首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Elodea canadensis grows over a wide range of inorganic carbon, nutrient, and light conditions in lakes and streams. Affinity for HCO 3 - use during photosynthesis ranged from strong to weak in Elodea collected from seven localities with different HCO 3 - and CO2 concentrations. The response to HCO 3 - was also very plastic in plants grown in the laboratory at high HCO 3 - concentrations and CO2 concentrations varying from 14.8 to 2,200 M. Bicarbonate affinity was markedly reduced with increasing CO2 concentrations in the growth medium so that ultimately HCO 3 - use was not detectable. High CO2 concentrations also decreased CO2 affinity and induced high CO2 compensation points (360M CO2) and tenfold higher half-saturation values (800 M CO2).The variable HCO 3 - affinity is probably environmentally based. Elodea is a recently introduced species in Denmark, where it reproduces only vegetatively, leaving little opportunity for genetic variation. More important, local populations in the same water system had different HCO 3 - affinities, and a similar variation was created by exposing one plant collection to different laboratory conditions.Bicarbonate use enabled Elodea to photosynthesize rapidly in waters of high alkalinity and enhanced the carbon-extracting capacity by maintaining photosynthesis above pH 10. On the other hand, use of HCO 3 - represents an investment in transport apparatus and energy which is probably not profitable when CO2 is high and HCO 3 - is low. This explanation is supported by the findings that HCO 3 - affinity was low in field populations where HCO 3 - was low (0.5 and 0.9 m M) or CO2 was locally high, and that HCO 3 - affinity was suppressed in the laboratory by high CO2 concentrations.Abbreviations DIC dissolved inorganic carbon (CO2+ HCO 3 - +CO 3 - ) - CO2 compensation point - K 1/2 apparent halfsaturation constant - PHCO 3 interpolated photosynthesis in pure HCO 3 - and zero CO2 - Pmax photosynthetic rate under carbon and light saturation  相似文献   

2.
Summary A computer-controlled apparatus is described, which combines the two powerful methods of voltage-clamping and admittance measurement. The 5-Hz admittance ofChara plasmalemma is obtained for transmembrane PD from −400 mV to 0. DC conductance is also measured by the bipolar staircase method. Both the DC and 5-Hz conductances at steady state display a central maximum at ≈−250 mV. This feature is attributed to the conductance/voltage characteristics of the H+ pump. The steady-state capacitance does not show any trend throughout the potential interval. At the time of the delay, before excitation commences, the 5-Hz conductance is smaller than after excitation. At the time of excitation the 5-Hz conductance echoes the time-course of the ionic current, while the capacitance undergoes a sharp decrease followed by an increase. A possible explanation of the capacitance behavior is attempted involving transport number effects and reactances associated with the Hodgkin-Huxley gating mechanism. At punchthrough the membrane becomes inductive.  相似文献   

3.
Summary The current-voltage (I/V) technique was employed to investigate the different electrophysiological states of theChara plasmalemma and their interaction under a range of conditions. In K+ state the membrane became very permeable (conductances >20 S m 2) as [K+]0 increased to 10mm. As the cells were then easily damaged by the voltage-clamp procedures, it was difficult to determine the saturation K+ conductance. TEA (tetraethylammonium chloride) reversibly blocked the K+ channels, but had no effect on theI/V curve of the pump state, indicating that the K+ channels were not participating in this state. Acid pH0 (4.5) diminished the K+ conductance, but did not alter the response of the K+ channels to change in [K+]0. Alkaline pH0 (11.0) madeChara resting PD bistable: the PD either stayed near the estimatedE K and theI/V curve showed a negative conductance region typical of the K+ state, or it hyperpolarized and the near-linearI/V profile of the proton-permeable state was observed.  相似文献   

4.
William J. Lucas 《Planta》1982,156(2):181-192
Electrophysiological measurements on internodal cells of the alga, Chara corallina Klein ex Willd., em. R.D.W., showed that the potential across the plasmalemma was sensitive to the level of exogenous HCO 3 - . In alkaline solutions (pH 8) the membrane potential depolarized by 50–75 mV when exogenous HCO 3 - was removed from the bathing medium. In the presence of exogenous HCO 3 - , the membrane potential rapidly hyperpolarized when the cell was given a brief dark treatment; in the light the potential was approx.-240 mV; after the cell had been in the dark for 3–6 min the potential was -330 to -350 mV. In the absence of exogenous HCO 3 - the potential only hyperpolarized slowly and to a much smaller extent when cells were placed in the dark. Upon re-illuminating the cell, the potential further hyperpolarized, transiently, and then rapidly depolarized back towards the light-adapted value. (These responses were only obtained when cells were not perturbed by microelectrode insertion into the vacuole.) Analysis of membrane potential and experiments with the extracellular vibrating electrode indicated a high level of correlation between the light- and dark-induced changes in membrane potential and extracellular currents. However, when experiments were conducted in HCO 3 - -free media that contained 1.0 mM phosphate buffer, pH 8, it was found that the dark-induced hyperpolarization of the membrane potential and the light-dependent extracellular currents could be maintained in the absence of exogenous HCO 3 - . These results are interpreted in terms of two basic models by which internodal cells of C. corallina may acquire exogenous HCO 3 - for photosynthesis. They are consistent with HCO 3 - being transported across the plasmalemma via an electrically neutral HCO 3 - –H+ cotransport system. The hyperpolarizing response is thought to be the consequence of the operation of an electrogenic H+-translocating ATPase that has a transport stoichiometry of 1 H+ per ATP hydrolyzed.Abbreviation CPW/B artificial Chara pond water containing exogenous bicarbonate  相似文献   

5.
A possible role of the charasome in terms of chloride transport into Chara corallina Klein ex. Willd., em. R.D.W. is examined. The branches of Chara contain the most charasome material and are shown to be very effective in acquiring Cl- to support continued shoot growth. The early maturation of the branches, the rather large Cl- fluxes into these cells, and their ability of translocate Cl- to growing cells of the shoot indicate a special role of these branches in Cl- accumulation. The structure of the charasome, with its extensive periplasmic space, appears especially suited as a site for H+–Cl- cotransport (influx). We show, by histochemical assay, that the charasomes of mature cells contain ATPase activity; such activity is absent in growing charasomes of very young cells. ATPase activity is also associated with the plasmodesmata of C. corallina. Charasome ATPase activity and Cl- uptake are both inhibited by p-chloromercuribenzenesulfonic acid (1 mM) or diethylstibestrol (40 M; 45 min). The anion transport inhibitor, 4,4-diisothiocyano-2,2-disulfonic acid stilbene (1 mM) had no effect on Cl- transport and inhibited ATPase activity only when applied after chemical fixation of the cells. Results of an attempt to demonstrate the presence of Cl- within the cytoplasmic tubules of the charasome, using a silver precipitation technique, proved difficult to interpret because of a reaction between the silver and a cellular substance produced in the light.Abbreviations CPW Chara pond water - DES diethylstilbestrol - DIDS 4,4-diisothiocyano-2,2-disulfonic acid stilbene - Mops 3-(N-morpholino)propanesulfonic acid - PCMBS p-chloromercuribenzenesulfonic acid  相似文献   

6.
Summary We report on an unusual phenomenon which occurs in some characean algae as a normal plasma membrane activity and also in association with charasome formation. The phenomenon of formation of coated invaginations of the plasma membrane was observed in twoChara and 6Nitella species. These invaginations are coated on their cytoplasmic surface, are 50–60 nm in diameter and rarely exceed 60 nm in length. They are abundant in the young cells ofChara andNitella and also occur in mature cells, but at a lower frequency.N. translucent is an exception in that coated invaginations were few in the young cells and absent in mature cells. Coated vesicles (50–60 nm diameter) were closely associated with these invaginations. Our observations suggest the vesicles may be derived from the invaginations by endocytosis.A close relationship was noted between the development of charasomes (plasmalemma modifications) and coated invaginations. Numerous coated invaginations are seen along the membranes of young charasomes; these invaginations appear to be associated with growth of the charasomes. Coated vesicles were not associated with the coated invaginations of the charasome membrane. The tubular network of cytoplasm and wall space seen in the mature charasome may be formed by fusion of coated invaginations of the developing charasomes, leaving cytoplasmic strands between the fused portions. Coated invaginations were not present along charasomes of the mature cells.  相似文献   

7.
The effect of phlorizin has been tested on hexose transport and hexose-induced changes of electrical potential (m) and conductance (g m) across the plasmalemma of rhizoid and thallus cells of the aquatic liverwort Riccia fluitans. The decrease of m (depolarization) and g m induced by 1 mM 3-oxymethyl-D-glucose (3-OMG) is substantially inhibited by simultaneous addition of 2 mM phlorizin, whereas no significant response was observed when phlorizin was added alone or several minutes after the sugar. Current-voltage data show that the 3-OMG-generated electrical inward current of 0.016 A m-2 drops to 0.010 A m-2 when phlorizin is present. Uptake as well as efflux of [14C]-3-OMG is strongly and reversibly inhibited by phlorizin between 0.2 and 5 mM. The results are consistent with our hypothesis that the hexose carrier has one binding site with competitive inhibition of glucose uptake by phlorizin (k i=0.08 mM). The electrical data indicate that phlorizin affects an m step of the carrier transport cycle.Abbreviation 3-OMG 3-oxymethyl-D-glucose  相似文献   

8.
Ion transporters such as Na(+)/H(+) exchanger (NHE), Cl(-)/HCO(3)(-) exchanger (AE), and Na(+)/HCO(3)(-) cotransporter (NBC) are known to contribute to the intracellular pH (pH(i)) regulation during agonist-induced stimulation. This study examined the mechanisms for the pH(i) regulation in the mouse parotid and sublingual acinar cells using the fluorescent pH-sensitive probe, BCECF. The pH(i) recovery from agonist-induced acidification in the sublingual acinar cells was completely blocked by EIPA, a NHE inhibitor. However, the parotid acinar cells required DIDS, a NBC1 inhibitor, in addition to EIPA in order to block the pH(i) recovery. Moreover, RT-PCR analysis detected the expression of pancreatic NBC1 (pNBC1) only in the parotid acinar cells. These results provide strong evidence that the mechanisms for the pH(i) regulation are different in the two types of acinar cells, and pNBC1 contributes to pH(i) regulation in the parotid acinar cells, whereas NHE is likely to be the exclusive pH(i) regulator in the sublingual acinar cells.  相似文献   

9.
Cell migration is crucial for processes such as immune defense, wound healing, or the formation of tumor metastases. Typically, migrating cells are polarized within the plane of movement with lamellipodium and cell body representing the front and rear of the cell, respectively. Here, we address the question of whether this polarization also extends to the distribution of ion transporters such as Na(+)/H(+) exchanger (NHE) and anion exchanger in the plasma membrane of migrating cells. Both transporters are required for locomotion of renal epithelial (Madin-Darby canine kidney, MDCK-F) cells and human melanoma cells since their blockade reduces the rate of migration in a dose-dependent manner. Inhibition of migration of MDCK-F cells by NHE blockers is accompanied by a decrease of pH(i). However, when cells are acidified with weak organic acids, migration of MDCK-F cells is normal despite an even more pronounced decrease of pH(i). Under these conditions, NHE activity is increased so that cells are swelling due to the accumulation of organic anions and Na(+). When exclusively applied to the lamellipodium, blockers of NHE or anion exchange inhibit migration of MDCK-F cells as effectively as when applied to the entire cell surface. When they are directed to the cell body, migration is not affected. These data are confirmed immunocytochemically in that the anion exchanger AE2 is concentrated at the front of MDCK-F cells. Our findings show that NHE and anion exchanger are distributed in a polarized way in migrating cells. They are consistent with important contributions of both transporters to protrusion of the lamellipodium via solute uptake and consequent volume increase at the front of migrating cells.  相似文献   

10.
Influx of 45Ca into internodal cells of Chara corallina has been measured, using short uptake times, and a wash in ice-cold La3+-containing pondwater after the labelling period to overcome the difficulty of distinguishing extracellular tracer from that in the cell. Over 5–15 min the uptake was linear with time, through the origin. The basal influx from 0.1 mM Ca2+ externally was 0.25–0.5 pmol·cm-2·s-1, but some batches of cells showed higher fluxes. The influx was markedly stimulated by depolarisation in pondwater containing 20 mM K+. In cells in which the control flux was less than about 0.5 pmol·cm-2·s-1 there was no effect of 50 M nifedipine. In cells in which the control flux was greater than about 0.5 pmol·cm-2·s-1 (whether by natural variability, pretreatment, or by depolarisation in 20 mM K+), the flux was reduced by 50 M nifedipine to a value in the range 0.25–0.59 pmol·cm-2·s-1. It is suggested that two types of Ca-channel are probably involved, both opening on depolarisation, but only one sensitive to nifedipine. The flux was inhibited by 10 M BAY K 8644, which in animal cells more commonly opens Ca-channels. The apparent influx measured over long uptake times was much reduced, and the kinetics indicated filling a pool of apparent size about 1.45 nmol·cm-2 with a halftime of about 38 min, probably representing cytoplasmic stores. It is argued that in spite of the very small pool of (free+bound) cytoplasmic Ca2+ the measured influx is a reasonable estimate of the influx at the plasmalemma.Abbreviations 0.4K-APW6 artificial pondwater, pH 6, containing 0.4 mM KCl - 20 K-APW6 artificial pondwater, pH 6, containing 20 mM KCl - Cao external Ca2+  相似文献   

11.
H. Lühring 《Protoplasma》1986,133(1):19-28
Summary The cytoplasmic drop formed of effused cytoplasm fromChara internodes is enclosed by a membrane. Patch clamp experiments have been carried out on this membrane, revealing a K+ channel as the most frequently detected ion translocator. The K+ channel is saturated at a level of about 20 pA inward and 10 pA outward current. The channel conductance is dependent on the accessability of K+ ions, its maximum value amounts to about 165 pS. The discrimination of Na+ and Cl is significant, permeability ratios PNa/PK and PCl/PK were estimated to be 0.01 either. Binding experiments with the fluorescent probe concanavalin A/FITC suggest that the membrane is derived from the tonoplast.Abbreviations EK K+ equilibrium potential - FITC fluorescein isothiocyanat - Vm membrane voltage - Vpip pipette clamp voltage - Vr reversal voltage  相似文献   

12.
The freshwater algaChara corallina Klein ex Willd., em. R.D.W. (=C. australis R.Br.) develops alternating outward (acid) and inward (alkaline) current areas on its surface when illuminated. Exposure of cells to vinblastine, colchicine, or oryzalin caused a reduction in and a shifting of this extracellular current pattern. Removal of these agents from the bathing media resulted in regeneration of the initial current profile. Because these agents all affect tubulin, microtubules may be responsible for orchestrating the transmembrane currents responsible for the acid and alkaline banding phenomenon. Analysis of the membrane potential showed a fast depolarization after vinblastine exposure; however, analysis of the current-voltage curve did not show a change in membrane conductance. A 30-min colchicine treatment decreased the conductance of the plasma membrane with either an hyperor a depolarization in the membrane potential. In contrast, although a 9-h exposure to oryzalin caused a major reduction in the extra-cellular current pattern, only minor changes were observed in the membrane potential and conductance. However, in the presence of oryzalin, the time constants in the light response of the membrane potential increased over this 9-h period. Collectively, these results implicate an involvement of microtubules in spatial control of plasma-membrane transport events inC. corallina. This research was supported by National Science Foundation grant DCB-88-16077.  相似文献   

13.
Lupins appear to be more sensitive than peas to Fe deficiency. However, when grown in nutrient solutions between pH 5–6, little difference existed between them in their ability to acidify the solution or to release FeIII reducing compounds. This experiment was aimed at determining whether differences between species which occurred when Fe deficiency was induced by withholding Fe from an acid solution, are maintained when Fe deficiency is induced by addition of HCO3 -. Lupins and peas were grown in nutrient solutions at 0, 2 and 6 μM of FeIII EDDHA and either with or without HCO3 - (6 mM). Bicarbonate induced symptoms of Fe deficiency (chlorosis) in both lupins and peas, and markedly decreased the growth of shoots. Symptoms appeared sooner and were more severe in lupins than in peas. Growing plants without HCO3 -, but at the lowest Fe level, decreased the growth and Fe concentration of shoots of lupins but did not induce chlorosis. Growing peas in this treatment, decreased Fe concentrations, but to a lesser extent than in lupins, and did not decrease growth. H+-ion extrusion and release of FeIII reducing compounds was greater in lupins than in peas. Bicarbonate also decreased the growth of roots of lupins but increased the growth of roots of peas. Results indicate that when Fe deficiency is induced by HCO3 -, then the response of lupins and peas are similar to their response in acid solution culture. Differences between species therefore could not be explained by their relative abilities to acidify or release FeIII reducing compounds. Greater control of the distribution of Fe within the shoots, the presence of a pool of Fe within the roots, a lower threshold for Fe uptake, or a higher content of seed-Fe, may therefore be the reason for the lower sensitivity of peas than lupins to Fe deficiency.  相似文献   

14.
The mechanism of nitrate transport across the tonoplast of barley root cells   总被引:14,自引:0,他引:14  
Nitrate-selective microelectrodes were used to measure not only nitrate activity in the cytoplasm and vacuole of barley (Hordeum vulgare L.) root cells, but also the tonoplast electrical membrane potential. For epidermal cells, the mean cytoplasmic and vacuolar pNO3 (-log10 [NO3]) values were 2.3±0.04 (n=19) and 1.41±0.03 (n=35), respectively, while for cortical cells, the mean cytoplasmic and vacuolar nitrate values were 2.58±0.18 (n=4) and 1.17±0.06 (n=13), respectively. These results indicate that the accumulation of nitrate in the vacuole must be an active process. Proton-selective microelectrodes were used to measure the proton gradient across the tonoplast to assess the possibility that nitrate transport into the vacuole is mediated by an H+/NO 3 antiport mechanism. For epidermal cells, the mean cytoplasmic and vacuolar pH values were 7.12±0.06 (n=10) and 4.93±0.11 (n=22), respectively, while for cortical cells, the mean cytoplasmic and vacuolar pH values were 7.24±0.07 (n=3) and 5.09±0.17 (n=7), respectively. Calculations of the energetics for this mechanism indicate that the observed gradient of nitrate across the tonoplast of both epidermal and cortical cells could be achieved by an H+/NO 3 antiport with a 11 stoichiometry.Abbreviations and Symbols G/F free-energy change for H+/NO 3 antiport - F Faraday constant - pHc cytoplasmic pH - pHv vacuolar pH - p[NO3]c log10 (cytoplasmic [NO 3 ]) - P[NO3]v -log10 (vacuolar [NO3]) We wish to thank Dr. K. Moore for assistance with statistical analysis.  相似文献   

15.
Maria Kwiatkowska 《Protoplasma》1988,142(2-3):137-146
Summary The antheridium ofChara vulgaris L. is connected by plasmodesmata with the thallusvia a basal cell. Prior to the initiation of spermatozoid differentiation these plasmodesmata are spontaneously broken, resulting in symplasmic isolation of the antheridium.Premature plasmolytically evoked symplasmic isolation of the antheridium leads to a 2–4 fold reduction in the length of antheridial filaments and the elimination of 1–2 cell cycles from the first stage of spermatogenesis.Autoradiographic and cytophotometric studies have shown that, as a result of induced symplasmic isolation of the antheridium, endomitotic DNA synthesis was blocked both in the young manubria (after 24 hours) and in the capitular cells (after 48 hours). In the antheridial filaments DNA synthesis was inhibited together with either elimination of divisions and induction of spermatid differentiation or developmental block. We propose that breakage of plasmodesmata connecting the antheridium with the thallus is a signal which releases, in all antheridia, mechanisms that (i) block endomitotic DNA synthesis in the manubria, (ii) restrict the growth rate and the divisions of antheridial filament cells, and (iii) induce spermiogenesis in these antheridia in which the manubria attained the sufficient level of polyploidy.This work is supported by the Polish Academy of Sciences within the project CPBP 04.01.5.05.  相似文献   

16.
Lemna gibba L., grown in the presence or absence of Fe, reduced extracellular ferricyanide with a V max of 3.09 mol · g-1 fresh weight · h-1 and a K m of 115 M. However, Fe3+-ethylenediaminetetraacetic acid (EDTA) was reduced only after Fe-starvation. External electron acceptors such as ferricyanide, Fe3+-EDTA, 2,6-dichlorophenol indophenol or methylene blue induced a membrane depolarization of up to 100 mV, but electron donors such as ferrocyanide or NADH had no effect. Light or glucose enhanced ferricyanide reduction while the concomitant membrane depolarization was much smaller. Under anaerobic conditions, ferricyanide had no effect on electrical membrane potential difference (Em). Ferricyanide reduction induced H+ and K+ release in a ratio of 1.16 H++1 K+/2 e- (in +Fe plants) and 1.28 H++0.8 K+/2 e- (in -Fe plants). Anion uptake was inhibited by ferricyanide reduction. It is concluded that the steady-state transfer of electrons and protons proceeds by separate mechanisms, by a redox system and by a H+-ATPase.Abbreviations E m electrical membrane potential difference - EDTA ethylenediaminetetraacetic acid - DCPIP dichlorophenol indophenol - +Fe control plant - -Fe iron-deficient plant - FW fresh weight - H+ electrochemical proton gradient  相似文献   

17.
We studied the extracellular [HCOabstract (3) (-)] dependence of two renal clones of the electrogenic Na/HCO(3) cotransporter (NBC) heterologously expressed in Xenopus oocytes. We used microelectrodes to measure the change in membrane potential (DeltaV(m)) elicited by the NBC cloned from the kidney of the salamander Ambystoma tigrinum (akNBC) and by the NBC cloned from the kidney of rat (rkNBC). We used a two-electrode voltage clamp to measure the change in current (DeltaI) elicited by rkNBC. Briefly exposing an NBC-expressing oocyte to HCOabstract (3 )(-)/CO(2) (0.33-99 mM HCOabstract (3)(-), pH(o) 7.5) elicited an immediate, DIDS (4, 4-diisothiocyanatostilbene-2,2-disulfonic acid)-sensitive and Na(+)-dependent hyperpolarization (or outward current). In DeltaV(m) experiments, the apparent K(m ) for HCOabstract (3)(-) of akNBC (10. 6 mM) and rkNBC (10.8 mM) were similar. However, under voltage-clamp conditions, the apparent K(m) for HCOabstract (3)(-) of rkNBC was less (6.5 mM). Because it has been reported that SOabstract (3)(=)/HSO abstract (3)(-) stimulates Na/HCO(3 ) cotransport in renal membrane vesicles (a result that supports the existence of a COabstract (3)(=) binding site with which SOabstract (3)(=) interacts), we examined the effect of SOabstract (3)(=)/HSO abstract (3)(-) on rkNBC. In voltage-clamp studies, we found that neither 33 mM SOabstract (4)(=) nor 33 mM SOabstract (3) (=)/HSOabstract (3)(-) substantially affects the apparent K(m) for HCO abstract (3)(-). We also used microelectrodes to monitor intracellular pH (pH(i)) while exposing rkNBC-expressing oocytes to 3.3 mM HCOabstract (3 )(-)/0.5% CO(2). We found that SO abstract (3)(=)/HSOabstract (3 )(-) did not significantly affect the DIDS-sensitive component of the pH(i) recovery from the initial CO(2 )-induced acidification. We also monitored the rkNBC current while simultaneously varying [CO(2)](o), pH(o), and [COabstract (3)(=)](o) at a fixed [HCOabstract (3)(-)](o) of 33 mM. A Michaelis-Menten equation poorly fitted the data expressed as current versus [COabstract (3)(=)](o ). However, a pH titration curve nicely fitted the data expressed as current versus pH(o). Thus, rkNBC expressed in Xenopus oocytes does not appear to interact with SOabstract (3 )(=), HSOabstract (3)(-), or COabstract (3)(=).  相似文献   

18.
A new vibrating probe-current voltage measuring system is described which enabled us to detect current-voltage curves in the acid and alkaline regions of Chara corallina (Klein ex Willd., em. R.D.W.). Extracellular current analysis, performed before and after the measurement of a current-voltage curve, established that the voltage-clamp protocol had no significant effect on the transport function of the plasma membrane, provided no action potential was triggered. This validated experimental system was then used to determine the reversal potential (- 450 mV) and the stoichiometry (1 H+:ATP hydrolyzed) of the Chara H+-ATPase, which dominates the acid regions. Current-voltage curves of the acid regions almost saturated at values close to the resting potential, in the absence of exogenous buffer. Introduction of artificial buffers and-or HCO 3 - shifted the reversal potential of this area to more positive values. Furthermore, it was shown that the reversal potential (-120 mV) of the extracellular current in the alkaline band (passive H+ channel) coincided with the threshold for the action potential. We propose that the action potential functions as a component of the spatial control system in the Chara cell.Abbreviations CPW artificial Chara pond water - CPW/B CPW with 1 mM NaHCO3 This work was supported by National Science Foundation grant No. DCB-88-16077 and a matching equipment grant provided by the University of California, Davis, to W.J.L. We thank Jim Haudenshield for his help with some of the illustrations and Lesley Randall for the technical drawings. Special thanks are due to Wes Tallon of the Physical Plant Machine Shop, University of California, Davis for the fabrication of the new vibrating-probe-voltage-clamp system. The Industrial Applications Section of Olympus provided considerable assistance in terms of the development of an appropriate high-resolution fibre-optics microscope.  相似文献   

19.
Summary Charasomes, complex membrane structures, were found along the longitudinal walls of internodal and lateral branch cells ofChara corallina andC. braunii, but not along their transverse walls or in other cell types. Charasome-complexes were larger and more numerous in the lateral branch cells than in internodal cells. InC. corallina, a dioecious species, especially large elaboration of charasome material occurs in the lateral branch cells of the female plant, sometimes reaching a cross-sectional width which is as great as that of the adjacent cell wall. Chara internodes transport hydroxyl (OH) out of the cell and bicarbonate (HCO3 ) into the cell. Spatial distribution of charasomes along the cell was examined with respect to these transport phenomena, which occur at specific identifiable regions along the cell. Charasome-complexes were always found in regions in which HCO3 transport occurs but were often fewer, reduced in size or absent in areas of OH efflux.Nitella flexilis exhibited similar patterns of OH and HCO3 transport along the cell; however, there was a complete absence of charasomes. Ultrastructural examinations onNitella translucens indicated that charasomes were also absent in this species. The observation that charasomes are present in both transport regions ofChara but are totally lacking in the twoNitella spp. indicates that the charasome-complex is not involved in transport of either substance. Other possible functions for the charasomes, including a role in osmoregulation, are discussed.Charasome substructure is the same in bothChara species, consisting of a mass of short (50 nm average length) anastomosing tubules (30 nm average diameter) derived from the plasmalemma. The interior of the tubules is open to the cytoplasm while the area surrounding the tubules is ultimately open to the wall and thus can be considered to be wall space. Charasomes are quite variable in size and shape, but are roughly globular, with the bulk of the structure projecting into the cell cytoplasm. Tubular components of the charasome were sometimes seen to extend into the microfibrillar wall matrix. A three dimensional model of the charasome-complex presented details the great complexity of this membrane system.  相似文献   

20.
R. Wayne  T. Mimura  T. Shimmen 《Protoplasma》1994,180(3-4):118-135
Summary The hydraulic resistance of the plasma membrane was measured on single internodal cells ofChara corallina using the method of transcellular osmosis. The hydraulic resistance of the plasma membrane of high CO2-grown cells was significantly higher than the hydraulic resistance of the plasma membrane in low CO2-grown cells. Therefore we tested the possibility that the bicarbonate transport system, postulated to be present in low CO2-grown cells, serves as a water channel that lowers the hydraulic resistance of the plasma membrane. We were unable to find any correlation between agents that inhibited the bicarbonate transport system and agents that increased the hydraulic resistance of low CO2-grown cells. We did, however, find a correlation between the permeability of the cell to water and CO2. We propose that the reduced hydraulic resistance of the plasma membrane of the low CO2-grown cells is a function of a change in either the structural properties of the lipid bilayer or the activity of a CO2 transport protein so that under conditions of reduced inorganic carbon, the plasma membrane becomes more permeable to CO2, and consequently to other small molecules, including H2O, methanol and ethanol.Dedicated to our teacher, Professor Masashi Tazawa, on the occasion of his 65th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号