首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GAP-43 and Go are peripheral membrane proteins enriched in neuronal growth cone. GAP-43 was highly purified from bovine cerebral cortex and myristoylated Go? was highly purified from Escherichia coli cotransformed with pQE60 (Goα) and pBB131 (NMT). GAP-43 stimulated GTPγS binding to Goα and the stimulation effect was dependent on concentration of GAP-43. Protein-protein binding experiments using CaM-Sepharose affinity media revealed that Goα·GDP bound GAP-43 directly to form intermolecular complex. This interaction induced conformational change of Goα. In the presence of GAP-43, fluorescence spectrum of Goα·GDP blue shifted 4 nm; fluorescence intensity increased 35.3% and apparent quenching constant (Ksv) increased from (1.1 ± 0.22) × 105 to (4.1 ± 0.43)× 105 (M-1). However, no obvious changes of fluorescence spectra of Goα·GTP(S were observed in the absence or presence of GAP-43. Our results indicated that GAP-43 induced conformational change of Goα·GDP so as to accelerate GDP release and subsequent GTPγS binding, which activates G proteins to trigger signal transduction and amplification. These results provided insights into understanding the function of G proteins in coupling between receptors and effectors and the key role of GDP/GTP exchange mode in GTPase cycle.  相似文献   

2.
GAP-43 and Go are peripheral membrane proteins enriched in neuronal growth cone. GAP-43 was highly purified from bovine cerebral cortex and myristoylated Goα was highly purified from Escherichia coli cotransformed with pQE60 Goα and pBB131 (NMT). GAP-43 stimulated GTPγS binding to Goα and the stimulation effect was dependent on concentration of GAP-43. Protein-protein binding experiments using CaM-Sepharose affinity media revealed that Goα GDP bound GAP-43 directly to form intermolecular complex. This interaction induced conformational change of Goα. In the presence of GAP-43, fluorescence spectrum of Goα GDP blue shifted 4 nm; fluorescence intensity increased 35.3% and apparent quenching constant (Ksv) increased from (1.1 ±0.22) ×105 to (4.1±0.43) × 105 (M−1). However, no obvious changes of fluorescence spectra of Goα GTPγS were observed in the absence or presence of GAP-43. Our results indicated that GAP-43 induced conformational change of Goα GDP so as to accelerate GDP release and subsequent GTPγS binding, which activates G proteins to trigger signal transduction and amplification. These results provided insights into understanding the function of G proteins in coupling between receptors and effectors and the key role of GDP/GTP exchange mode in GTPase cycle.  相似文献   

3.
1. The steady residual activity of ox liver glutamate dehydrogenase at equilibrium with the reversible inactivator pyridoxal 5'-phosphate was measured in the presence and absence of various protecting agents. 2. NAD(+) (up to 15mm) and its 3-acetylpyridine analogue (up to 5mm) both failed to protect, in contrast with NADH. 3. Partial protection was given by glutarate and by succinate. Adipate and pentanoate were much less effective. 4. Correspondingly, whereas succinate and glutarate were both shown to be strong inhibitors of the catalytic reaction, competitive with glutamate, adipate was only weakly competitive, and the still weaker inhibition by pentanoate was non-competitive. 5. When the enzyme was saturated with glutarate, NAD(+) became a good, although still partial, protecting agent. In the absence of protection, 1.8mm-pyridoxal 5'-phosphate decreased enzyme activity to 9%, in the presence of 150mm-glutarate to 29%, and with glutarate and 1mm-NAD(+) only to 73%. 6. 2-Oxoglutarate also promoted protection by NAD(+), but neither pentanoate nor succinate did so. The finding with succinate is remarkable in view of findings 3 and 4 above. 7. It seems possible that substrates or analogues possessing the glutarate structure promote a conformational change that alters the mode of NAD(+) binding. This may explain why glutamate is a much better substrate than norvaline or aspartate and why negative interactions in coenzyme binding occur only in the formation of ternary complexes with glutamate or its analogues.  相似文献   

4.
The role of thermal fluctuations in the conformational dynamics of a single closed filament is studied. It is shown that, due to the interaction between charges and bending degrees of freedom, initially circular chains may undergo transformation to polygonal shape.  相似文献   

5.
Epithin/PRSS14, a type II transmembrane serine protease, plays critical roles in cancer metastasis. Previously, we have reported that epithin/PRSS14 undergoes ectodomain shedding in response to phorbol myristate acetate (PMA) stimulation. In this study, we show that transforming growth factor-β (TGF-β) induces rapid epithin/PRSS14 shedding through receptor mediated pathway in 427.1.86 thymoma cells. Tumor necrosis factor-α converting enzyme (TACE) is responsible for this shedding. Amino acid sequence encompassing the putative shedding cleavage site of epithin/PRSS14 exhibit strong homology to the cleavage site of l-selectin, a known TACE substrate. TACE inhibitor, TAPI-0 and TACE siRNA greatly reduced TGF-β-induced epithin/PRSS14 shedding. TGF-β treatment induces translocation of intracellular pool of TACE to the membrane where epithin/PRSS14 resides. These findings suggest that TGF-β induces epithin/PRSS14 shedding by mediating translocation of epithin/PRSS14 sheddase, TACE, to the membrane.  相似文献   

6.
Liu W  Zhu H  Zheng B  Cheng S  Fu Y  Li W  Lau TC  Liang H 《Nucleic acids research》2012,40(9):4229-4236
DNA sequences with guanine repeats can form G-quartets that adopt G-quadruplex structures in the presence of specific metal ions. Using circular dichroism (CD) and ultraviolet-visible (UV-Vis) spectroscopy, we determined the spectral characteristics and the overall conformation of a G-quadruplex of PS2.M with an oligonucleotide sequence, d(GTG(3)TAG(3)CG(3)TTG(2)). UV-melting curves demonstrate that the Pb(2+)-induced G-quadruplex formed unimolecularly and the highest melting temperature (T(m)) is 72°C. The analysis of the UV titration results reveals that the binding stoichiometry of Pb(2+) ions to PS2.M is two, suggesting that the Pb(2+) ions coordinate between adjacent G-quartets. Binding of ions to G-rich DNA is a complex multiple-pathway process, which is strongly affected by the type of the cations. Kinetic studies suggest that the Pb(2+)-induced folding of PS2.M to G-quadruplex probably proceeds through a three-step pathway involving two intermediates. Structural transition occurs after adding Pb(NO(3))(2) to the Na(+)- or K(+)-induced G-quadruplexes, which may be attributed to the replacement of Na(+) or K(+) by Pb(2+) ions and the generation of a more compact Pb(2+)-PS2.M structure. Comparison of the relaxation times shows that the Na(+)→Pb(2+) exchange is more facile than the K(+)→Pb(2+) exchange process, and the mechanisms for these processes are proposed.  相似文献   

7.
LPS is a constituent of cell walls of Gram-negative bacteria that, acting through the CD14/TLR4 receptor complex, causes strong proinflammatory activation of macrophages. In murine peritoneal macrophages and J774 cells, LPS at 1-2 ng/ml induced maximal TNF-α and MIP-2 release, and higher LPS concentrations were less effective, which suggested a negative control of LPS action. While studying the mechanism of this negative regulation, we found that in J774 cells, LPS activated both acid sphingomyelinase and neutral sphingomyelinase and moderately elevated ceramide, ceramide 1-phosphate, and sphingosine levels. Lowering of the acid sphingomyelinase and neutral sphingomyelinase activities using inhibitors or gene silencing upregulated TNF-α and MIP-2 production in J774 cells and macrophages. Accordingly, treatment of those cells with exogenous C8-ceramide diminished TNF-α and MIP-2 production after LPS stimulation. Exposure of J774 cells to bacterial sphingomyelinase or interference with ceramide hydrolysis using inhibitors of ceramidases also lowered the LPS-induced TNF-α production. The latter result indicates that ceramide rather than sphingosine suppresses TNF-α and MIP-2 production. Of these two cytokines, only TNF-α was negatively regulated by ceramide 1-phosphate as was indicated by upregulated TNF-α production after silencing of ceramide kinase gene expression. None of the above treatments diminished NO or RANTES production induced by LPS. Together the data indicate that ceramide negatively regulates production of TNF-α and MIP-2 in response to LPS with the former being sensitive to ceramide 1-phosphate as well. We hypothesize that the ceramide-mediated anti-inflammatory pathway may play a role in preventing endotoxic shock and in limiting inflammation.  相似文献   

8.
The link between many neurodegenerative disorders, including Alzheimer's and Parkinson's diseases, and the aberrant folding and aggregation of proteins has prompted a comprehensive search for small organic molecules that have the potential to inhibit such processes. Although many compounds have been reported to affect the formation of amyloid fibrils and/or other types of protein aggregates, the mechanisms by which they act are not well understood. A large number of compounds appear to act in a nonspecific way affecting several different amyloidogenic proteins. We describe here a detailed study of the mechanism of action of one representative compound, lacmoid, in the context of the inhibition of the aggregation of the amyloid β-peptide (Aβ) associated with Alzheimer's disease. We show that lacmoid binds Aβ(1-40) in a surfactant-like manner and counteracts the formation of all types of Aβ(1-40) and Aβ(1-42) aggregates. On the basis of these and previous findings, we are able to rationalize the molecular mechanisms of action of nonspecific modulators of protein self-assembly in terms of hydrophobic attraction and the conformational preferences of the polypeptide.  相似文献   

9.
Chromosomal translocations can lead to the formation of chimeric genes encoding fusion proteins such as PML/RARα, PLZF/RARα, and AML-1/ETO, which are able to induce and maintain acute myeloid leukemia (AML). One key mechanism in leukemogenesis is increased self renewal of leukemic stem cells via aberrant activation of the Wnt signaling pathway. Either X-RAR, PML/RARα and PLZF/RARα or AML-1/ETO activate Wnt signaling by upregulating γ-catenin and β-catenin. In a prospective study, a lower risk of leukemia was observed with aspirin use, which is consistent with numerous studies reporting an inverse association of aspirin with other cancers. Furthermore, a reduction in leukemia risk was associated with use of non-steroidal anti-inflammatory drug (NSAID), where the effects on AML risk was FAB subtype-specific. To better investigate whether NSAID treatment is effective, we used Sulindac Sulfide in X-RARα-positive progenitor cell models. Sulindac Sulfide (SSi) is a derivative of Sulindac, a NSAID known to inactivate Wnt signaling. We found that SSi downregulated both β-catenin and γ-catenin in X-RARα-expressing cells and reversed the leukemic phenotype by reducing stem cell capacity and increasing differentiation potential in X-RARα-positive HSCs. The data presented herein show that SSi inhibits the leukemic cell growth as well as hematopoietic progenitors cells (HPCs) expressing PML/RARα, and it indicates that Sulindac is a valid molecular therapeutic approach that should be further validated using in vivo leukemia models and in clinical settings.  相似文献   

10.
[Cu2+•Cys-Gly-His-Lys] stimulates thermolysin (TLN) activity at low concentration (below 10 μM) and inhibits the enzyme at higher concentration, with binding affinities of 2.0 and 4.9 μM, respectively. The metal-free Cys-Gly-His-Lys peptide also stimulates TLN activity, with an apparent binding affinity of 2.2 μM. Coordination of copper through deprotonated imine nitrogens, the histidyl nitrogen, and the free N-terminal amino group is consistent with the characteristic absorption spectrum of a Cu2+–amino-terminal copper and nickel binding motif (λ max ∼ 525 nm). The lack of thiol coordination is suggested by both the absence of a thiol to Cu2+ charge transfer band and electrochemical studies, since the electrode potential (vs. Ag/AgCl) 0.84 V (ΔE = 92 mV) for the Cu3+/2+ redox couple obtained for [Cu2+•Cys-Gly-His-Lys] was found to be in close agreement with that of a related complex [Cu2+•Lys-Gly-His-Lys]+ (0.84 V, ΔE = 114 mV). The N-terminal cysteine appears to be available as a zinc-anchoring residue and plays a critical functional role since the [Cu2+•Lys-Gly-His-Lys]+ homologue exhibits neither stimulation nor inhibition of TLN. Under oxidizing conditions (ascorbate/O2) the catalyst is shown to mediate the complete irreversible inactivation of TLN at concentrations where enzyme activity would otherwise be stimulated. The observed rate constant for inactivation of TLN activity was determined as k obs = 7.7 × 10−2 min−1, yielding a second-order rate constant of (7.7 ± 0.9) × 104 M−1 min−1. Copper peptide mediated generation of reactive oxygen species that subsequently modify active-site residues is the most likely pathway for inactivation of TLN rather than cleavage of the peptide backbone.  相似文献   

11.
Intrauterine insertion of a Silastic-PVP tube containing 400 μg PGF terminated midterm pregnancy in 100 percent of the animals. Progesterone (2 mg/day) or prolactin (PRL) reversed the abortifacient effect of PGF. A dose- and duration-related effect of the PRL on PGFinduced termination of pregnancy was evident. The results suggest that PP 2 and PRL are antagonistic to each other and multiple doses of PRL are needed to neutralize the luteolytic action of PGF.  相似文献   

12.
Gestational and postpartum high-fat diets (HFDs) have been implicated as causes of obesity in offspring in later life. The present study aimed to investigate the effects of gestational and/or postpartum HFD on obesity in offspring. We established a mouse model of HFD exposure that included gestation, lactation and post-weaning periods. We found that gestation was the most sensitive period, as the administration of a HFD impaired lipid metabolism, especially fatty acid oxidation in both foetal and adult mice, and caused obesity in offspring. Mechanistically, the DNA hypermethylation level of the nuclear receptor, peroxisome proliferator-activated receptor-α (Pparα), and the decreased mRNA levels of ten-eleven translocation 1 (Tet1) and/or ten-eleven translocation 2 (Tet2) were detected in the livers of foetal and adult offspring from mothers given a HFD during gestation, which was also associated with low Pparα expression in hepatic cells. We speculated that the hypermethylation of Pparα resulted from the decreased Tet1/2 expression in mothers given a HFD during gestation, thereby causing lipid metabolism disorders and obesity. In conclusion, this study demonstrates that a HFD during gestation exerts long-term effects on the health of offspring via the DNA demethylation of Pparα, thereby highlighting the importance of the gestational period in regulating epigenetic mechanisms involved in metabolism.  相似文献   

13.
Junjian Miao 《Molecular simulation》2017,43(13-16):1256-1259
Abstract

The interaction between a xenon atom and aromatic π electron system is generally of van der Waals force with a specifically weak strength. In this work, we suggest the introduction of Cu ion will highly affect the binding behaviour between the xenon and π systems. Once Cu2+ ion locates above the benzene ring, the binding is surprisingly strengthened to 11.98 kcal mol?1 at CCSD(T)/CBS level, which is significantly stronger than average strength of the H-bonds in Watson-Crick guanine-cytosine base pair. If the Cu2+ is reduced to Cu+, the interaction of interest returns to the weak van der Waals interaction again. This phenomenon indicates the oxidation state shift of Cu ion could regulate the binding strength of Xe with π systems, which would be important for their potential biological functions. This study may provide a plausible understanding of the recent experimental observations of xenon anaesthesia.  相似文献   

14.
The binding of methyl α-D-mannopyranoside to the lectin concanavalin A was studied by means of calorimetry. An apparent enthalpy of binding was also calculated from the variation of the equilibrium constant with temperature (van't Hoff ΔH). The ΔH measured directly was ?30 to ?38 kJ/mole indicating that the binding is driven by the ΔH change. In contrast, the van't Hoff ΔH was substantially smaller, about zero at pH 5.2. The difference in the ΔH measured directly and the van't Hoff ΔH implies that the conformation of concanavalin A undergoes a temperature dependent change at both pH's but most predominantly at pH 5.2. The existence of this conformational change was verified by difference absorption spectroscopy.  相似文献   

15.
Zhu X  Liu Q  Wang M  Liang M  Yang X  Xu X  Zou H  Qiu J 《PloS one》2011,6(11):e27081
Inflammation is one of main mechanisms of autoimmune disorders and a common feature of most diseases. Appropriate suppression of inflammation is a key resolution to treat the diseases. Sirtuin1 (Sirt1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent Sirt1 activator, has anti-inflammation property. However, the detailed mechanism is not fully understood. In this study, we investigated the anti-inflammation role of Sirt1 in NIH/3T3 fibroblast cell line. Upregulation of matrix metalloproteinases 9 (MMP-9), interleukin-1beta (IL-1β), IL-6 and inducible nitric oxide synthase (iNOS) were induced by tumor necrosis factor alpha (TNF-α) in 3T3 cells and resveratrol suppressed overexpression of these pro-inflammatory molecules in a dose-dependent manner. Knockdown of Sirt1 by RNA interference caused 3T3 cells susceptible to TNF-α stimulation and diminished anti-inflammatory effect of resveratrol. We also explored potential anti-inflammatory mechanisms of resveratrol. Resveratrol reduced NF-κB subunit RelA/p65 acetylation, which is notably Sirt1 dependent. Resveratrol also attenuated phosphorylation of mammalian target of rapamycin (mTOR) and S6 ribosomal protein (S6RP) while ameliorating inflammation. Our data demonstrate that resveratrol inhibits TNF-α-induced inflammation via Sirt1. It suggests that Sirt1 is an efficient target for regulation of inflammation. This study provides insight on treatment of inflammation-related diseases.  相似文献   

16.
We suggest a simple method to assess how many normal modes are needed to map a conformational change. By projecting the conformational change onto a subspace of the normal-mode vectors and using root mean square deviation as a test of accuracy, we find that the first 20 modes only contribute 50% or less of the total conformational change in four test cases (myosin, calmodulin, NtrC, and hemoglobin). In some allosteric systems, like the molecular switch NtrC, the conformational change is localized to a limited number of residues. We find that many more modes are necessary to accurately map this collective displacement. In addition, the normal-mode "spectra" can provide useful information about the details of the conformational change, especially when comparing structures with different bound ligands, in this case, calmodulin. Indeed, this approach presents normal-mode analysis as a useful basis in which to capture the mechanism of conformational change, and shows that the number of normal modes needed to capture the essential collective motions of atoms should be chosen according to the required accuracy.  相似文献   

17.
Hypoxia-inducible factor 1 (HIF-1) mediates many of the systemic and cellular responses to intermittent hypoxia (IH), which is an experimental model that simulates O2 saturation profiles occurring with recurrent apnea. IH-evoked HIF-1α synthesis and stability are due to increased reactive oxygen species (ROS) generated by NADPH oxidases, especially Nox2. However, the mechanisms by which IH activates Nox2 are not known. We recently reported that IH activates xanthine oxidase (XO) and the resulting increase in ROS elevates intracellular calcium levels. Since Nox2 activation requires increased intracellular calcium levels, we hypothesized XO-mediated calcium signaling contributes to Nox activation by IH. We tested this possibility in rat pheochromocytoma PC12 cells subjected to IH consisting alternating cycles of hypoxia (1.5% O2 for 30 sec) and normoxia (21% O2 for 5 min). Kinetic analysis revealed that IH-induced XO preceded Nox activation. Inhibition of XO activity either by allopurinol or by siRNA prevented IH-induced Nox activation, translocation of the cytosolic subunits p47phox and p67phox to the plasma membrane and their interaction with gp91phox. ROS generated by XO also contribute to IH-evoked Nox activation via calcium-dependent protein kinase C stimulation. More importantly, silencing XO blocked IH-induced upregulation of HIF-1α demonstrating that HIF-1α activation by IH requires Nox2 activation by XO.  相似文献   

18.
The ability of 485 fungal strains is studied for catalysis of the process of 7α, 15α-dihydroxylation of dehydroepiandrosterone (DHEA, 3β-hydroxy-5-androstene-17-one), a key intermediate of the synthesis of physiologically active compounds. The ability for the formation of 3β, 7α, 15α-trihydroxy-5-androstene-17-one (7α, 15α-diOH-DHEA) was found for the first time for representatives of 12 genera, eight families, and six orders of ascomycetes, eight genera, four families, and one order of zygomycetes, one genus, one family, and one order of basidiomycetes, and four genera of mitosporic fungi. The most active strains are found among genera Acremonium, Gibberella, Fusarium, and Nigrospora. In the process of transformation of DHEA (2 g/l) by strains of Fusarium oxysporum VKM F-1600 and Gibberella zeae BKM F-2600, the molar yield was 63 and 68%, respectively. Application of the revealed active strains of microorganisms opens prospects for the efficient production of key intermediates of synthesis of modern medical preparations.  相似文献   

19.
Structural and functional effects of core M1 type glycan modification catalyzed by protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) were investigated using a core M1 glycoform focused library of an α-dystroglycan fragment, 372TRGAIIQTPTLGPIQPTRV390. Evanescent-field fluorescence-assisted microarray system illuminated the specific binding pattern of plant lectins that can discriminate the glycan structure of core M1 glycan of the library. The comparative NMR analysis of synthetic glycopeptide having different length of the O-mannosylated glycans revealed a conformational change of the peptide backbone along with core M1 disaccharide formation. No long-range NOE signals of glycan-amino acid nor inter amino acid indicate the conformational change is induced by steric hindrance of core M1, the sole 1,2-O-modified form among protein binding sugar residue found in mammals.  相似文献   

20.
The intrinsically disordered protein α-synuclein aggregates into amyloid fibrils, a process known to be implicated in several neurodegenerative states. Partially folded forms of the protein are thought to trigger the aggregation process. Here, α-synuclein conformers are characterized by analysis of the charge-state distributions observed in electrospray-ionization mass spectrometry under negative-ion mode. It is found that, even at neutral pH, a small fraction of the molecular population is in a compact conformation. Several distinct partially folded forms are then identified under conditions that promote α-synuclein aggregation, such as solutions of simple and fluorinated alcohols. Specific intermediates accumulate at increasing concentrations of ethanol, hexafluoro-2-propanol, and trifluoroethanol. Finally, extensive folding induced by Cu(2+) binding is revealed by titrations in the presence of Cu(2+)-glycine. The data confirm the existence of a single, high-affinity binding site for Cu(2+). Because accumulation of this partially folded form correlates with enhancement of fibrillation kinetics, it is likely to represent an amyloidogenic intermediate in α-synuclein conformational transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号