of the extracellular matrix (ECM), fibronectin (FN) provides essential connections to cells through integrins and other receptors and regulates cell adhesion, migration, and differentiation. FN is secreted as a large dimeric glycoprotein with subunits that range in size from 230 kDa to 270 kDa (Mosher 1989; Hynes 1990). Variation in subunit size depends primarily on alternative splicing. FN was first isolated from blood more than 60 years ago (Edsall 1978), and this form is called plasma FN. The other major form, called cellular FN, is abundant in the fibrillar matrices of most tissues. Although FN is probably best known for promoting attachment of cells to surfaces, this multidomain protein has many interesting structural features and functional roles beyond cell adhesion.FN is composed of three different types of modules termed type I, II, and III repeats (Fig. 1) (Petersen et al. 1983; Hynes 1990). These repeats have distinct structures. Although the conformations of type I and type II repeats are maintained by pairs of intramodule disulfide bonds, the type III repeat is a 7-stranded β-barrel structure that lacks disulfide bonds (Main et al. 1992; Leahy et al. 1996, 1992) and, therefore, can undergo conformational changes. FN type III repeats are widely distributed among animal, bacterial, and plant proteins and are found in both extracellular and intracellular proteins (Bork and Doolittle 1992; Tsyguelnaia and Doolittle 1998).Open in a separate windowFigure 1.FN domain organization and isoforms. Each FN monomer has a modular structure consisting of 12 type I repeats (cylinders), 2 type II repeats (diamonds), and 15 constitutive type III repeats (hexagons). Two additional type III repeats (EIIIA and EIIIB, green) are included or omitted by alternative splicing. The third region of alternative splicing, the V region (green box), is included (V120), excluded (V0), or partially included (V95, V64, V89). Sets of modules comprise domains for binding to other extracellular molecules as indicated. Domains required for fibrillogenesis are in red: the assembly domain (repeats I1-5) binds FN, III9-10 contains the RGD and synergy sequences for integrin binding, and the carboxy-terminal cysteines form the disulfide-bonded FN dimer (‖). The III1-2 domain (light red) has two FN binding sites that are important for fibrillogenesis. The amino-terminal 70-kDa fragment contains assembly and gelatin-binding domains and is routinely used in FN binding and matrix assembly studies.Sets of adjacent modules form binding domains for a variety of proteins and carbohydrates (Fig. 1). ECM proteins, including FN, bind to cells via integrin receptors, αβ heterodimers with two transmembrane subunits (Hynes 2002). FN-binding integrins have specificity for one of the two cell-binding sites within FN, either the RGD-dependent cell-binding domain in III10 (Pierschbacher and Ruoslahti 1984) or the CS1 segment of the alternatively spliced V region (IIICS) (Wayner et al. 1989; Guan and Hynes 1990). Some integrins require a synergy sequence in repeat III9 for maximal interactions with FN (Aota et al. 1994; Bowditch et al. 1994). Another family of cell surface receptors is the syndecans, single-chain transmembrane proteoglycans (Couchman 2010). Syndecans use their glycosaminoglycan (GAG) chains to interact with FN at its carboxy-terminal heparin-binding (HepII) domain (Fig. 1) (Saunders and Bernfield 1988; Woods et al. 2000), which binds to heparin, heparan sulfate, and chondroitin sulfate GAGs (Hynes 1990; Barkalow and Schwarzbauer 1994). Syndecan binding to the HepII domain enhances integrin-mediated cell spreading and intracellular signaling, suggesting that syndecans act as coreceptors with integrins in cell–FN binding (Woods and Couchman 1998; Morgan et al. 2007).A major site for FN self-association is within the amino-terminal assembly domain spanning the first five type I repeats (I1-5) (Fig. 1) (McKeown-Longo and Mosher 1985; McDonald et al. 1987; Schwarzbauer 1991b; Sottile et al. 1991). This domain plays an essential role in FN fibrillogenesis. As a major blood protein, FN interacts with fibrin during blood coagulation, also using the I1-5 domain (Mosher 1989; Hynes 1990). As fibrin polymerizes, factor XIII transglutaminase covalently cross-links glutamine residues near the amino terminus of FN to fibrin α chains (Mosher 1975; Corbett et al. 1997). The amino-terminal domain has multiple binding partners in addition to FN and fibrin; these include heparin, S. aureus, and other bacteria, thrombospondin-1, and tenascin-C (Hynes 1990; Ingham et al. 2004; Schwarz-Linek et al. 2006). Adjacent to this domain is the gelatin/collagen-binding domain composed of type I and type II modules (Ingham et al. 1988). This domain also binds to tissue transglutaminase (Radek et al. 1993) and fibrillin-1 (Sabatier et al. 2009). Within the 15 type III repeats reside several FN binding sites that interact with the amino-terminal assembly domain as well as three sites of alternative splicing that generate multiple isoforms. At the carboxyl terminus is a pair of cysteine residues that form the FN dimer through antiparallel disulfide bonds (Hynes 1990). This dimerization may be facilitated by disulfide isomerase activity located in the last set of type I repeats (Langenbach and Sottile 1999).The diverse set of binding domains provides FN with the ability to interact simultaneously with other FN molecules, other ECM components (e.g., collagens and proteoglycans), cell surface receptors, and extracellular enzymes (Pankov and Yamada 2002; Fogelgren et al. 2005; Hynes 2009; Singh et al. 2010). Multitasking by FN probably underlies its essential role during embryogenesis (George et al. 1993). Furthermore, FN''s interactions can be modulated by exposure or sequestration of its binding sites within matrix fibrils, through the presence of ECM proteins that bind to FN, or through variation in structure by alternative splicing.  相似文献   

5.
Gap Junctions     
Gap junctions are aggregates of intercellular channels that permit direct cell–cell transfer of ions and small molecules. Initially described as low-resistance ion pathways joining excitable cells (nerve and muscle), gap junctions are found joining virtually all cells in solid tissues. Their long evolutionary history has permitted adaptation of gap-junctional intercellular communication to a variety of functions, with multiple regulatory mechanisms. Gap-junctional channels are composed of hexamers of medium-sized families of integral proteins: connexins in chordates and innexins in precordates. The functions of gap junctions have been explored by studying mutations in flies, worms, and humans, and targeted gene disruption in mice. These studies have revealed a wide diversity of function in tissue and organ biology.Gap junctions are clusters of intercellular channels that allow direct diffusion of ions and small molecules between adjacent cells. The intercellular channels are formed by head-to-head docking of hexameric assemblies (connexons) of tetraspan integral membrane proteins, the connexins (Cx) (Goodenough et al. 1996). These channels cluster into polymorphic maculae or plaques containing a few to thousands of units (Fig. 1). The close membrane apposition required to allow the docking between connexons sterically excludes most other membrane proteins, leaving a narrow ∼2 nm extracellular “gap” for which the junction is named (Fig. 2). Gap junctions in prechordates are composed of innexins (Phelan et al. 1998; Phelan 2005). In chordates, connexins arose by convergent evolution (Alexopoulos et al. 2004), to expand by gene duplication (Cruciani and Mikalsen 2007) into a 21-member gene family. Three innexin-related proteins, called pannexins, have persisted in vertebrates, although it is not clear if they form intercellular channels (Panchin et al. 2000; Bruzzone et al. 2003). 7Å-resolution electron crystallographic structures of intercellular channels composed of either a carboxy-terminal truncation of Cx43 (Unger et al. 1999; Yeager and Harris 2007) or an M34A mutant of Cx26 (Oshima et al. 2007) are available. The overall pore morphologies are similar with the exception of a “plug” in the Cx26 channel pore. The density of this plug is substantively decreased by deletion of amino acids 2–7, suggesting that the amino-terminus contributes to this structure (Oshima et al. 2008). A 3.5-Å X-ray crystallographic structure has visualized the amino-terminus of Cx26 folded into the mouth of the channel without forming a plug, thought to be an image of the open channel conformation (Maeda et al. 2009). The amino-terminus has been physiologically implicated in voltage-gating of the Cx26 and Cx32 channels (Purnick et al. 2000; Oh et al. 2004), lending support to a role for the amino-terminus as a gating structure. However, Cx43 also shows voltage-gating, and its lack of any structure resembling a plug remains unresolved. A comparison of a 1985 intercellular channel structure (Makowski 1985) with the 2009 3.5Å structure (Maeda et al. 2009) summarizes a quarter-century of X-ray progress (Fig. 3).Open in a separate windowFigure 1.A diagram showing the multiple levels of gap junction structure. Individual connexins assemble intracellularly into hexamers, called connexons, which then traffic to the cell surface. There, they dock with connexons in an adjacent cell, assembling an axial channel spanning two plasma membranes and a narrow extracellular “gap.”Open in a separate windowFigure 2.Electron microscopy of gap junctions joining adjacent hepatocytes in the mouse. The gap junction (GJ) is seen as an area of close plasma membrane apposition, clearly distinct from the tight junction (TJ) joining these cells. (Inset A) A high magnification view of the gap junction revealing the 2–3 nm “gap” (white arrows) separating the plasma membranes. (Inset B) A freeze-fracture replica of a gap junction showing the characteristic particles on the protoplasmic (P) fracture face and pits on the ectoplasmic (E) fracture face. The particles and pits show considerable disorder in their packing with an average 9-nm center-to-center spacing.Open in a separate windowFigure 3.A comparison of axial sections through gap-junction structures deduced from X-ray diffraction. The 1985 data (Makowski 1985) were acquired from gap junctions isolated biochemically from mouse liver containing mixtures of Cx32 and Cx26. The intercellular channel (CHANNEL) is blocked at the two cytoplasmic surfaces by electron density at the channel mouths along the sixfold symmetry axis. The 2009 data (Maeda et al. 2009), acquired from three-dimensional crystals of recombinant Cx26, resolve this density at the channel opening as the amino-termini of the connexin proteins, the 2009 model possibly showing an open channel structure.Most cells express multiple connexins. These may co-oligomerize into the same (homomeric) or mixed (heteromeric) connexons, although only certain combinations are permitted (Falk et al. 1997; Segretain and Falk 2004). A connexon may dock with an identical connexon to form a homotypic intercellular channel or with a connexon containing different connexins to form a heterotypic channel (Dedek et al. 2006). Although only some assembly combinations are permitted (White et al. 1994), the number of possible different intercellular channels formed by this 21-member family is astonishingly large. This diversity has significance because intercellular channels composed of different connexins have different physiological properties, including single-channel conductances and multiple conductance states (Takens-Kwak and Jongsma 1992), as well as permeabilities to experimental tracers (Elfgang et al. 1995) and to biologically relevant permeants (Gaunt and Subak-Sharpe 1979; Veenstra et al. 1995; Bevans et al. 1998; Gong and Nicholson 2001; Goldberg et al. 2002; Ayad et al. 2006; Harris 2007).Opening of extrajunctional connexons in the plasma membrane, described as “hemichannel” activity, can be experimentally induced in a variety of cell types. Because first observations of hemichannel activity were in an oocyte expression system (Paul et al. 1991) and dissociated retinal horizontal cells (DeVries and Schwartz 1992), the possible functions of hemichannels composed of connexins and pannexins has enjoyed vigorous investigation (Goodenough and Paul 2003; Bennett et al. 2003; Locovei et al. 2006; Evans et al. 2006; Srinivas et al. 2007; Schenk et al. 2008; Thompson and MacVicar 2008; Anselmi et al. 2008; Goodenough and Paul 2003). Hemichannels have been implicated in various forms of paracrine signaling, for example in providing a pathway for extracellular release of ATP (Cotrina et al. 1998; Kang et al. 2008), glutamate (Ye et al. 2003), NAD+ (Bruzzone et al. 2000), and prostaglandins (Jiang and Cherian 2003).  相似文献   

6.
7.
The TAM receptors—Tyro3, Axl, and Mer—comprise a unique family of receptor tyrosine kinases, in that as a group they play no essential role in embryonic development. Instead, they function as homeostatic regulators in adult tissues and organ systems that are subject to continuous challenge and renewal throughout life. Their regulatory roles are prominent in the mature immune, reproductive, hematopoietic, vascular, and nervous systems. The TAMs and their ligands—Gas6 and Protein S—are essential for the efficient phagocytosis of apoptotic cells and membranes in these tissues; and in the immune system, they act as pleiotropic inhibitors of the innate inflammatory response to pathogens. Deficiencies in TAM signaling are thought to contribute to chronic inflammatory and autoimmune disease in humans, and aberrantly elevated TAM signaling is strongly associated with cancer progression, metastasis, and resistance to targeted therapies.The name of the TAM family is derived from the first letter of its three constituents—Tyro3, Axl, and Mer (Prasad et al. 2006). As detailed in Figure 1, members of this receptor tyrosine kinase (RTK) family were independently identified by several different groups and appear in the early literature under multiple alternative names. However, Tyro3, Axl, and Mer (officially c-Mer or MerTK for the protein, Mertk for the gene) have now been adopted as the NCBI designations. The TAMs were first grouped into a distinct RTK family (the Tyro3/7/12 cluster) in 1991, through PCR cloning of their kinase domains (Lai and Lemke 1991). The isolation of full-length cDNAs for Axl (O''Bryan et al. 1991), Mer (Graham et al. 1994), and Tyro3 (Lai et al. 1994) confirmed their segregation into a structurally distinctive family of orphan RTKs (Manning et al. 2002b). The two ligands that bind and activate the TAMs—Gas6 and Protein S (Pros1)—were identified shortly thereafter (Ohashi et al. 1995; Stitt et al. 1995; Mark et al. 1996; Nagata et al. 1996).Open in a separate windowFigure 1.TAM receptors and ligands. The TAM receptors (red) are Tyro3 (Lai and Lemke 1991; Lai et al. 1994)—also designated Brt (Fujimoto and Yamamoto 1994), Dtk (Crosier et al. 1994), Rse (Mark et al. 1994), Sky (Ohashi et al. 1994), and Tif (Dai et al. 1994); Axl (O''Bryan et al. 1991)—also designated Ark (Rescigno et al. 1991), Tyro7 (Lai and Lemke 1991), and Ufo (Janssen et al. 1991); and Mer (Graham et al. 1994)—also designated Eyk (Jia and Hanafusa 1994), Nyk (Ling and Kung 1995), and Tyro12 (Lai and Lemke 1991). The TAMs are widely expressed by cells of the mature immune, nervous, vascular, and reproductive systems. The TAM ligands (blue) are Gas6 and Protein S (Pros1). The carboxy-terminal SHBG domains of the ligands bind to the immunoglobulin (Ig) domains of the receptors, induce dimerization, and activate the TAM tyrosine kinases. When γ-carboxylated in a vitamin-K-dependent reaction, the amino-terminal Gla domains of the dimeric ligands bind to the phospholipid phosphatidylserine expressed on the surface on an apposed apoptotic cell or enveloped virus. See text for details. (From Lemke and Burstyn-Cohen 2010; adapted, with permission, from the authors.)Subsequent progress on elucidating the biological roles of the TAM receptors was considerably slower and ultimately required the derivation of mouse loss-of-function mutants (Camenisch et al. 1999; Lu et al. 1999). The fact that Tyro3−/−, Axl−/−, and Mer−/− mice are all viable and fertile permitted the generation of a complete TAM mutant series that included all possible double mutants and even triple mutants that lack all three receptors (Lu et al. 1999). Remarkably, these Tyro3−/−Axl−/−Mer−/− triple knockouts (TAM TKOs) are viable, and for the first 2–3 wk after birth, superficially indistinguishable from their wild-type counterparts (Lu et al. 1999). Because many RTKs play essential roles in embryonic development, even single loss-of-function mutations in RTK genes often result in an embryonic-lethal phenotype (Gassmann et al. 1995; Lee et al. 1995; Soriano 1997; Arman et al. 1998). The postnatal viability of mice in which an entire RTK family is ablated completely—the TAM TKOs can survive for more than a year (Lu et al. 1999)—is therefore highly unusual. Their viability notwithstanding, the TAM mutants go on to develop a plethora of phenotypes, some of them debilitating (Camenisch et al. 1999; Lu et al. 1999; Lu and Lemke 2001; Scott et al. 2001; Duncan et al. 2003; Prasad et al. 2006). Almost without exception, these phenotypes are degenerative in nature and reflect the loss of TAM signaling activities in adult tissues that are subject to regular challenge, renewal, and remodeling. These activities are the subject of this review.  相似文献   

8.
9.
RET (rearranged during transfection) is a receptor tyrosine kinase involved in the development of neural crest derived cell lineages, kidney, and male germ cells. Different human cancers, including papillary and medullary thyroid carcinomas, lung adenocarcinomas, and myeloproliferative disorders display gain-of-function mutations in RET. Accordingly, RET protein has become a promising molecular target for cancer treatment.The human RET (rearranged during transfection) gene maps on 10q11.2 and is composed of 21 exons spanning a region of 55,000 bp. It encodes a single-pass trans-membrane protein, RET, that belongs to the receptor tyrosine kinase (RTK) family (Pasini et al. 1995). The RET extracellular segment contains four cadherin-like domains, followed by a domain containing cysteine residues involved in the formation of intramolecular disulfide bonds (Fig. 1A) (Anders et al. 2001; Airaksinen and Saarma 2002). RET protein is highly glycosylated and N-glycosylation is necessary for its transport to the cell surface. Only the fully mature glycosylated 170 kDa RET protein isoform is exposed to the extracellular compartment, whereas the mannose-rich 150 kDa isoform is confined to the Golgi (Takahashi et al. 1993; Carlomagno et al. 1996). The transmembrane segment is composed of 22 amino acids, among which S649 and S653 mediate self-association and dimerization of RET, possibly via formation of inter-molecular hydrogen bonding (Kjaer et al. 2006). The intracellular portion of RET contains the tyrosine kinase domain split into two subdomains by the insertion of 27 amino acids. The RET COOH-terminal tail varies in length as a result of alternative splicing of the 3′ end (carboxy terminal with respect to glycine 1063), generating three different isoforms that contain 9 (RET9), 43 (RET43), or 51 (RET51) amino acids (Myers et al. 1995). RET9 and RET51 are the most abundant isoforms, and they activate similar signaling pathways through interaction with diverse protein complexes, and may exert a differential role in development (Fig. 1A) (de Graaff et al. 2001).Open in a separate windowFigure 1.Illustration of the mechanisms of activation of wild-type (wt) RET and RET-derived oncoproteins. (A) Wild-type RET activation is mediated by ligand (GFL)-induced dimerization; ligand binding to RET is not direct and mediated by GFR-α coreceptors (not shown); major RET autophosphorylation sites and downstream signaling pathways are indicated. RET extracellular cadherin-like domains are represented in red. The split intracellular RET tyrosine kinase domain, as well as the three alternative carboxy-terminal RET tails, are also depicted. (B) RET/PTC activation is mediated by coiled-coil-induced dimerization (left); activation of RET cysteine mutants associated with MEN2A or FMTC is mediated by disulfide bonds-mediated dimerization (right).RET shows several autophosphorylation sites (Fig. 1A) (Liu et al. 1996; Kawamoto et al. 2004). RET tyrosine 1062 (Y1062) functions as a multidocking site for signaling molecules containing a phosphotyrosine-binding (PTB) domain (Asai et al. 1996). Phospho-Y1062 binding proteins include SHC, N-SHC (RAI), FRS2, IRS1/2, DOK1, and DOK4/5 that, in turn, contribute to the activation of RAS-MAPK (mitogen-activated protein kinases) and PI3K (phosphatidyl inositol 3 kinase)-AKT pathways. Y1096, specific to the RET51 splicing variant, couples to the PI3K-AKT and RAS-MAPK pathways, as well. These signaling cascades mediate RET-dependent cell survival, proliferation, and motility (Alberti et al. 1998; Murakami et al. 1999; Segouffin-Cariou and Billaud 2000; Melillo et al. 2001a,b; Schuetz et al. 2004). Y905 is located in the activation loop of the RET kinase and its phosphorylation is associated with RET kinase activation (Knowles et al. 2006). Finally, Y981 and Y1015 have been shown to be coupled to important signaling molecules such as SRC and PLC-γ, respectively (Borrello et al. 1996; Encinas et al. 2004).RET is the receptor for a group of neurotrophic growth factors that belong to the glial cell line-derived neurotrophic factor (GDNF) family (GFLs, GDNF family ligands), namely, GDNF, Neurturin (NRT), Artemin (ART), and Persephin (PSF) (Airaksinen and Saarma 2002). GFLs mediate RET protein dimerization and activation (Fig. 1A). GFLs are presented to RET by GPI (glycosylphosphatidylinositol)-anchored coreceptors, called GFR-α (GDNF family receptor α 1-4). Differential tissue expression dictates the specificity of action displayed by alternative GLF-GFR-α pairs during development and adult life (Baloh et al. 2000; Airaksinen and Saarma 2002).Together with other membrane (DCC and p75NTR) or nuclear (androgen receptor, AR) receptors, RET belongs to the family of so-called “dependence” receptors (Mehlen and Bredesen 2011). In the absence of ligand, RET exerts a proapoptotic activity, that is blocked on ligand stimulation (Bordeaux et al. 2000). Such pro-apoptotic activity is RET kinase-independent and mediated by cleavage of RET cytosolic portion by caspase-3, which, in turn, releases a carboxy-terminal RET peptide that is able to induce cell death (Bordeaux et al. 2000). It is feasible that such activity is important for RET developmental function, because it may control migration of RET-expressing cells by limiting survival of cells that move beyond ligand availability (Bordeaux et al. 2000; Cañibano et al. 2007). Whether modulation of this function is also important for RET-associated diseases is still unknown. However, it is interesting to note that a cancer-associated RET mutant (RET-C634R, see below) does not exert cleavage-dependent proapoptotic effects, whereas RET mutants associated with defective development (Hirschsprung disease, see below) exert strong proapoptotic activity that is refractory to modulation by ligand (Bordeaux et al. 2000).RET is expressed in enteric ganglia, adrenal medulla chromaffin cells, thyroid C cells, sensory and autonomic ganglia of the peripheral nervous system, a subset of central nervous system nuclei, developing kidney and testis germ cells (Manié et al. 2001; de Graaff et al. 2001). RET null mice display impaired development of superior cervical ganglia and enteric nervous system, kidney agenesia, reduction of thyroid C cells, and impaired spermatogenesis (Manié et al. 2001). Accordingly, individuals with germline loss-of-function mutations of RET are affected by intestinal aganglionosis causing congenital megacolon (Hirschsprung disease) (Brooks et al. 2005). RET loss-of-function mutations have also been identified in congenital anomalies of kidney and urinary tract (CAKUT), either isolated or in combination with Hirschsprung disease (Jain 2009).Several genetic alterations convert RET into a dominantly transforming oncogene. This review will describe RET-derived oncogenes that are associated with different types of human neoplasia (Fig. 1B).  相似文献   

10.
11.
While polar organelles hold the key to understanding the fundamentals of cell polarity and cell biological principles in general, they have served in the past merely for taxonomical purposes. Here, we highlight recent efforts in unraveling the molecular basis of polar organelle positioning in bacterial cells. Specifically, we detail the role of members of the Ras-like GTPase superfamily and coiled-coil-rich scaffolding proteins in modulating bacterial cell polarity and in recruiting effector proteins to polar sites. Such roles are well established for eukaryotic cells, but not for bacterial cells that are generally considered diffusion-limited. Studies on spatial regulation of protein positioning in bacterial cells, though still in their infancy, will undoubtedly experience a surge of interest, as comprehensive localization screens have yielded an extensive list of (polarly) localized proteins, potentially reflecting subcellular sites of functional specialization predicted for organelles.Since the first electron micrographs that revealed flagella at the cell poles of bacteria, we have known that bacterial cells are polarized and that they are able to decode the underlying positional information to confine the assembly of an extracellular organelle to a polar cellular site (Fig. 1). Foraging into this unknown territory has been challenging, but recent efforts that exploit the power of bacterial genetics along with modern imaging methods to visualize proteins in the minute bacterial cells has yielded several enticing entry points to dissect polarity-based mechanisms and explore potentially contributing subdiffusive characteristics (Golding and Cox 2006).Open in a separate windowFigure 1.Transmission electron micrograph (taken by Jeff Skerker) of a Caulobacter crescentus swarmer cell showing the polar pili (empty arrowheads), the polar flagellum with the flagellar filament (filled arrowheads), and the hook (white arrow) (see Fig. 2A).While polar organelles are a visual manifestation of polarity, it is important to point out that polarity can also be inherent to cells, at least in molecular terms, even in the absence of discernible polar structures. In other words, molecular anatomy can reveal that a bacterial cell, such as an Escherichia coli cell, features specialized protein complexes at or near the poles, despite a perfectly symmetrical morphology (Maddock and Shapiro 1993; Lindner et al. 2008). Such systemic polarization in bacteria, likely stemming from the distinctive division history of each pole, has the potential to be widespread and to be exploited for positioning of polar organelles and protein complexes. As excellent reviews have been published detailing the interplay between cell polarity and protein localization (Dworkin 2009; Shapiro et al. 2009; Kaiser et al. 2010; Rudner and Losick 2010), here we focus on recent progress in understanding the function and localization of spatial regulators of polar organelles. Considering that the ever-growing list of polar protein complexes emerging from systematic and comprehensive localization studies (Kitagawa et al. 2005; Russell and Keiler 2008; Werner et al. 2009; Hughes et al. 2010) is suggestive of multiple polarly confined (organelle-like) functions, understanding their spatial regulation is also of critical relevance in the realm of medical bacteriology, as many virulence determinants also underlie polarity (Goldberg et al. 1993; Scott et al. 2001; Judd et al. 2005; Jain et al. 2006; Jaumouille et al. 2008; Carlsson et al. 2009). Below, we highlight a few prominent examples of overtly polar organelles and the proteins known to date that regulate their polar positioning.  相似文献   

12.
13.
14.
How are the asymmetric distributions of proteins, lipids, and RNAs established and maintained in various cell types? Studies from diverse organisms show that Par proteins, GTPases, kinases, and phosphoinositides participate in conserved signaling pathways to establish and maintain cell polarity.The asymmetric distribution of proteins, lipids, and RNAs is necessary for cell fate determination, differentiation, and specialized cell functions that underlie morphogenesis (St Johnston 2005; Gonczy 2008; Knoblich 2008; Macara and Mili 2008; Martin-Belmonte and Mostov 2008). A fundamental question is how this asymmetric distribution is established and maintained in different types of cells and tissues. The formation of a specialized apical surface on an epithelial cell seems quite different from the specification of axons versus dendrites in a neuron, or the asymmetric division of a nematode zygote. Yet, remarkably, a conserved molecular toolbox is used throughout the metazoa to establish and maintain cell polarity in these and many other contexts. This toolbox consists of proteins that are components of signal transduction pathways (Goldstein and Macara 2007; Assemat et al. 2008; Yamanaka and Ohno 2008). However, our understanding of these pathways, and their intersection with other signaling networks, remains incomplete. Moreover, the regulation and cross talk between the polarity proteins and other signaling components varies from one context to another, which complicates the task of dissecting polarity protein function. Nonetheless, rapid progress is being made in our understanding of polarity signaling, which is outlined in this article, with an emphasis on the Par proteins, because these proteins play major roles integrating diverse signals that regulate cell polarity (Fig. 1) (see Munro and Bowerman 2009; Prehoda 2009; Nelson 2009).Open in a separate windowFigure 1.An overview of Par complex signaling, showing inputs (bottom) and outputs (top) with cellular functions that are targeted by these pathways (italics).  相似文献   

15.
Base excision repair (BER) corrects DNA damage from oxidation, deamination and alkylation. Such base lesions cause little distortion to the DNA helix structure. BER is initiated by a DNA glycosylase that recognizes and removes the damaged base, leaving an abasic site that is further processed by short-patch repair or long-patch repair that largely uses different proteins to complete BER. At least 11 distinct mammalian DNA glycosylases are known, each recognizing a few related lesions, frequently with some overlap in specificities. Impressively, the damaged bases are rapidly identified in a vast excess of normal bases, without a supply of energy. BER protects against cancer, aging, and neurodegeneration and takes place both in nuclei and mitochondria. More recently, an important role of uracil-DNA glycosylase UNG2 in adaptive immunity was revealed. Furthermore, other DNA glycosylases may have important roles in epigenetics, thus expanding the repertoire of BER proteins.Base excision repair (BER) corrects small base lesions that do not significantly distort the DNA helix structure. Such damage typically results from deamination, oxidation, or methylation (Fig. 1). Much of the damage is the result of spontaneous decay of DNA (Lindahl 1993), although similar damage may also be caused by environmental chemicals, radiation, or treatment with cytostatic drugs. BER takes place in nuclei, as well as in mitochondria, largely using different isoforms of proteins or genetically distant proteins. The identification of Escherichia coli uracil-DNA glycosylase (Ung) in 1974 by Tomas Lindahl marks the discovery of BER. Lindahl searched for an enzyme activity that would act on genomic uracil resulting from cytosine deamination. Such an activity was found, but rather unexpectedly, it was not a nuclease. Instead, Lindahl identified an enzyme that cleaved the bond between uracil and deoxyribose. The resulting abasic site (AP-site) was suggested to be further processed by an AP-endonuclease, an exonuclease, a DNA polymerase, and a ligase. Thus, the fundamental steps in the BER pathway were outlined already in the very first paper (Lindahl 1974). Enzymes that cleave the bond between deoxyribose and a modified or mismatched DNA base are now called DNA glycosylases. Collectively these enzymes initiate base excision repair of a large number of base lesions, each recognized by one or a few DNA glycosylases with overlapping specificities.Open in a separate windowFigure 1.Chemistry of common base lesions and abasic sites.This relatively brief review focuses on recent advances in the mechanism and function of BER with a focus on mammalian proteins. The current view is that BER is important in relation to cancer, neurodegeneration, and aging (Jeppesen et al. 2011; Wallace et al. 2012). Because of limited space, we have referred to reviews for the majority of results published more than 6–7 years ago. Also, for more detailed analyses of different aspects of BER, the reader is referred to excellent reviews on BER proteins and pathways published in Huffman et al. (2005), Beard and Wilson (2006), Berti and McCann (2006), Cortázar et al. (2007), Kavli et al. (2007), Sousa et al. (2007), Tubbs et al. (2007), Berger et al. (2008), Robertson et al. (2009), Friedman and Stivers (2010), Wilson et al. (2010), Svilar et al. (2011), and Jacobs and Schar (2012).  相似文献   

16.
Metabotropic glutamate receptors type 1 (mGluR1s) are required for a normal function of the mammalian brain. They are particularly important for synaptic signaling and plasticity in the cerebellum. Unlike ionotropic glutamate receptors that mediate rapid synaptic transmission, mGluR1s produce in cerebellar Purkinje cells a complex postsynaptic response consisting of two distinct signal components, namely a local dendritic calcium signal and a slow excitatory postsynaptic potential. The basic mechanisms underlying these synaptic responses were clarified in recent years. First, the work of several groups established that the dendritic calcium signal results from IP3 receptor-mediated calcium release from internal stores. Second, it was recently found that mGluR1-mediated slow excitatory postsynaptic potentials are mediated by the transient receptor potential channel TRPC3. This surprising finding established TRPC3 as a novel postsynaptic channel for glutamatergic synaptic transmission.Glutamate is the predominant neurotransmitter used by excitatory synapses in the mammalian brain (Hayashi 1952; Curtis et al. 1959). At postsynaptic sites, glutamate binds to two different classes of receptors, namely the ionotropic glutamate receptors (iGluRs) and the metabotropic glutamate receptors (mGluRs) (Sladeczek et al. 1985; Nicoletti et al. 1986; Sugiyama et al. 1987). The iGluRs represent ligand-gated nonselective cation channels that underlie excitatory postsynaptic currents (EPSCs). Based on their subunit composition, gating, and permeability properties, they are subdivided into three groups named after specific agonists: AMPA- (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), NMDA receptors (N-methyl D-aspartate receptors) and kainate receptors (Alexander et al. 2009). The other class of glutamate receptors, the mGluRs, consists of receptors that are coupled to G proteins and act through distinct downstream signaling cascades. They are structurally different from iGluRs and characterized by the presence of seven transmembrane domains (Houamed et al. 1991; Masu et al. 1991). The mGluRs exist as homodimers that do not by themselves form an ion-permeable pore in the membrane (Ozawa et al. 1998). To date, eight different genes (and more splice variants) encoding mGluRs have been identified and form the mGluR1 through mGluR8 subtypes (Alexander et al. 2009). Based on the amino acid sequence homology, downstream signal transduction pathways, and pharmacological properties, each of the subtypes was assigned to one of three groups. Group I receptors consist of mGluR1 and mGluR5 that positively couple to the phospholipase C (PLC). The receptors mGluR2 and mGluR3 constitute group II, whereas the remaining mGluRs, namely mGluR4, mGluR6, mGluR7, and mGluR8, belong to group III. Both groups II and III inhibit the adenylyl cyclase and thereby reduce the concentration of cAMP in the cytosol.Of all different subtypes, mGluR1 is the most abundantly expressed mGluR in the mammalian central nervous system. In the brain, mGluR1 is highly expressed in the olfactory bulb, dentate gyrus, and cerebellum (Lein et al. 2007). The highest expression level of mGluR1 in the brain is found in Purkinje cells, the principal neurons of the cerebellar cortex (Shigemoto et al. 1992; Lein et al. 2007). Together with the AMPA receptors, mGluR1s are part of the excitatory synapses formed between parallel fibers and Purkinje cells (Fig. 1A). Each Purkinje cell is innervated by 100,000–200,000 parallel fibers (Ito 2006) that are axons of the cerebellar granule cells, the most abundant type of neuron in the brain. A second type of excitatory input to Purkinje cells is represented by the climbing fibers that originate in the inferior olive in the brain stem (Ito 2006). The two excitatory synaptic inputs to Purkinje cells are important determinants for the main functions of the cerebellum, including the real-time control of movement precision, error-correction, and control of posture as well as the procedural learning of complex movement sequences and conditioned responses.Open in a separate windowFigure 1.Parallel fiber-evoked mGluR1-dependent signals. (A) Diagram showing the parallel fiber synaptic input to Purkinje cell dendrites. (B) Microelectrode recording of glutamatergic postsynaptic potentials from a Purkinje cell in an acute slice of adult rat cerebellum. Short trains of stimuli to the parallel fibers (5–6 at 50 Hz) caused summation of the early AMPA receptor-dependent EPSPs (leading to spike firing) and a slow, delayed, depolarizing potential (slow EPSP), which was reversibly inhibited by antagonist of mGluRs (+)-MCPG (1mM). (C) Confocal image of a patch-clamped Purkinje cell in a cerebellar slice of an adult mouse. The patch-clamp pipette and the glass capillary used for electrical stimulation of parallel fibers are depicted schematically. The site of stimulation is shown at higher magnification in D. (D) Left: Parallel fiber-evoked (five pulses at 200 Hz, in 10 mM CNQX) synaptic responses consisting of a dendritic mGluR1-dependent Ca2+ transient (ΔF/F, top) and an early rapid and a slow excitatory postsynaptic current (EPSC, bottom). Block of the mGluR1-dependent components by the group I-specific mGluR-antagonist CPCCOEt (200 µM) is shown as indicated. Right: Pseudocolor image of the synaptic Ca2+ signal. (B, Reprinted with modifications, with permission, from Batchelor and Gaithwaite 1997 [Nature Publishing Group].)It is expected that mGluR1 is involved in many of these cerebellar functions. This view is supported by the observation that mGluR1-deficient knockout mice show severe impairments in motor coordination. In particular, the gait of these mice is strongly affected as well as their ability for motor learning and general coordination (Aiba et al. 1994). The phenotype of the general mGluR1-knockout mice is rescued by the insertion of the gene encoding mGluR1 exclusively into cerebellar Purkinje cells (Ichise et al. 2000) and blockade of mGluR1 expression only in Purkinje cells of adult mice leads to impaired motor coordination (Nakao et al. 2007). These findings established mGluR1 in Purkinje cell as synaptic receptors that are indispensable for a normal cerebellar function.Synaptic transmission involving mGluR1s is found at both parallel fiber-Purkinje cell synapses (Batchelor and Garthwaite 1993; Batchelor et al. 1994) as well as at climbing fiber-Purkinje cell synapses (Dzubay and Otis 2002). Most of our knowledge on the mGluR1 was gained from the analysis of the parallel fiber synapses. The parallel fiber synapse is quite unique in the central nervous system regarding its endowment with neurotransmitter receptors. In contrast to most other glutamatergic synapses in the mammalian brain, it lacks functional NMDA receptors (Shin and Linden 2005). The entire synaptic transmission at these synapses relies on AMPA receptors and on mGluR1 (Takechi et al. 1998). Although AMPA receptors are effectively activated even with single shock stimuli (Konnerth et al. 1990; Llano et al. 1991b), activation of mGluRs requires repetitive stimulation (Batchelor and Garthwaite 1993; Batchelor et al. 1994; Batchelor and Garthwaite 1997; Takechi et al. 1998). A possible explanation for the need of repetitive stimulation may relate to the observation that mGluR1s are found mostly at the periphery of the subsynaptic region (Nusser et al. 1994). At these sites outside the synaptic cleft, glutamate levels that are sufficiently high for receptor activation may be reached only with repetitive stimulation.At parallel fiber-Purkinje cell synapses, repetitive stimulation produces an initial AMPA receptor postsynaptic signal component, followed by a more prolonged mGluR1 component (Fig. 1). Figure 1B shows a current clamp recording of this response consisting of an early burst of action potentials, followed by a prolonged depolarization known as a “slow excitatory postsynaptic potential” (slow EPSP) (Batchelor and Garthwaite 1993; Batchelor et al. 1994; Batchelor and Garthwaite 1997). Voltage-clamp recordings allow a clear separation of the initial rapid, AMPA receptor mediated excitatory postsynaptic current (EPSC) and the mGluR1-mediated slow EPSC (Fig. 1D) (Takechi et al. 1998; Hartmann et al. 2008). In addition of inducing the slow EPSPs, mGluR1s mediate a large and highly localized dendritic calcium transient in cerebellar Purkinje cells (Fig. 1D) (Llano et al. 1991a; Finch and Augustine 1998; Takechi et al. 1998).  相似文献   

17.
How morphogen gradients are formed in target tissues is a key question for understanding the mechanisms of morphological patterning. Here, we review different mechanisms of morphogen gradient formation from theoretical and experimental points of view. First, a simple, comprehensive overview of the underlying biophysical principles of several mechanisms of gradient formation is provided. We then discuss the advantages and limitations of different experimental approaches to gradient formation analysis.How a multicellular organism develops from a single fertilized cell has fascinated people throughout history. By looking at chick embryos of different developmental stages, Aristotle first noted that development is characterized by growing complexity and organization of the embryo (Balme 2002). During the 19th century, two events were recognized as key in development: cell proliferation and differentiation. Driesch first noted that to form organisms with correct morphological pattern and size, these processes must be controlled at the level of the whole organism. When he separated two sea urchin blastomeres, they produced two half-sized blastula, showing that cells are potentially independent, but function together to form a whole organism (Driesch 1891, 1908). Morgan noted the polarity of organisms and that regeneration in worms occurs with different rates at different positions. This led him to postulate that regeneration phenomena are influenced by gradients of “formative substances” (Morgan 1901).The idea that organisms are patterned by gradients of form-providing substances was explored by Boveri and Hörstadius to explain the patterning of the sea urchin embryo (Boveri 1901; Hörstadius 1935). The discovery of the Spemann organizer, i.e., a group of dorsal cells that when grafted onto the opposite ventral pole of a host gastrula induce a secondary body axis (Spemann and Mangold 1924), suggested that morphogenesis results from the action of signals that are released from localized groups of cells (“organizing centers”) to induce the differentiation of the cells around them (De Robertis 2006). Child proposed that these patterning “signals” represent metabolic gradients (Child 1941), but the mechanisms of their formation, regulation, and translation into pattern remained elusive.In 1952, Turing showed that chemical substances, which he called morphogens (to convey the idea of “form producers”), could self-organize into spatial patterns, starting from homogenous distributions (Turing 1952). Turing’s reaction–diffusion model shows that two or more morphogens with slightly different diffusion properties that react by auto- and cross-catalyzing or inhibiting their production, can generate spatial patterns of morphogen concentration. The reaction–diffusion formalism was used to model regeneration in hydra (Turing 1952), pigmentation of fish (Kondo and Asai 1995; Kondo 2002), and snails (Meinhardt 2003).At the same time that Turing showed that pattern can self-organize from the production, diffusion, and reaction of morphogens in all cells, the idea that morphogens are released from localized sources (“organizers” à la Spemann) and form concentration gradients was still explored. This idea was formalized by Wolpert with the French flag model for generation of positional information (Wolpert 1969). According to this model, morphogen is secreted from a group of source cells and forms a gradient of concentration in the target tissue. Different target genes are expressed above distinct concentration thresholds, i.e., at different distances to the source, hence generating a spatial pattern of gene expression (Fig. 1C).Open in a separate windowFigure 1.Tissue geometry and simplifications. (A) Gradients in epithelia (left) and mesenchymal tissues (right). Because of symmetry considerations, one row of cells (red outline) is representative for the whole gradient. (B) Magnified view of the red row of cells shown in A. Cells with differently colored nuclei (brown, orange, and blue) express different target genes. (C) A continuum model in which individual cells are ignored and the concentration is a function of the positions x. The morphogen activates different target genes above different concentration thresholds (brown and orange).Experiments in the 1970s and later confirmed that tissues are patterned by morphogen gradients. Sander showed that a morphogen released from the posterior cytoplasm specifies anterioposterior position in the insect egg (Sander 1976). Chick wing bud development was explained by a morphogen gradient emanating from the zone of polarizing activity to specify digit positions (Saunders 1972; Tickle, et al. 1975; Tickle 1999). The most definitive example of a morphogen was provided with the identification of Bicoid function in the Drosophila embryo (Nüsslein-Volhard and Wieschaus 1980; Frohnhöfer and Nüsslein-Volhard 1986; Nüsslein-Volhard et al. 1987) and the visualization of its gradient by antibody staining (Driever and Nüsslein-Volhard 1988b, 1988a; reviewed in Ephrussi and St Johnston 2004). Since then, many examples of morphogen gradients acting in different organs and species have been found.In an attempt to understand pattern formation in more depth, quantitative models of gradient formation have been developed. An early model by Crick shows that freely diffusing morphogen produced in a source cell and destroyed in a “sink” cell at a distance would produce a linear gradient in developmentally relevant timescales (Crick 1970). Today, it is known that a localized “sink” is not necessary for gradient formation: Gradients can form if all cells act as sinks and degrade morphogen, or even if morphogen is not degraded at all. Here, we review different mechanisms of gradient formation, the properties of these gradients, and the implications for patterning. We discuss the theory behind these mechanisms and the supporting experimental data.  相似文献   

18.
Nodes of Ranvier and axon initial segments of myelinated nerves, sites of cell–cell contact in early embryos and epithelial cells, and neuromuscular junctions of skeletal muscle all perform physiological functions that depend on clustering of functionally related but structurally diverse ion transporters and cell adhesion molecules within microdomains of the plasma membrane. These specialized cell surface domains appeared at different times in metazoan evolution, involve a variety of cell types, and are populated by distinct membrane-spanning proteins. Nevertheless, recent work has shown that these domains all share on their cytoplasmic surfaces a membrane skeleton comprised of members of the ankyrin and spectrin families. This review will summarize basic features of ankyrins and spectrins, and will discuss emerging evidence that these proteins are key players in a conserved mechanism responsible for assembly and maintenance of physiologically important domains on the surfaces of diverse cells.Spectrins are flexible rods 0.2 microns in length with actin-binding sites at each end (Shotton et al. 1979; Bennett et al. 1982) (Fig. 1A). Spectrins are assembled from α and β subunits, each comprised primarily of multiple copies of a 106-amino acid repeat (Speicher and Marchesi 1984). In addition to the canonical 106-residue repeat, β spectrins also have a carboxy-terminal pleckstrin homology domain (Zhang et al. 1995; Macias et al. 1994) and tandem amino-terminal calponin homology domains (Bañuelos et al. 1998), whereas α spectrins contain an Src homology domain 3 (SH3) site (Musacchio et al. 1992), a calmodulin-binding site (Simonovic et al. 2006), and EF hands (Travé et al. 1995) (Fig. 1A). Spectrin α and β subunits are assembled antiparallel and side-to-side into heterodimers, which in turn are associated head-to-head to form tetramers (Clarke 1971; Shotton et al. 1979; Davis and Bennett 1983) (Fig. 1A). In human erythrocytes, in which spectrin was first characterized (Marchesi and Steers 1968; Clarke 1971), actin oligomers containing 10–14 monomers are each linked to five to six spectrin tetramers by accessory proteins to form a geodesic domelike structure that has been resolved by electron microscopy (Byers and Branton 1985). The principal proteins at the spectrin–actin junction are protein 4.1, adducin, tropomyosin, tropomodulin, and dematin (Bennett and Baines 2001) (Open in a separate windowFigure 1.Domain structure and variants of spectrin and ankyrin proteins. (A) Molecular domains of spectrins: Two α spectrins and five β spectrins are shown. Spectrins are comprised of modular units called spectrin repeats (yellow). Other domains such as the ankyrin binding domain (purple), Src-homology domain 3 (SH3, blue), EF-hand domain (red), and calmodulin-binding domain (green) promote interactions with binding targets important for spectrin function. The pleckstrin homology domain (black) promotes association with the plasma membrane and the actin binding domain (grey) tethers the spectrin-based membrane skeleton to the underlying actin cytoskeleton. (B) The spectrin tetramer, the fundamental unit of the spectrin-based membrane skeleton. The spectrin repeat domains of α and β spectrin associate end-to-end to form heterodimers. Heterodimers associate laterally in an antiparallel fashion to form tetramers. The tetramers can then associate end-to-end to form extended macromolecules that link into a geodesic dome shape directly underneath the plasma membrane. (C) Molecular domains present in canonical ankyrins. The membrane binding domain of ankyrin isoforms (orange) is comprised of 24 ANK repeats. The spectrin binding domain (green-blue) allows ankyrins to coordinate integral membrane proteins to the membrane skeleton. The death domain (pink) is the most highly conserved domain. The regulatory domain (brown) is the most variable region of ankyrins. The regulatory domain interacts intramolecularly with the membrane binding domain to modulate ankyrin’s affinity for other binding partners. All ankyrins and spectrins are subject to alternative splicing, which further increases their functional diversity.

Table 1.

Binding partners of spectrin and ankyrins
Spectrin Binding Partners
AlphaBeta
Transporters/ion channels
EnNaC (sodium)
NHE2 (ammonium)
Membrane anchors
PI lipids
Band 4.1
Ankyrin
EAAT4 (glutamate)
Membrane receptors
NMDA receptor
Signaling
RACK-1
Signaling
HsSH3pb1
Calmodulin
Cytoskeleton/cellular transport
F-actin
Adducin
Dynactin
Ankyrin Binding Partners
Membrane BDSpectrin BDDDREG D
Ion channels:
Anion exchanger
Na+/K+ATPase
Voltage-gated
Na+ channels
Na+/Ca2+ Exchanger
KCNG2/3
Rh antigen
IP3 receptor
Ryanodine receptor
Cell adhesion molecules:
L1-CAMs
CD44
E-cadherin
Dystroglycan
Cellular transport:
Tubulin
Clathrin
SpectrinFasLHsp40
Obscurin
PP2A
Open in a separate windowSpectrin is coupled to the inner surface of the erythrocyte membrane primarily through association with ankyrin, which is in turn linked to the cytoplasmic domains of the anion exchanger (Bennett 1978; Bennett and Stenbuck 1979a,b) and Rh/RhAG ammonium transporter (Nicolas et al. 2003). The spectrin-based membrane skeleton and its connections through ankyrin to membrane-spanning proteins are essential for survival of erythrocytes in the circulation, and mutations in these proteins result in hereditary hemolytic anemia (Bennett and Healy 2008). The ankyrin-binding sites of β spectrins 1–4 are located in the 15th spectrin repeat, which is folded identically to other repeats but has distinct surface-exposed residues (Davis et al. 2008; Ipsaro et al. 2009; Stabach et al. 2009) (Figs. 1A, A,2A).2A). Mammalian β-5 spectrin and its ortholog β-H spectrin in Drosophila and Caenorhabditis elegans are the only β spectrins lacking ankyrin-binding activity (Dubreuil et al. 1990; Thomas et al. 1998; McKeown et al. 1998; Stabach and Morrow 2000).Open in a separate windowFigure 2.Ankyrins and spectrins organize macromolecular complexes in diverse types of specialized membranes. (A) Ankyrin-G forms a complex with β-IV spectrin, neurofascin (a cell adhesion protein), and ion channels (KCNQ2/3 and voltage-gated sodium channel) at axon initial segments in Purkinje neurons. (B) In force buffering costameres of skeletal muscle, ankyrins -B and -G cooperate to target and stabilize key components of the dystroglycoprotein complex. At the membrane, ankyrin-G binds to dystrophin and β-dystroglycan. (C) In cardiomyocyte transverse tubules, ankyrins -B and -G coordinate separate microdomains. Ankyrin-B binds Na+/K+ ATPase, Na+/Ca2+ exchanger (NCX-1), and the inositol triphosphate receptor (IP3R). Ankyrin-G forms a complex with Nav1.5 and spectrin. (D) Ankyrin-G in epithelial lateral membrane assembly. Ankyrin-G binds to E-cadherin, β-2 spectrin, and the Na+/K+ ATPase. Spectrins are connected via F-actin bridges bound to α/γ adducin and tropomodulin.Ankyrin interacts with β spectrins through a ZU5 domain (Mohler et al. 2004a; Kizhatil et al. 2007a; Ipsaro et al. 2009) (Fig. 1B), and with most of its membrane partners through ANK repeats (Bennett and Baines 2001) (Fig. 2C,D). In addition, ankyrins have a highly conserve “death domain” and a carboxy-terminal regulatory domain (see the following discussion). The 24 ANK repeats are stacked in a superhelical array to form a solenoid (Michaely et al. 2002). Interestingly, the ANK repeat stack behaves like a reversible spring when stretched by atomic force microscopy, and may function in mechano-coupling in tissues such as the heart (Lee et al. 2006). ANK repeats are components of many proteins and participate in highly diverse protein interactions (Mosavi et al. 2004) (Fig. 2C). This versatile motif currently is being exploited using designed ANK repeat proteins (DARPins) engineered to interact with specific ligands that can function as substitutes for antibodies (Stumpp and Amstutz 2007; Steiner et al. 2008).Spectrin and ankyrin family members are expressed in most, if not all, animal (metazoan) cells, but are not present in bacteria, plants, or fungi. Spectrins are believed to have evolved from an ancestral α-actinin containing calponin homology domains and two spectrin repeats but not other domains (Thomas et al. 1997; Pascual et al. 1997). Ankyrin repeats are expressed in all phyla, presumably because of a combination of evolutionary relationships and in cases of bacteria and viruses by horizontal gene transfer. However, the spectrin-binding domain of ankyrin is present only in metazoans (Fig 1B). It is possible that evolution of ankyrins and spectrins could have been one of the adaptations required for organization of cells into tissues in multicellular animals.The human spectrin family includes two α subunits and five β subunits, whereas Drosophila and C. elegans have a single α subunit and two β subunits (Bennett and Baines 2001). Vertebrate ankyrins are encoded by three genes: ankyrin-R (ANK1) (the isoform first characterized in erythrocytes and also present in a restricted distribution in brain and muscle), ankyrin-B (ANK2), and ankyrin-G (ANK3). Vertebrate ankyrins evolved from a single gene in early chordates (Cai and Zhang 2006). C. elegans ankyrin is encoded by a single gene termed unc-44 (Otsuka et al. 1995), whereas the Drosophila genome contains two ankyrin genes: ankyrin (Dubreuil and Yu 1994) and ankyrin2 (Bouley et al. 2000).Mammalian ankyrins -B and -G are co-expressed in most cells, although they have distinct functions (Mohler et al. 2002; Abdi et al. 2006). Ankyrins -B and -G are closely related in their ANK repeats, and spectrin-binding domains, but diverge in their carboxy-terminal regulatory domains. Regulatory domains are natively unstructured and extended (Abdi et al. 2006). These flexible domains engage in intramolecular interactions with the membrane-binding and spectrin-binding domains (Hall and Bennett 1987; Davis et al. 1992; Abdi et al. 2006) that modulate protein associations and provide functional diversity between otherwise conserved ankyrins.In addition to the standard versions of ankyrins and spectrin subunits depicted in Figure 1, many variants of these proteins are expressed with the addition and/or deletion of functional domains because of alternative splicing of pre-mRNAs. For example, β spectrins can lack PH domains (Hayes et al. 2000), and giant ankyrins have insertions of up to 2000 residues (Kordeli et al. 1995; Chan et al. 1993; Pielage et al. 2008; Koch et al. 2008), whereas other ankyrins lack either the entire membrane-binding domain (Hoock et al. 1997), or both membrane- and spectrin-binding domains (Zhou et al. 1997). The insertions in 440 kDa ankyrin-B and 480 kDa ankyrin-G (Fig. 1B) have an extended conformation that potentially could have specialized roles in connections between the plasma membrane and cytoskeleton of axons where these giant ankyrins reside (Chan et al. 1993; Kordeli et al. 1995) (Fig. 1B). Interestingly, the inserted sequences in Drosophila giant ankyrins interact with microtubules at the presynaptic neuromuscular junction (Pielage et al. 2008) (see the following section).  相似文献   

19.
The control of translation and mRNA degradation is important in the regulation of eukaryotic gene expression. In general, translation and steps in the major pathway of mRNA decay are in competition with each other. mRNAs that are not engaged in translation can aggregate into cytoplasmic mRNP granules referred to as processing bodies (P-bodies) and stress granules, which are related to mRNP particles that control translation in early development and neurons. Analyses of P-bodies and stress granules suggest a dynamic process, referred to as the mRNA Cycle, wherein mRNPs can move between polysomes, P-bodies and stress granules although the functional roles of mRNP assembly into higher order structures remain poorly understood. In this article, we review what is known about the coupling of translation and mRNA degradation, the properties of P-bodies and stress granules, and how assembly of mRNPs into larger structures might influence cellular function.The translation and decay of mRNAs play key roles in the control of eukaryotic gene expression. The determination of eukaryotic mRNA decay pathways has allowed insight into how translation and mRNA degradation are coupled. Degradation of eukaryotic mRNAs is generally initiated by shortening of the 3′ poly (A) tail (Fig. 1A) (reviewed in Parker and Song 2004; Garneau et al. 2007) by the major mRNA deadenylase, the Ccr4/Pop2/Not complex (Daugeron et al. 2001; Tucker et al. 2001; Thore et al. 2003). Following deadenylation, mRNAs can be degraded 3′ to 5′ by the exosome (Anderson and Parker 1998; Wang and Kiledjian 2001). However, more commonly, mRNAs are decapped by the Dcp1/Dcp2 decapping enzyme and then degraded 5′ to 3′ by the exonuclease, Xrn1 (Decker and Parker 1993; Hsu and Stevens 1993; Muhlrad et al. 1994, 1995; Dunckley and Parker 1999; van Dijk et al. 2002; Steiger et al. 2003). In metazoans, a second decapping enzyme, Nudt16, also contributes to mRNA turnover (Song et al. 2010).Open in a separate windowFigure 1.Eukaryotic mRNA decay pathways. (A) General mRNA decay pathways. (B) Specialized decay pathways that degrade translationally aberrant mRNAs.The processes of mRNA decay and translation are interconnected in eukaryotic cells in many ways. For example, quality control mechanisms exist to detect aberrancies in translation, which then lead to mRNAs being degraded by specialized mRNA decay pathways (Fig. 1B). Nonsense-mediated decay (NMD) is one such mRNA quality control system that degrades mRNAs that terminate translation aberrantly. In yeast, aberrant translation termination leads to deadenylation-independent decapping (Muhlrad and Parker 1994), whereas in metazoan cells NMD substrates can be both decapped and endonucleolytically cleaved and degraded (reviewed in Isken and Maquat 2007). A second quality control system for mRNA translation is referred to as no-go decay (NGD) and leads to endonucleolytic cleavage of mRNAs with strong stalls in translation elongation (Doma and Parker 2006; reviewed in Harigaya and Parker 2010). Another mechanism of mRNA quality control is the rapid 3′ to 5′ degradation of mRNAs that do not contain translation termination codons, which is referred to as non-stop decay (NSD) (Frischmeyer et al. 2002; van Hoof et al. 2002). The available evidence suggests these specialized mechanisms function primarily on aberrant mRNAs that are produced by defects in splicing, 3′ end formation, or damage to RNAs.The main pathway of mRNA degradation is also in competition with translation initiation. Competition between the two processes was first suggested by the observation that removal of the poly (A) tail and the cap structure, both of which stimulate translation initiation, were the key steps in mRNA degradation. In addition, inhibition of translation initiation by strong secondary structures in the 5′UTR, translation initiation inhibitors, a poor AUG context, or mutations in initiation factors increases the rates of deadenylation and decapping (Muhlrad et al. 1995; Muckenthaler et al. 1997; Lagrandeur and Parker 1999; Schwartz and Parker 1999). Moreover, the cap binding protein eIF4E, known to stimulate translation initiation, inhibits the decapping enzyme, Dcp1/Dcp2, both in vivo and in vitro (Schwartz and Parker 1999; Schwartz and Parker 2000). Finally, many mRNA specific regulatory factors, (e.g., miRNAs or PUF proteins), both repress translation and accelerate deadenylation and decapping (reviewed in Wickens et al. 2002; Behm-Ansmant et al. 2006; Franks and Lykke-Anderson 2008; Shyu et al. 2008).In the simplest model, the competition between translation and mRNA degradation can be understood through changes in the proteins bound to the cap and poly (A) tail that then influence the accessibility of these structures to deadenylases and decapping enzymes. For example, given that the Ccr4/Pop2/Not deadenylase complex is inhibited by poly (A)-binding protein (Pab1) (Tucker et al. 2002), the effects of translation on deadenylation are most likely through dynamic changes in the association of Pab1 binding with the poly (A) tail. One possibility is that defects in translation initiation either directly or indirectly decrease Pab1 association with the poly (A) tail. Deadenylation is also affected by aspects of translation termination. For instance, premature translation termination in yeast accelerates poly (A) shortening as part of the process of NMD (Cao and Parker 2003; Mitchell and Tollervey 2003). The coupling of translation termination to deadenylation has been suggested to occur through direct interactions of the translation termination factor eRF3 with Pab1 (Cosson et al. 2002), which may lead to Pab1 transiently dissociating from the poly (A) tail. Interestingly, in yeast, once the poly (A) tail reaches an oligo (A) length of 10–12 residues, a length that reduces the affinity of Pab1, the mRNA can become a substrate for decapping and for binding of the Pat1/Lsm1-7 complex (Tharun and Parker 2001; Chowdhury et al. 2007), which enhances the rate of decapping. This exchange of the Pab1 protein for the Pat1/Lsm1-7 complex is part of the mechanism that allows decapping to be promoted following deadenylation.A similar mRNP dynamic is also likely to occur on the cap structure. Specifically, the competition between translation initiation and decapping suggests that prior to decapping, translation initiation factors are exchanged for decapping factors, thereby assembling a distinct “decapping” mRNP that is no longer capable of translation initiation (Tharun and Parker 2001). This idea is supported by the observation that some decapping activators also function as translational repressors (Coller and Parker 2005; Pilkington and Parker 2008; Nissan et al. 2010). Thus, mRNA decapping appears to occur in two steps, first inhibition of translation initiation and exchange of translation factors for the general repression/degradation machinery, and a second step whereby the mRNA is actually degraded. Thus, by understanding the changes in mRNP states between actively translating mRNAs and mRNAs that are translationally repressed and possibly stored or ultimately degraded we will better understand how the fate of mRNAs is controlled in the cytoplasm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号