首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The venoms of Latrodectus sp. have been reported to induce contraction probably mediated by adrenergic and cholinergic transmitters. We have demonstrated that the venom of Chilean Latrodectus mactans contains neurotoxins that induce a contraction partially independent of transmitters release. Transmembrane mobility of Na+ and Ca2+ ions and more specifically, the increase of cytoplasmic calcium concentration are responsible for tonic contraction in smooth muscle. Calcium may enter the cell by several ways, such as the voltage-dependent Ca2+ L-type channels and the Na+/Ca2+ exchanger. This study aimed to examine the participation of this exchanger in the tonic contraction of smooth muscle in vas deferent of rat induced by the venom of the Chilean spider L. mactans. Blockers of Na+ channels (amiloride) and Ca2+ L-type channels (nifedipine), and a stimulator of the exchanger (modified Tyrode, Na+ 80 mM) were used. Simultaneously, variations of the cytoplasmic concentration of Ca2+ were registered by microfluorimetry (Fura-2 indicator) in the presence of nifedipine. In presence of amiloride, dose-dependent inhibition of venom-induced contraction was observed, suggesting the participation of voltage-dependent Ca2+ L-type channels. The contraction was only partially inhibited by nifedipine and the Ca2+ cytoplasmic concentration increased, as assessed by the microfluorimetric registration. Finally, the venom-induced contraction increased in the presence of modified Tyrode, probably due to the action of the Na+/Ca2+ exchanger. Taken together, our results support the idea that the Na+/Ca2+ exchanger is active and may be, at least in part, responsible for the contraction induced by the venom of Chilean L. mactans.  相似文献   

2.
The contribution of Na+ and membrane depolarization to biphasic contractions induced by adrenaline were investigated in the smooth muscle of guinea pig vas deferens. Adrenaline (5 X 10(-6) M) produced an initial small contraction (first contraction) followed by a large tonic contraction (second contraction) with subsequent rhythmic activity. The entire response to adrenaline was largely inhibited by phentolamine (5 X 10(-6) M). By adding an appropriate concentration of Mn2+ (2 X 10(-4) M) or nifedipine (3 X 10(-7) M), a Ca2+ blocker, the second contraction was strongly reduced, accompanied by abolishment of the rhythmic contraction, whereas the first contraction was virtually unaffected. However, the first contraction was markedly suppressed by a higher concentration of Mn2+. All contractions produced by adrenaline were greatly reduced in Ca2+-free solution containing 0.5 mM EGTA. By lowering external Na+ concentration, the first contraction was markedly increased without greatly affecting the second contraction. By exposure to Na+-free isotonic high K+ solution, which elicited a greater depolarization of the membrane, the first contraction produced by adrenaline was also greatly potentiated, while the second and rhythmic contractions were eliminated. These results suggest that the adrenaline-evoked first contraction may be due to an influx of membrane bound Ca2+ which is independent of membrane depolarization, while the second (rhythmic) contraction is due to an influx of extracellular Ca2+ which is dependent upon depolarization.  相似文献   

3.
Effects of temperature and Na0+ on the relaxation of guinea-pig ureter smooth muscle were studied. Relaxation of phasic contraction was found to be highly temperature-dependent, practically independent of Na0+ and Ca02+, and resistant to vanadate. The relaxation of the tonic tension of both high-K and low-Na contracture was less temperature-dependent and affected by Na0+. The relaxation of tonic tension produced by introduction of Na0+ was about 3-5 times faster than that produced by Ca-free solution. La3+ ions were found to block the relaxation of the tonic component of the Na+-free contracture initiated by removal of Ca02+. Three systems of regulation of cell calcium are suggested to be operative in the ureter muscle: a fast one which is highly temperature-dependent and responsible for the relaxation of the phasic contraction (probably the sarcoplasmic reticulum), and two slow membrane-linked carriers, one of which is dependent on Na0+ (probably Na-Ca exchange) and another one which is independent of Na0+ and inhibited by La3+ (probably Ca-pump).  相似文献   

4.
Stimulation of the tracheal muscle bundle by acetylcholine (ACh) results in the generation of asynchronous repetitive Ca2+ waves (ACW) in intact tracheal smooth muscle (TSM) cells. We showed previously that ACW underlie cholinergic excitation-contraction coupling in porcine TSM and that Ca2+ entry through the L-type voltage-gated Ca2+ channel (VGCC) contributes partially to maintenance of the ACW. However, the mechanism of the ACW remains undefined. In this study, we pharmacologically characterized the mechanism of ACh-induced ACW in the intact porcine tracheal muscle bundle. We found that inhibition of receptor-operated channels/store-operated channels (ROC/SOC) by SKF-96365 completely abolished the nifedipine-insensitive component of ACh-mediated ACW and tonic contraction. Blockade of Na+/Ca2+ exchange with KB-R7943 or 2',4'-dichlorobenzamil or removal of extracellular Na+ resulted in nearly complete inhibition of the nifedipine-insensitive component of ACh-mediated ACW and tonic contraction. Inhibition of the sarco(endo)plasmic reticulum Ca2+-ATPase by cyclopiazonic acid abolished the ongoing ACW. Application of 2-aminoethoxydiphenyl borate (2-APB) or xestospongin C to inhibit the inositol 1,4,5-trisphosphate-sensitive sarcoplasmic reticulum (SR) Ca2+ release channels produced no effect on ACh-mediated ACW and tonic contraction. However, pretreatment with caffeine or ryanodine inhibited ACh-induced ACW. Furthermore, application of procaine or tetracaine prevented the generation and abolished the ongoing ACh-mediated ACW and tonic contraction. Collectively, these results indicate that the ACh-stimulated ACW in porcine TSM are produced by repetitive cycles of Ca2+ release from SR through 2-APB- and xestospongin C-insensitive Ca2+ release channels, and plasmalemmal Ca2+ entry involving reverse-mode Na+/Ca2+ exchange, ROC/SOC, and L-type VGCC is required to refill the SR via SERCA to support the ongoing ACW.  相似文献   

5.
本研究探讨低氧和AlF-4等药物经G-蛋白敏感的跨膜信号通路对心血管肌源性张力的调控作用。在含有稳定表达Na+-Ca2+交换蛋白的CK1.4细胞中,用fura-2荧光影像确定细胞低氧对胞浆游离Ca2+[Ca2+]i的影响。在离体犬心乳头肌、颈动脉、主动脉及肺动脉恒温灌流样本中,用张力-电换能器测量低氧灌流和AlF-4等药物对心血管肌源性张力的影响。在整体犬体内,按拉丁方设计,用125Isod-1获得不同剂量VISA高效剂细胞内分布等药代动力学参数。结果表明:①在CK1.4细胞中,低氧抑制Na+-Ca2+交换蛋白,产生Ca2+内流,升高[Ca2+]i;②低氧灌流削弱AlF-4所致的血管收缩而明显易化Ca2+内流所致的心乳头肌收缩,与结果1)吻合;③VISA高效剂分布至细胞内,协同AlF-4,模拟并激活G-蛋白敏感的跨膜信号通路,显著改善低氧所致的Na+-Ca2+交换蛋白等跨膜大分子和心血管收缩蛋白氧化损害。  相似文献   

6.
Guinea pig vas deferens responds to externally applied acetylcholine (ACh) or noradrenaline (NA) by a small rapid contraction (phasi phase) and then a large contraction (tonic phase). The phasic phase was not affected by removal of external Ca2+, but tonic phase depended on external Ca2+. At lower temperatures the two components became larger and detectable separately. The tonic phase induced by ACh at low temperature (at 20°C) was greatly depressed by brief treatment with colchicine (0.5 μM – 5 μM), although the tonic phase at high temperature (at 37°C) was not affected. Na-induced contraction (phasic or tonic phase) was not changed by the colchicine-treatment. High K+ (40 mM)-contracture, which in many cases consisted of a single phase and depended on external Ca2+, was also not affected by brief treatment with colchicine. Culture of vas deferens for 3 days in the presence of colchicine, increased the phasic phase of ACh- and NA-induced contractions significantly, but reduced the tonic phase of contractions induced by ACh and NA. Colchicine also reduced high K+-contracture, the decrease depending on the period of culture with colchicine. Organ culture with colchicine did not affect the amounts of m-ACh and α-Ad receptors or the IC50 value of ACh and NA on 3H-ligand binding. These results suggest that colchicine specifically interacts with some steps in m-ACh and α-Ad receptor-responsor (e.g. ionophore) coupling without affecting the receptor number or affinity of the receptors for agonists. The mechanisms of action of colchicine are discussed in relation to m-ACh and α-Ad receptor functions.  相似文献   

7.
Vanadate (10(-4)-10(-3) M) effectively blocks Mg2+, ATP-dependent Ca2+ transport in sarcolemmal vesicles and induces a slowly tonic contraction of the smooth muscle. This contraction was observed both with and without nifedipine (10(-5) M) evoking complete inhibition of hyperpotassium contracture, the Ca2+ removal from the solution washing the muscular preparation stimulating the tone decrease. There is a close correlation between the dose-dependent effects of vanadate on the Ca pump activity and tension. It is concluded that in smooth muscles, at least in myometrium, the sarcolemmal Ca-pump is involved into the control of the tonic tension.  相似文献   

8.
Effects of extracellular calcium on canine tracheal smooth muscle   总被引:1,自引:0,他引:1  
Strips of canine tracheal smooth muscle were studied in vitro to determine the effects of changes in the extracellular calcium (Cao) concentration on tonic contractions induced by acetylcholine and 5-hydroxytryptamine. Strips were contracted with graded concentrations of the above agents in 2.4 mM Ca, after which CaCl2 was administered to achieve final concentrations of 5.0, 10.0, and 20.0 mM. Increases in Cao to 5 mM or above caused significant relaxation of muscles contracted with 5-hydroxytryptamine but did not significantly relax muscles contracted with acetylcholine. Increases in Cao also caused significant relaxation of muscles contracted with low concentrations of K+ (20 or 30 mM). However, in 60 or 120 mM K+, increases in Cao resulted predominantly in muscle contraction. Inhibition of the Na+-K+-ATPase by ouabain (10(-5) M) or K+ depletion reversed the effects of Cao from relaxation to contraction in tissues contracted with 5-hydroxytryptamine. Increases in Cao also caused contraction rather than relaxation in the presence of verapamil (10(-6) M). We conclude that calcium has both excitatory and inhibitory effects on the contractile responses of canine tracheal smooth muscle. The inhibitory effects of Ca2+ appear to be linked to the activity of the membrane Na+-K+-ATPase.  相似文献   

9.
Contractions of isolated single myocytes of guinea pig heart stimulated by rectangular depolarizing pulses consist of a phasic component and a voltage dependent tonic component. In this study we analyzed the mechanism of activation of the graded, sustained contractions elicited by slow ramp depolarization and their relation to the components of contractions elicited by rectangular depolarizing pulses. Experiments were performed at 37 degrees C in ventricular myocytes of guinea pig heart. Voltage-clamped myocytes were stimulated by the pulses from the holding potential of -40 to +5 mV or by ramp depolarization shifting voltage within this range within 6 s. [Ca2+]i was monitored as fluorescence of Indo 1-AM and contractions were recorded with the TV edge-tracking system. Myocytes responded to the ramp depolarization between -25 and -6 mV by the slow, sustained increase in [Ca2+]i and shortening, the maximal amplitude of which was in each cell similar to that of the tonic component of Ca2+ transient and contraction. The contractile responses to ramp depolarization were blocked by 200 microM ryanodine and Ca2+-free solution, but were not blocked by 20 microM nifedipine or 100-200 microM Cd2+ and potentiated by 5 mM Ni2+. The responses to ramp depolarization were with this respect similar to the tonic but not to the phasic component of contraction: both components were blocked by 200 microM ryanodine, and were not blocked by Cd2+ or Ni2+ despite complete inhibition of the phasic Ca2+ current. However, the phasic component but not the tonic component of contraction in cells superfused with Ni2+ was inhibited by nifedipine. Both components of contraction were inhibited by Ca2+-free solution superfused 15 s prior to stimulation. CONCLUSIONS: In myocytes of guinea pig heart the contractile response to ramp depolarization is equivalent to the tonic component of contraction. It is activated by Ca2+ released from the sarcoplasmic reticulum by the ryanodine receptors. Their activation and inactivation is voltage dependent and it does not depend on the Ca2+ influx by the Ca2+ channels or reverse mode Na+/Ca2+ exchange, however, it may depend on Ca2+ influx by some other, not yet defined route.  相似文献   

10.
Electrical and mechanical responses of frog atrial trabeculae were studied simultaneously using the double-sucrose gap method. Action potentials and twitch tension could be successively generated in fibers in which the slow inward calcium channel current was not observed. As a rule, this could be obtained in the course of a long experiment (3 to 4 hours). Peak tension was shown to increase monotonically with membrane potential in these preparations. In preparations with the slow inward current the total peak tension could be separated into two components. The first component (tonic) monotonically increased with the membrane potential and was probably related to Na/Ca exchange (Horackova 1984). The potential dependency of the second (phasic) component correlated with that of the slow inward calcium current. Only the tonic but not the phasic component could be observed in preparations without the presence of the slow inward calcium current. The tonic component prevailed when both the slow inward current and phasic tension were greatly reduced by nifedipine. Long experiments, long depolarizing clamp pulses, a metabolic inhibitor 2,4-dinitrophenol, inhibitors of Na/K pump ouabain and AR-L57, toxins promoting intracellular sodium accumulation (aconitine, scorpion toxin) were all shown to increase the tonic tension, but not the slow inward current; they induced a transition from biphasic tension-voltage curve into a monotonically increasing one. We concluded that these procedures and agents greatly stimulate Ca influx via Na/Ca exchange. These results show that Na/Ca exchange can function as a reserve system of Ca2+ used for contraction, thus supporting the heart function, especially under unfavourable metabolic conditions.  相似文献   

11.
The most active component in smooth muscle contraction, isolated from the whole venom of the marine snail Conus tessulatus, has a molecular mass of about 55 kDa. The toxin protein, tessulatus toxin, appeared to be constituted by two distinct polypeptide bands of 26 kDa and 29 kDa. The pure toxin caused a marked contraction of both guinea-pig ileum and rabbit aorta at nanomolar concentrations. Tessulatus-toxin-induced contraction was indirectly prevented by classical inhibitors of the voltage-dependent Ca2+ channel. Tessulatus toxin caused a large increase in the initial rate of 45Ca2+ uptake by cardiac cells. This uptake was insensitive to Ca2+ channel blockers at concentrations 100-1000 fold higher than those known to block voltage-dependent Ca2+ channels in these cells. Voltage clamp experiments have confirmed that tessulatus toxin was not directly active on the Ca2+ current. Tessulatus-toxin-stimulated 45Ca2+ influx was inhibited by dichlorobenzamil and suppressed when Na+ was substituted by Li+, indicating that the toxin acted via activation of the Na+/Ca2+ exchange system in cardiac cells. Activation by tessulatus toxin of the Na+/Ca2+ exchange system occurred via a toxin-stimulated Na+ entry into cardiac cells and was observed in the same range of toxin concentration which produced 45Ca2+ entry. The Na+ entry system that was activated by tessulatus toxin was insensitive to classic inhibitors of known Na+ entry systems in cardiac cells. Possible mechanisms by which tessulatus toxin induced Na+ entry into cardiac cells and contractions in smooth muscles are discussed. Tessulatus toxin is cytotoxic when used at high concentrations.  相似文献   

12.
The putative voltage-sensitive release mechanism (VSRM) was investigated in rabbit cardiac myocytes at 37 degrees C with high resistance microelectrodes to minimize intracellular dialysis. When the holding potential was adjusted from -40 to -60 mV, the putative VSRM was expected to operate alongside CICR. Under these conditions however, we did not observe a plateau at positive potentials of the cell shortening versus voltage relationship. The threshold for cell shortening changed by -10 mV, but this resulted from a similar change of the threshold for activation of inward current. Cell shortening under conditions where the putative VSRM was expected to operate was blocked in a dose dependent way by nifedipine and CdCl2 and blocked completely by NiCl2. "Tail contractions" persisted in the presence of nifedipine and CdCl2 but were blocked completely by NiCl2. Block of early outward current by 4-aminopyridine and 4-acetoamido-4'-isothiocyanato-stilbene-2,2'-disulfonic acid (SITS) demonstrated persisting inward current during test depolarizations despite the presence of nifedipine and CdCl2. Inward current did not persist in the presence of NiCl2. A tonic component of cell shortening that was prominent during depolarizations to positive potentials under conditions selective for the putative VSRM was sensitive to rapidly applied changes in superfusate [Na+] and to the outward Na+/Ca2+ exchange current blocking drug KB-R7943. This component of cell shortening was thought to be the result of Na+/Ca2+ exchange-mediated excitation contraction coupling. Cell shortening recorded under conditions selective for the putative VSRM was increased by the enhanced state of phosphorylation induced by isoprenaline (1 microM) and by enhancing sarcoplasmic reticulum Ca2+ content by manipulation of the conditioning steps. Under these conditions, cell shortening at positive test depolarizations was converted from tonic to phasic. We conclude that the putative VSRM is explained by CICR with the Ca2+ "trigger" supplied by unblocked L-type Ca2+ channels and Na+/Ca2+ exchange.  相似文献   

13.
1. Ouabain (2.5 x 10(-5) M) inhibited preferentially the tonic response to 40 mM K+ medium (containing enough Na+) without affecting the phasic in taenia coli. When 11 mM lactate was added to the medium (pH 6.5) in the presence of ouabain, the tonic phase to 40 mM K+ recovered markedly. 2. Ouabain (2.5 x 10(-5) M) did not affect the tonic tension in 152 mM K+ medium (Na+ 0 mM). However, ouabain inhibited the recovered tension by the addition of 50 mM Na+ in the 152 mM K+ medium. But ouabain failed to inhibit the marked recovered tension by the addition of 11 mM lactate which utilized, even in the absence of external Na+, in 152 mM K+ medium. 3. Ouabain partly inhibited the shortening to 40 mM K+ (containing enough Na+) at light load; however, it inhibited markedly the shortening at heavy load. 4. There is a possibility that ouabain inhibits active transport of glucose depending on external Na+ in taenia coli of smooth muscle. Ouabain could not inhibit the tension by lactate which utilized under conditions of independent on Na+. Furthermore, it is suggested that ouabain inhibits the contraction which depends on aerobic metabolism; however, it has only a slight effect on contraction which depends on aerobic metabolism; however, it has only a slight effect on contraction which was not so dependent on aerobic metabolism.  相似文献   

14.
The present study examines the influence of the endothelium (E), Ca2+ concentration, cyanide and monocrotaline (MCT) pretreatment on the responses of isolated rat hilar pulmonary arterial rings (PA) to hypoxia. In PA precontracted with phenylephrine, hypoxia induced an initial E-dependent relaxation phase followed by an E-independent transient contraction and a final relaxation. An increase in Ca2+ concentration from 1.5 to 2.5 mM produced an E-dependent reduction in tone generation under O2 and a significant enhancement of the hypoxia-elicited initial relaxation and the transient contractile responses. Addition of cyanide (0.1 mM) to precontracted PA produced a transient contraction similar to that caused by hypoxia. Preincubation with cyanide led to inhibition of tone generation and abolition of the contraction to hypoxia. However, the final relaxation response to hypoxia was not inhibited by cyanide. Thus, hypoxia produces an E-independent contraction via a mechanism that appears also to be activated by cyanide, and this response is not altered by MCT. The endothelium alters the response to hypoxia in a Ca(2+)-dependent manner.  相似文献   

15.
It has been known for a century that extracellular Ca2+ ions are needed for triggering contraction in the heart. However, the two possible mechanisms of Ca2+ entry into the cardiac cells have only been discovered and investigated recently: these are the voltage-gated Ca2+ channels and the Na+-Ca2+ exchange. This paper reviews the field of the control of cardiac contractility by the sarcolemma and describes various techniques used to study the Ca2+ transport and the corresponding two components of contraction: phasic and tonic tension. The most controversial issue of the past 5 years, attracting the attention of many investigators, is whether or not the Na+-Ca2+ exchange in the heart is electrogenic and voltage-dependent and thus contributes to the beat-to-beat regulation of free intracellular [Ca2+]. This paper concentrates on this controversy and gives an up-to-date view of the major steps in the development of our present concept of this transport and of some of the recent experimental approaches. The contribution of an electrogenic, voltage-dependent Na+-Ca2+ exchange to the regulation of contraction, as well as to cardia electrical activity, is discussed, and the alterations of both of these cardiac functions due to Na+ accumulation intracellularly (owing to various interventions) are described.  相似文献   

16.
The effects of PMA, an activator of protein kinase C, was studied on Ca2+-induced tone in the rabbit basilar artery. Contractile responses to Ca2+ occurred only in arteries pretreated with PMA; the extent of Ca2+-induced contractions were related to the level of stretch applied to the vessels. Bay K 8644, a Ca2+-channel agonist, at a concentration that was subthreshold for contraction, augmented the extent of Ca2+-induced tone occurring in PMA-treated arteries. Nifedipine, a Ca2+-entry inhibitor, and staurosporine, an inhibitor of protein kinase C attenuated the response to Ca2+ occurring either in the absence or presence of Bay K 8644. Our results suggest that PMA increases myofilament sensitivity to Ca2+, such that levels of Ca2+ previously ineffective for contraction Ca2+-influx, e.g. due to Bay K 8644, is manifest as contraction. Our results also confirm the role of extracellular Ca2+ entry via plasma membrane stretch-dependent Ca2+-channels in the maintenance of vascular tone in the basilar artery.  相似文献   

17.
The effects of Sr2+ on contraction and action potential were studied in rabbit papillary muscles and compared with effects of tetraethylammonium (TEA+). The membrane potential was measured with KCl-filled microelectrodes and the contraction was simultaneously recorded using a mechanoelectrical transducer. A partial (90%) substitution of extracellular Ca2+ (Ca2+e) by Sr2+ produced stimulation frequency-dependent prolongation of the action potential (AP) with a dominant phase "plateau" as well as prolongation of the contraction. At low frequencies where the AP prolongation was well pronounced, the contraction became biphasic. The effect of Sr2+ on both AP and contraction was blocked by nifedipine (10 mumol/l) or by increasing Ca2+e. Ryanodine suppressed the early contraction component only. AP was prolonged to a similar extent and in the same frequency-dependent manner by TEA+ (20 mmol/l). Despite similar AP configuration, no biphasic contraction developed in the presence of TEA+. High Ca2+e (10 mmol/l) or low Na+e (70 mmol/l) suppressed the TEA+ effect on AP. The data indicate that the two components of the biphasic contraction are of different origin; the early one is activated by activator cation released from the sarcoplasmic reticulum while the late one results from the Sr2+ entry across the sarcolemma via L-type Ca2+ channels.  相似文献   

18.
Cytoplasmic free Ca2+ ([Ca2+]cyt) is essential for the contraction and relaxation of blood vessels. The role of plasma membrane Na+/Ca2+ exchange (NCX) activity in the regulation of vascular Ca2+ homeostasis was previously ascribed to the NCX1 protein. However, recent studies suggest that a relatively newly discovered K+-dependent Na+/Ca2+ exchanger, NCKX (gene family SLC24), is also present in vascular smooth muscle. The purpose of the present study was to identify the expression and function of NCKX in arteries. mRNA encoding NCKX3 and NCKX4 was demonstrated by RT-PCR and Northern blot in both rat mesenteric and aortic smooth muscle. NCXK3 and NCKX4 proteins were also demonstrated by immunoblot and immunofluorescence. After voltage-gated Ca2+ channels, store-operated Ca2+ channels, and Na+ pump were pharmacologically blocked, when the extracellular Na+ was replaced with Li+ (0 Na+) to induce reverse mode (Ca2+ entry) activity of Na+/Ca2+ exchangers, a large increase in [Ca2+]cyt signal was observed in primary cultured aortic smooth muscle cells. About one-half of this [Ca2+]cyt signal depended on the extracellular K+. In addition, after the activity of NCX was inhibited by KB-R7943, Na+ replacement-induced Ca2+ entry was absolutely dependent on extracellular K+. In arterial rings denuded of endothelium, a significant fraction of the phenylephrine-induced and nifedipine-resistant aortic or mesenteric contraction could be prevented by removal of extracellular K+. Taken together, these data provide strong evidence for the expression of NCKX proteins in the vascular smooth muscle and their novel role in mediating agonist-stimulated [Ca2+]cyt and thereby vascular tone.  相似文献   

19.
Biphasic contractions have been obtained in guinea-pig papillary muscle by inducing partial depolarization in K+-rich solution (17 mM) containing 0.3 microM isoproterenol; whereas in guinea-pig atria, the same conditions led to monophasic contractions corresponding to the first component of contraction in papillary muscle. The relationships between the amplitude of the two components of the biphasic contraction and the resting membrane potential were sigmoidal curves. The first component of contraction was inactivated for membrane potentials less positive than those for the second component. In Na+-low solution (25 mM), biphasic contraction became monophasic subsequent to the loss of the second component, but tetraethylammonium unmasked the second component of contraction. The relationship between the amplitude of the first component of contraction and the logarithm of extracellular Ca2+ concentration was complex, whereas for the second component it was linear. When Ca2+ ions were replaced by Sr2+ ions, only the second component of contraction was observed. It is suggested that the first component of contraction may be triggered by a Ca2+ release from sarcoplasmic reticulum, induced by the fast inward Ca2+ current and (or) by the depolarization. The second component of contraction may be due to a direct activation of contractile proteins by Ca2+ entering the cell along with the slow inward Ca2+ current and diffusing through the sarcoplasm. These results do not exclude the existence of a third "tonic" component, which could possibly be mixed with the second component of contraction.  相似文献   

20.
Ion-selective double-barreled microelectrodes inserted into a planarian ocellus were used to monitor the ocellus potential and the changes in extracellular concentrations of Ca2+ (Ca(o)) and Na+ (Na(o)) caused by a 0.5-sec light flash or sustained (120s) illumination. Ca(o) and Na(o) were slightly decreased following a flash. Sustained illumination caused a biphasic change in Ca(o) (a rapid decrease followed by a slow increase) and a tonic decrease in Na(o). When Na+ in the planarian saline was replaced by Li+ or choline+, the increase in Ca(o) was prevented: sustained illumination induced only a decrease in Ca(o). These results suggest that illumination induces influxes of both Ca+ and Na+ into planarian photoreceptors, and that the Ca2+ influx is rapidly followed by a Na-dependent Ca2+ efflux due to Na-Ca exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号