首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The newly described green-pigmented bacterium Pseudoalteromonas tunicata (D2) produces target-specific inhibitory compounds against bacteria, algae, fungi, and invertebrate larvae and is frequently found in association with living surfaces in the marine environment. As part of our studies on the ecology of P. tunicata and its interaction with marine surfaces, we examined the ability of P. tunicata to form biofilms under continuous culture conditions within the laboratory. P. tunicata biofilms exhibited a characteristic architecture consisting of differentiated microcolonies surrounded by water channels. Remarkably, we observed a repeatable pattern of cell death during biofilm development of P. tunicata, similar to that recently reported for biofilms of Pseudomonas aeruginosa (J. S. Webb et al., J. Bacteriol. 185:4585-4595, 2003). Killing and lysis occurred inside microcolonies, apparently resulting in the formation of voids within these structures. A subpopulation of viable cells was always observed within the regions of killing in the biofilm. Moreover, extensive killing in mature biofilms appeared to result in detachment of the biofilm from the substratum. A novel 190-kDa autotoxic protein produced by P. tunicata, designated AlpP, was found to be involved in this biofilm killing and detachment. A Delta alpP mutant derivative of P. tunicata was generated, and this mutant did not show cell death during biofilm development. We propose that AlpP-mediated cell death plays an important role in the multicellular biofilm development of P. tunicata and subsequent dispersal of surviving cells within the marine environment.  相似文献   

2.
A collection of 56 bacteria isolated from different surfaces in the marine environment were assayed for their effects on the germination of spores from the common green alga Ulva lactuca. Thirteen bacterial isolates were shown to inhibit spore germination. Of these bacteria, Pseudoalteromonas tunicata displayed the most pronounced effects against algal spores. Further characterisation of the anti-algal activity of P. tunicata was performed and it was found that this bacterium produces an extracellular component with specific activity toward algal spores that is heat-sensitive, polar and between 3 and 10 kDa in size. This biologically active compound was also found to prevent the germination of spores from the red alga Polysiphonia sp. and, given the widespread occurrence of P. tunicata in a range of marine habitats, this may suggest that it is effective against a variety of marine algae.  相似文献   

3.
The eukaryote-associated marine bacterium Pseudoalteromonas tunicata produces a range of target-specific compounds that inhibit different types of marine organisms including invertebrate larvae and algal spores, as well as a broad spectrum of fungi, protozoa, and bacteria. The ability to produce such bioactive compounds is correlated to the expression of a yellow and a purple pigment in P. tunicata. To investigate the regulation and biosynthesis of the pigments and bioactive compounds, the expressed secretome of the pigmented wild-type P. tunicata and a nonpigmented mutant (wmpD-) defective in the type-II secretion pathway were compared. Secreted proteins were digested with trypsin, labeled using amine-specific isobaric tagging reagents (iTRAQ), and identified using two-dimensional SCX and nano C18 RP liquid-chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS). The iTRAQ labeling experiments enabled accurate measurement of the proteins identified in this work. A sequence-base prediction of P. tunicata secretome was also obtained and compared to the expressed proteome to determine the role of the type-II secretion pathway in this bacterium. Our results suggest that this secretion pathway has a role in iron transport and acquisition in P. tunicata.  相似文献   

4.
Pseudoalteromonas tunicata is a biofilm-forming marine bacterium that is often found in association with the surface of eukaryotic organisms. It produces a range of extracellular inhibitory compounds, including an antibacterial protein (AlpP) thought to be beneficial for P. tunicata during competition for space and nutrients on surfaces. As part of our studies on the interactions between P. tunicata and the epiphytic bacterial community on the marine plant Ulva lactuca, we investigated the hypothesis that P. tunicata is a superior competitor compared with other bacteria isolated from the plant. A number of U. lactuca bacterial isolates were (i) identified by 16S rRNA gene sequencing, (ii) characterized for the production of or sensitivity to extracellular antibacterial proteins, and (iii) labeled with a fluorescent color tag (either the red fluorescent protein DsRed or green fluorescent protein). We then grew single- and mixed-species bacterial biofilms containing P. tunicata in glass flow cell reactors. In pure culture, all the marine isolates formed biofilms containing microcolony structures within 72 h. However, in mixed-species biofilms, P. tunicata removed the competing strain unless its competitor was relatively insensitive to AlpP (Pseudoalteromonas gracilis) or produced strong inhibitory activity against P. tunicata (Roseobacter gallaeciensis). Moreover, biofilm studies conducted with an AlpP mutant of P. tunicata indicated that the mutant was less competitive when it was introduced into preestablished biofilms, suggesting that AlpP has a role during competitive biofilm formation. When single-species biofilms were allowed to form microcolonies before the introduction of a competitor, these microcolonies coexisted with P. tunicata for extended periods of time before they were removed. Two marine bacteria (R. gallaeciensis and P. tunicata) were superior competitors in this study. Our data suggest that this dominance can be attributed to the ability of these organisms to rapidly form microcolonies and their ability to produce extracellular antibacterial compounds.  相似文献   

5.
In the ubiquitous marine bacterium Pseudoalteromonas tunicata, subpopulations of cells are killed by the production of an autocidal protein, AlpP, during biofilm development. Our data demonstrate an involvement of this process in two parameters, dispersal and phenotypic diversification, which are of importance for the ecology of this organism and for its survival within the environment. Cell death in P. tunicata wild-type biofilms led to a major reproducible dispersal event after 192 h of biofilm development. The dispersal was not observed with a DeltaAlpP mutant strain. Using flow cytometry and the fluorescent dye DiBAC4(3), we also show that P. tunicata wild-type cells that disperse from biofilms have enhanced metabolic activity compared to those cells that disperse from DeltaAlpP mutant biofilms, possibly due to nutrients released from dead cells. Furthermore, we report that there was considerable phenotypic variation among cells dispersing from wild-type biofilms but not from the DeltaAlpP mutant. Wild-type cells that dispersed from biofilms showed significantly increased variations in growth, motility, and biofilm formation, which may be important for successful colonization of new surfaces. These findings suggest for the first time that the autocidal events mediated by an antibacterial protein can confer ecological advantages to the species by generating a metabolically active and phenotypically diverse subpopulation of dispersal cells.  相似文献   

6.
Metabolomics - Recent advances in high-throughput methodologies in the ‘omics’ and synthetic biology fields call for rapid and sensitive workflows in the metabolic phenotyping of...  相似文献   

7.
The marine epiphytic bacterium Pseudoalteromonas tunicata produces a range of extracellular secondary metabolites that inhibit an array of common fouling organisms, including fungi. In this study, we test the hypothesis that the ability to inhibit fungi provides P. tunicata with an advantage during colonization of a surface. Studies on a transposon-generated antifungal-deficient mutant of P. tunicata, FM3, indicated that a long-chain fatty acid-coenzyme A ligase is involved in the production of a broad-range antifungal compound by P. tunicata. Flow cell experiments demonstrated that production of an antifungal compound provided P. tunicata with a competitive advantage against a marine yeast isolate during surface colonization. This compound enabled P. tunicata to disrupt an already established fungal biofilm by decreasing the number of yeast cells attached to the surface by 66% ± 9%. For in vivo experiments, the wild-type and FM3 strains of P. tunicata were used to inoculate the surface of the green alga Ulva australis. Double-gradient denaturing gradient gel electrophoresis analysis revealed that after 48 h, the wild-type P. tunicata had outcompeted the surface-associated fungal community, whereas the antifungal-deficient mutant had no effect on the fungal community. Our data suggest that P. tunicata is an effective competitor against fungal surface communities in the marine environment.  相似文献   

8.

Background

Colonisation of sessile eukaryotic host surfaces (e.g. invertebrates and seaweeds) by bacteria is common in the marine environment and is expected to create significant inter-species competition and other interactions. The bacterium Pseudoalteromonas tunicata is a successful competitor on marine surfaces owing primarily to its ability to produce a number of inhibitory molecules. As such P. tunicata has become a model organism for the studies into processes of surface colonisation and eukaryotic host-bacteria interactions.

Methodology/Principal Findings

To gain a broader understanding into the adaptation to a surface-associated life-style, we have sequenced and analysed the genome of P. tunicata and compared it to the genomes of closely related strains. We found that the P. tunicata genome contains several genes and gene clusters that are involved in the production of inhibitory compounds against surface competitors and secondary colonisers. Features of P. tunicata''s oxidative stress response, iron scavenging and nutrient acquisition show that the organism is well adapted to high-density communities on surfaces. Variation of the P. tunicata genome is suggested by several landmarks of genetic rearrangements and mobile genetic elements (e.g. transposons, CRISPRs, phage). Surface attachment is likely to be mediated by curli, novel pili, a number of extracellular polymers and potentially other unexpected cell surface proteins. The P. tunicata genome also shows a utilisation pattern of extracellular polymers that would avoid a degradation of its recognised hosts, while potentially causing detrimental effects on other host types. In addition, the prevalence of recognised virulence genes suggests that P. tunicata has the potential for pathogenic interactions.

Conclusions/Significance

The genome analysis has revealed several physiological features that would provide P. tunciata with competitive advantage against other members of the surface-associated community. We have also identified properties that could mediate interactions with surfaces other than its currently recognised hosts. This together with the detection of known virulence genes leads to the hypothesis that P. tunicata maintains a carefully regulated balance between beneficial and detrimental interactions with a range of host surfaces.  相似文献   

9.
A large insert library was created in Escherichia coli from the DNA of the surface-associated marine bacterium Pseudoalteromonas tunicata. Screening of the library for antifungal activity resulted in the detection and identification of a large gene cluster encoding for the biosynthesis of an antifungal tambjamine. A biosynthetic pathway has been proposed based on analysis and annotation of the gene cluster.  相似文献   

10.
The newly described green-pigmented bacterium Pseudoalteromonas tunicata (D2) produces target-specific inhibitory compounds against bacteria, algae, fungi, and invertebrate larvae and is frequently found in association with living surfaces in the marine environment. As part of our studies on the ecology of P. tunicata and its interaction with marine surfaces, we examined the ability of P. tunicata to form biofilms under continuous culture conditions within the laboratory. P. tunicata biofilms exhibited a characteristic architecture consisting of differentiated microcolonies surrounded by water channels. Remarkably, we observed a repeatable pattern of cell death during biofilm development of P. tunicata, similar to that recently reported for biofilms of Pseudomonas aeruginosa (J. S. Webb et al., J. Bacteriol. 185:4585-4595, 2003). Killing and lysis occurred inside microcolonies, apparently resulting in the formation of voids within these structures. A subpopulation of viable cells was always observed within the regions of killing in the biofilm. Moreover, extensive killing in mature biofilms appeared to result in detachment of the biofilm from the substratum. A novel 190-kDa autotoxic protein produced by P. tunicata, designated AlpP, was found to be involved in this biofilm killing and detachment. A ΔalpP mutant derivative of P. tunicata was generated, and this mutant did not show cell death during biofilm development. We propose that AlpP-mediated cell death plays an important role in the multicellular biofilm development of P. tunicata and subsequent dispersal of surviving cells within the marine environment.  相似文献   

11.
12.
There are over 30 species in the marine bacterial genus Pseudoalteromonas. However, our knowledge about this genus is still limited. We sequenced the genomes of type strains of seven species in the genus, facilitating the study of the physiology, adaptation, and evolution of this genus.  相似文献   

13.
AIM: To study the influence of 15 microbial isolates on the prevalence of charge-heterogeneous and charge-homogeneous Enterococcus faecalis strains, all isolated from biliary stents, in mixed-species biofilms. METHODS AND RESULTS: Six Enterococcus faecalis strains were paired with 15 other microbial isolates to form mixed-species biofilms in a microtitre plate assay. Charge-heterogeneous Enterococcus faecalis strains display two subpopulations with different surface charges, expressed as a biomodal zeta potential distribution. It was found that, in general, the prevalence of the charge-heterogeneous, biofilm forming Enterococcus faecalis was reduced in mixed-species biofilms. The prevalence of charge-homogeneous, nonbiofilm-forming Enterococcus faecalis strains was increased only in the presence of Citrobacter freundii BS5126, Stenotrophomonas malthophilia BS937, and Candida lusitaniae BS8256, all of which introduced sizeable charge heterogeneity in the mixed microbial population. CONCLUSIONS: Charge-homogeneous Enterococcus faecalis strains are stimulated to form biofilm only by the presence of another microbial species with a considerably less negative zeta potential, thereby creating a charge-heterogeneous microbial population. SIGNIFICANCE AND IMPACT OF THE STUDY: Enterococcus faecalis is one of the predominant species isolated from mixed-species biofilms in clogged biliary stents. The current study shows how charge-homogeneous Enterococcus faecalis strains form more biofilm in the presence of other microbial species.  相似文献   

14.
Pseudoalteromonas luteoviolacea is a globally distributed marine bacterium that stimulates the metamorphosis of marine animal larvae, an important bacteria–animal interaction that can promote the recruitment of animals to benthic ecosystems. Recently, different P. luteoviolacea isolates have been shown to produce two stimulatory factors that can induce tubeworm and coral metamorphosis; Metamorphosis-Associated Contractile structures (MACs) and tetrabromopyrrole (TBP) respectively. However, it remains unclear what proportion of P. luteoviolacea isolates possess the genes encoding MACs, and what phenotypic effect MACs and TBP have on other larval species. Here, we show that 9 of 19 sequenced P. luteoviolacea genomes genetically encode both MACs and TBP. While P. luteoviolacea biofilms producing MACs stimulate the metamorphosis of the tubeworm Hydroides elegans, TBP biosynthesis genes had no effect under the conditions tested. Although MACs are lethal to larvae of the cnidarian Hydractinia symbiologicarpus, P. luteoviolacea mutants unable to produce MACs are capable of stimulating metamorphosis. Our findings reveal a hidden complexity of interactions between a single bacterial species, the factors it produces and two species of larvae belonging to different phyla.  相似文献   

15.
In the ubiquitous marine bacterium Pseudoalteromonas tunicata, subpopulations of cells are killed by the production of an autocidal protein, AlpP, during biofilm development. Our data demonstrate an involvement of this process in two parameters, dispersal and phenotypic diversification, which are of importance for the ecology of this organism and for its survival within the environment. Cell death in P. tunicata wild-type biofilms led to a major reproducible dispersal event after 192 h of biofilm development. The dispersal was not observed with a ΔAlpP mutant strain. Using flow cytometry and the fluorescent dye DiBAC4(3), we also show that P. tunicata wild-type cells that disperse from biofilms have enhanced metabolic activity compared to those cells that disperse from ΔAlpP mutant biofilms, possibly due to nutrients released from dead cells. Furthermore, we report that there was considerable phenotypic variation among cells dispersing from wild-type biofilms but not from the ΔAlpP mutant. Wild-type cells that dispersed from biofilms showed significantly increased variations in growth, motility, and biofilm formation, which may be important for successful colonization of new surfaces. These findings suggest for the first time that the autocidal events mediated by an antibacterial protein can confer ecological advantages to the species by generating a metabolically active and phenotypically diverse subpopulation of dispersal cells.  相似文献   

16.
An acidic O-specific polysaccharide containing D-glucuronic acid (D-GlcA), 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (D-GlcNAc3NAcA), 2,3-diacetamido-2,3-dideoxy-D-mannuronoyl-L-alanine (D-ManNAc3NAcA6Ala), and 2-acetamido-2,4, 6-trideoxy-4-[(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NAcyl) was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Pseudoalteromonas sp. KMM 634 followed by gel-permeation chromatography. The polysaccharide was cleaved selectively with a new solvolytic agent, trifluoromethanesulfonic acid, to give a disaccharide and a trisaccharide with D-GlcNAc3NAcA at the reducing end. The borohydride-reduced oligosaccharides and the initial polysaccharide were studied by GLC-MS and 1H- and 13C-NMR spectroscopy, and the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: -->3)-alpha-D-QuipNAc4Ac4NAcyl-(1-->4)-beta-D-ManpNAc3NAcA6Ala+ ++-(1-->4)-b eta-D-GlcpNAc3NAc3NAcA-(1-->4)-beta-D-GlcpA-(1-->.  相似文献   

17.
An acidic polysaccharide was obtained from the lipopolysaccharide of Pseudoalteromonas distincta strain KMM 638, isolated from a marine sponge, and found to contain D-GlcA, D-GalNAc, 2-acetamido-2,6-dideoxy-D-glucose (D-QuiNAc) and two unusual acidic amino sugars: 2-acetamido-2-deoxy-D-galacturonic acid (D-GalNAcA) and 5-acetamido-3,5,7,9-tetradeoxy-7-formamido-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Fo, a derivative of pseudaminic acid). Oligosaccharides were derived from the polysaccharide by partial acid hydrolysis and mild alkaline degradation and characterised by electrospray ionisation (ESI) MS and 1H and 13C NMR spectroscopy. Based on these data and NMR spectroscopic studies of the initial and O-deacetylated polysaccharides, including quaternary carbon detection, 2D COSY, TOCSY, ROESY, H-detected 1H,13C HMQC and HMBC experiments, the following structure of the branched pentasaccharide repeating unit was established: [structure: see text].  相似文献   

18.
The marine, psychrotolerant, rod-shaped and Gram-negative bacterium 22b (the best of 41 beta-galactosidase producers out of 107 Antarctic strains subjected to screening), classified as Pseudoalteromonas sp. based on 16S rRNA gene sequence, isolated from the alimentary tract of Antarctic krill Thyssanoessa macrura, synthesizes an intracellular cold-adapted beta-galactosidase, which efficiently hydrolyzes lactose at 0-20 degrees C, as indicated by its specific activity of 21-67 U mg(-1) of protein (11-35% of maximum activity) in this temperature range, as well as k(cat) of 157 s(-1), and k(cat)/K(m) of 47.5 mM(-1) s(-1) at 20 degrees C. The maximum enzyme synthesis (lactose as a sufficient inducer) was observed at 6 degrees C, thus below the optimum growth temperature of the bacterium (15 degrees C). The enzyme extracted from cells was purified to homogeneity (25% recovery) by using the fast, three-step procedure, including affinity chromatography on PABTG-Sepharose. The enzyme is a tetramer composed of roughly 115 kDa subunits. It is maximally active at 40 degrees C (190 U mg(-1) of protein) and pH 6.0-8.0. PNPG is its preferred substrate (50% higher activity than against ONPG). The Pseudoalteromonas sp. 22b beta-galactosidase is activated by thiol compounds (70% rise in activity in the presence of 10 mM dithiotreitol), some metal ions (K(+), Na(+), Mn(2+)-40% increase, Mg(2+)-15% enhancement), and markedly inactivated by pCMB and heavy metal ions, particularly Cu(2+). Noteworthy, Ca(2+) ions do not affect the enzyme activity, and the homogeneous protein is stable at 4 degrees C for at least 30 days without any stabilizers.  相似文献   

19.
The structure of an acidic polysaccharide from Pseudoalteromonas aliena type strain KMM 3562(T) has been elucidated. The polysaccharide was studied by component analysis, (1)H and (13)C NMR spectroscopy, including 2D NMR experiments. A (1)H, (13)C band-selective constant-time heteronuclear multiple-bond connectivity experiment was used to determine amide linkages, between serine and uronic acid (UA) residues, via (3)J(H,C) correlations between Ser-alphaH and UA-C-6. It was found that the polysaccharide consists of pentasaccharide repeating units with the following structure: [carbohydrate structure]; see text.  相似文献   

20.
The structure of an acidic polysaccharide from Pseudoalteromonas atlantica strain 14165 containing 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-non-2-ulosonic acid (di-N-acetylpseudaminic acid, Pse5Ac7Ac) has been elucidated. The polysaccharide was studied by 1H and 13C NMR spectroscopy, including 2D experiments, along with sugar and methylation analyses. After a selective hydrolysis a modified polysaccharide devoid of its side chain could be isolated. It was found that the polysaccharide has pentasaccharide repeating units with following structure: [structure: see text].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号