首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Z X Xue  J M Zhou  T Melese  R L Cross  P D Boyer 《Biochemistry》1987,26(13):3749-3753
The photolabeling of chloroplast F1 ATPase, following exposure to Mg2+ and 2-azido-ATP and separation from medium nucleotides, results in derivatization of two separate peptide regions of the beta subunit. Up to 3 mol of the analogue can be incorporated per mole of CF1, with covalent binding of one moiety or two moieties per beta subunit that can be either AMP, ADP, or ATP derivatives. These results, the demonstration of noncovalent tight binding of at least four [3H]adenine nucleotides to the enzyme and the presence of three beta subunits per enzyme, point to six potential adenine nucleotide binding sites per molecule. The tightly bound 2-azido nucleotides on CF1, found after exposure of the heat-activated and EDTA-treated enzyme to Mg2+ and 2-azido-ATP, differ in their ease of replacement during subsequent hydrolysis of ATP. Some of the bound nucleotides are not readily replaced during catalytic turnover and covalently label one peptide region of the beta subunit. They are on noncatalytic sites. Other tightly bound nucleotides are readily replaced during catalytic turnover and label another peptide region of the beta subunit. They are at catalytic sites. No alpha-subunit labeling is detected upon photolysis of the bound 2-azido nucleotides. However, one or both of the sites could be at an alpha-beta-subunit interface with the 2-azido region close to the beta subunit, or both binding sites may be largely or entirely on the beta subunit.  相似文献   

2.
3.
The photoreactive nucleotides [2-3H]8-azido-ATP and [2-3H]8-azido-ADP could be used to label the nucleotide binding sites on isolated mitochondrial F1-ATPase to a maximum of 4 mol of nucleotide per mol F1, also when the F1 was depleted of tightly bound nucleotides. At a photolabel concentration of 300-1000 microM, label was found on both alpha and beta subunits in a typically 1:3 ratio, independent of the total amount bound. Under these conditions the covalent binding of two nucleotides is needed for full inactivation (Wagenvoord, R.J., Van der Kraan, I. and Kemp, A. (1977) Biochim. Biophys. Acta 460, 17-24). At lower concentrations of [2-3H]8-azido-ATP (20 microM), it was found that covalent binding of only 1 mol of nucleotide per mole F1 was required for complete inactivation to take place indicating catalytic site cooperativity in the mechanism of ATP hydrolysis. Under those conditions, radioactivity was only found on the beta subunits, which would indicate that the catalytic site is located on a beta subunit and that a second site is located on the alpha/beta interface. It is found that four out of the six nucleotide binding sites are exchangeable and can be labelled with 8-azido-AT(D)P, i.e., two catalytic sites and two non-catalytic sites.  相似文献   

4.
1. Tightly bound ATP and ADP, found on the isolated mitochondrial ATPase, exchange only slowly at pH 8, but the exchange is increased as the pH is reduced. At pH 5.5, more than 60% of the bound nucleotide exchanges within 2.5 min. 2. Preincubation of the isolated ATPase with ADP leads to about 50% inhibition of ATP hydrolysis when the enzyme is subsequently assayed in the absence of free ADP. This effect, which is reversed by preincubation with ATP, is absent on the membrane-bound ATPase. This inhibition seems to involve the replacement of tightly bound ATP by ADP. 3. Using these two findings, the binding specificity of the tight nucleotide binding sites was determined. iso-Guanosine, 2'-deoxyadenosine and formycin nucleotides displaced ATP from the tight binding sites, while all other nucleotides tested did not. The specificities of the tight sites of the isolated and membrane-bound ATPase were similar, and higher than that of the hydrolytic site. 4. The nucleotide specificities of 'coupled processes' nucleoside triphosphate-driven reversal of electron transfer, nucleoside triphosphate-32Pi exchange and phosphorylation were higher than that of the hydrolytic site of the ATPase and similar to that of the tight nucleotide binding sites.  相似文献   

5.
Adenine nucleotide binding sites on the coupling factor ATPase of thermophilic bacterium PS3 (TF1) were investigated by UV spectroscopy and by equilibrium dialysis. When ADP was mixed with TF1 in the presence and in the absence of Mg2+, an UV absorbance change was induced (t1/2 approximately 1 min) with a peak at about 278 nm and a trough at about 250 nm. Similar spectral changes were induced by ADP with the isolated beta subunits in the presence and in the absence of Mg2+, and with the isolated alpha subunits in the presence of Mg2+ although the magnitudes of the changes were different. From equilibrium dialysis measurement we identified two classes of nucleotide binding sites in TF1 in the presence of Mg2+, three high-affinity sites (Kd = 61 nM) and three low-affinity sites (Kd = 87 microM). In the absence of Mg2+, TF1 has one high-affinity site (Kd less than 10 nM) and five low-affinity sites (Kd = 100 microM). Moreover, we found a single Mg2+-dependent ADP binding site on the isolated alpha subunit and a single Mg2+-independent ADP binding site on the isolated beta subunit. From the above observations, we concluded that the three Mg2+-dependent high-affinity sites for ADP are located on the alpha subunit in TF1 and that the single high-affinity site is located on one of the beta subunits in TF1 in the absence of Mg2+.  相似文献   

6.
L C Cantley  G G Hammes 《Biochemistry》1975,14(13):2968-2975
A study of the equilibrium binding of ADP, 1,N6-ethenoadenosine diphosphate, adenylyl imidodiphosphate, and 1,N6-ethenoadenylyl imidodiphosphate to solubilized spinach chloroplast coupling factor 1 (CF1) has been carried out. All four nucleotides were found to bind to two apparently identical "tight" sites, with characteristic dissociation contants generally less than 10 muM. The binding to these "tight" sites is similar in the presence of Mg2+ and Ca2+, is stronger in 0.1 M NaC1 than in 20 mM Tris-C1, and is only slightly altered by heat activation. The slow rate of association of ADP and 1,N6-ethenoadenosine diphosphate at these sites rules out the possibility that they are catalytic sites for ATPase activity on the solubilized enzyme. A third tight site for adenylyl imidodiphosphate was found on the heat-activated enzyme. The dissociation constant for this interaction (7.6 muM) is similar to the adenylyl imidodiphosphate competitive inhibition constant for ATPase activity (4 muM). ADP, which inhibits ATPase activity but is not a strong competitive inhibitor, binds only weakly at a third site (dissociation constant greater than 70 muM). One mole of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted per mole of CF1 prevents ADP and adenylyl imidodiphosphate binding at the "catalytic" site and abolishes the ATPase activity. A model is proposed in which the "tight" nucleotide binding sites act as allosteric conformational switches for the ATPase activity of solubilizedCF1.  相似文献   

7.
Photolabeling of nucleotide binding sites in nucleotide-depleted mitochondrial F1 has been explored with 2-azido [alpha-32P]adenosine diphosphate (2-N3[alpha-32P] ADP). Control experiments carried out in the absence of photoirradiation in a Mg2+-supplemented medium indicated the presence of one high affinity binding site and five lower affinity binding sites per F1. Similar titration curves were obtained with [3H]ADP and the photoprobe 3'-arylazido-[3H]butyryl ADP [( 3H]NAP4-ADP). Photolabeling of nucleotide-depleted F1 with 2-N3[alpha-32P]ADP resulted in ATPase inactivation, half inactivation corresponding to 0.6-0.7 mol of photoprobe covalently bound per mol F1. Only the beta subunit was photolabeled, even under conditions of high loading with 2-N3[alpha-32P]ADP. The identification of the sequences labeled with the photoprobe was achieved by chemical cleavage with cyanogen bromide and enzymatic cleavage by trypsin. Under conditions of low loading with 2-N3[alpha-32P]ADP, resulting in photolabeling of only one vacant site in F1, covalently bound radioactivity was located in a peptide fragment of the beta subunit spanning Pro-320-Met-358 identical to the fragment photolabeled in native F1 (Garin, J., Boulay, F., Issartel, J.-P., Lunardi, J., and Vignais, P. V. (1986) Biochemistry 25, 4431-4437). With a heavier load of photoprobe, leading to nearly 4 mol of photoprobe covalently bound per mol F1, an additional region of the beta subunit was specifically labeled, corresponding to a sequence extending from Gly-72 to Arg-83. The isolated beta subunit also displayed two binding sites for 2-N3-[alpha-32P]ADP. When F1 was first photolabeled with a low concentration of NAP4-ADP, leading to the covalent binding of 1.5 mol of NAP4-ADP/mol F1, with the bound NAP4-ADP distributed equally between the alpha and beta subunits, a subsequent photoirradiation in the presence of 2-N3[alpha-32P]ADP resulted in covalent binding of the 2-N3[alpha-32P]ADP to both alpha and beta subunits. It is concluded that each beta subunit in mitochondrial F1 contains two nucleotide binding regions, one of which belongs to the beta subunit per se, and the other to a subsite shared with a subsite located on a juxtaposed alpha subunit. Depending on the experimental conditions, the subsite located on the alpha subunit is either accessible or masked. Unmasking of the subsite in the three alpha subunits of mitochondrial F1 appears to proceed by a concerted mechanism.  相似文献   

8.
1. 8-Azido-adenosine 5'-triphosphate (n83ATP) is a suitable photoaffinity label for F1 ATPase from Micrococcus luteus. The nucleotide is a substrate in the presence of bivalent cations and inhibits the enzyme irreversibly upon irradiation with ultraviolet light above 300 nm. 2. More than 80% of the label is covalently bound to the beta subunits in the presence of bivalent cations. Labeling and inactivation is decreased by protection with ADP, ATP or adenyl-5'-yl imidodiphosphate. To a much smaller degree the alpha subunits also become labeled. 3. n83AMP does not specifically bind to the beta subunits upon irradiation. Like n83ATP and n83ADP, it also labels the alpha subunits to a small extent. 4. The F1 ATPase is inactivated after a single beta subunit per F1 complex has become labeled. A cooperativity of the beta subunits carrying nucleotide binding sites is suggested.  相似文献   

9.
Illumination of chloroplast thylakoid membranes results in both the release of adenine nucleotides from the tight nucleotide binding site(s) on chloroplast coupling factor 1 (CF1) and the activation of a light-triggered ATPase activity of CF1. Because inorganic phosphate stabilizes the light-triggered ATPase activity of CF1 in the dark, the effects of Pi on the rebinding of ADP to CF1 and on the light-triggered ATPase activity have been studied. Pi appears to be a partial noncompetitive inhibitor, with respect to ADP, of adenine nucleotide binding to the tight nucleotide binding site(s) on CF1 and induces negative cooperativity. The latter result suggests the existence of heterogeneous ADP binding sites in the presence of Pi. However, even under conditions where Pi causes a 50% reduction of tightly bound ADP, the ADP-induced dark decay of the ATPase activity is still complete. It was found that Pi inhibition of the light-induced dark binding of ADP can be reversed by the removal of the Pi. Removal of Pi also induces a small but significant ATPase activity. A model for the roles of the adenine nucleotide tight binding site(s) and Pi in the modulation of the spinach CF1 ATPase activity is proposed.  相似文献   

10.
cGMP-specific phosphodiesterase (PDE) of vertebrate retinal rod outer segments (ROS) is composed of two catalytic subunits (PDE alpha and PDE beta) and two identical inhibitory subunits (PDE gamma). Native PDE alpha beta gamma 2 is peripherally bound to the membranes of ROS discs. We studied quantitatively its partition between soluble and membrane-bound fractions in ROS homogenates. In the presence of its activator, the alpha-subunit of transducin loaded with a triphosphate guanine nucleotide (T alpha*), PDE displayed a greatly enhanced membrane binding. Neither the purified PDE gamma.T alpha* complex, nor the PDE alpha beta and PDE alpha beta gamma forms of active PDE, showed a membrane binding comparable to that of PDE alpha beta gamma 2 in the presence of T alpha*. The T alpha*-activated PDE is therefore an undissociated complex tightly bound to the ROS membranes. Using limited proteolysis, we showed that the membrane anchoring of the whole complex implies not only PDE (mainly by the C terminus of PDE beta) but also both termini of T alpha*. The membrane binding of the purified PDE alpha beta species was also enhanced in the presence of T alpha*; a direct link would therefore exist between the activator and the catalytic subunits. From this work emerges a plausible structural model of the T alpha*-activated PDE, with its internal interactions and its sites of anchoring into the ROS membrane.  相似文献   

11.
Site-directed mutagenesis of stable adenosine triphosphate synthase   总被引:3,自引:0,他引:3  
Evidence was obtained that four ionizable residues in the alpha and beta subunits of thermophilic ATP synthase (TF0F1), corresponding to Lys-21 and Asp-119 in the MgATP binding segments of adenylate kinase, are essential for the normal catalytic activity. TF0F1 was used because it is the only ATP synthase whose alpha-, beta- and gamma-subunits can be reassembled into an active complex in the absence of both ATP and Mg. Lys-164 and Asp-252 of its beta-subunit were modified to isoleucine and asparagine, respectively, by site-directed mutagenesis using a multifunctional plasmid, and these genes were over-expressed in Escherichia coli. The resulting beta I164 and beta N252 subunits were both noncatalytic after re-assembly into the alpha beta gamma-complex, even though both subunits bound significant amounts of ADP. When Lys-175 and Asp-261 of the alpha-subunit were similarly replaced by isoleucine and asparagine, respectively, the resulting alpha I175 subunit reassembled weakly into an oligomer, while the alpha N261 subunit showed an increased dissociation constant for ADP and was reconstituted into an alpha beta gamma-complex that showed no inter-subunit cooperativity.  相似文献   

12.
The crystal structures of ADP bound and nucleotide-free forms of molecular chaperone-like diol dehydratase-reactivating factor (DDR) were determined at 2.0 and 3.0 A, respectively. DDR exists as a dimer of heterodimer (alphabeta)2. The alpha subunit has four domains: ATPase domain, swiveling domain, linker domain, and insert domain. The beta subunit, composed of a single domain, has a similar fold to the beta subunit of diol dehydratase (DD). The binding of an ADP molecule to the nucleotide binding site of DDR causes a marked conformational change of the ATPase domain of the alpha subunit, which would weaken the interactions between the DDR alpha and beta subunits and make the displacement of the DDR beta subunit by DD through the beta subunit possible. The binding of the DD beta subunit to the DDR alpha subunit induces steric repulsion between the DDR alpha and DD alpha subunits that would lead to the release of a damaged cofactor from inactivated holoDD.  相似文献   

13.
Steady-state binding of adenine nucleotides by thylakoid membranes is measured by employing a centrifugation technique. By this method tightly bound nonexchangeable nucleotides can be discriminated from loosely bound, exchangeable nucleotides. Nucleotide binding requires membrane energization and is highly specific for medium ADP. In illuminated chloroplasts almost no exogenous AMP and only some ATP are incorporated, most being recovered as tightly bound nucleotides. In light-triggered chloroplasts, however, which are capable of hydrolyzing ATP, a high level of exchangeable nucleotides is found on the membranes. The sum of tightly bound and loosely bound nucleotides originating from medium ADP is about one per CF1. The ratio between them decreases with increasing proton-motive force. Exchangeable nucleotides most probably represent the ligands involved in the catalytic process, as suggested from substrate specificity and the effect of a competitive inhibitor of photophosphorylation, naphthoyl ADP. This compound in a low concentration range supresses loose binding but not tight binding of medium ADP. Under phosphorylating conditions (presence of ADP, Pi and light), some of the tightly bound nucleotides exist as ATP even in the presence of a hexokinase system. The results are discussed in the context of the regulation of chloroplast ATPase by tight nucleotide binding.  相似文献   

14.
By using gel filtration chromatography, following the technique of Hummel and Dreyer (Hummel, J., and Dreyer, W. (1962) Biochim. Biophys. Acta 63, 532-534), the adenine nucleotide-binding sites of isolated soluble chloroplast ATPase (CF1) and of the beta subunit were studied. CF1 possesses six adenine nucleotide-binding sites: two high affinity sites for ADP or ATP (KdH = 1-5 microM) in addition to one site where endogenous not-exchangeable ADP is bound, and three low affinity sites binding ADP or ATP with a dissociation constant (KdL = 15-20 microM) which is considerably increased in the presence of pyrophosphate. KdH is not modified by addition of pyrophosphate. The stability of nucleotide binding at the low affinity sites increases after heat activation of CF1. Removal of the delta or epsilon subunits on CF1 affects neither the number nor the binding parameters of the nucleotide-binding sites. The purified beta subunit possesses one easily exchangeable site/subunit. It is proposed that the low affinity sites on CF1 are the catalytic sites.  相似文献   

15.
Using site-directed mutagenesis, Tyr-307, Tyr-341, or Tyr-364, supposedly located at the adenine nucleotide binding site(s) of the beta subunits of F1-ATPase from the thermophilic bacterium PS3, was replaced with Phe or Cys. The alpha 3 beta 3 complexes reconstituted from the alpha subunits and individual mutant beta subunits hydrolyzed ATP. Thus, neither the hydroxyl groups nor the aromatic rings in these positions are required for ATPase activity of F1-ATPase.  相似文献   

16.
The total amount of bound exchangeable and nonexchangeable adenine nucleotides in Escherichia coli F1-ATPase (BF1) was determined; three exchangeable nucleotides were assessed by equilibrium dialysis in a [14C]ADP-supplemented medium. When BF1 was purified in a medium supplemented with ATP, a stoichiometry of nearly 6 mol of bound nucleotides/mol of enzyme was found; three of the bound nucleotides were ATP and the others ADP. When BF1 was filtered on Sephadex G-50 in a glycerol medium (Garrett, N.E., and Penefsky, H.S. (1975) J. Biol. Chem. 250, 6640-6647), bound ADP was rapidly released, in contrast to bound ATP which remained firmly attached to the enzyme. Upon incubation of BF1 with [14C]ADP, the bound ADP rather than the bound ATP was exchanged. Of the three [14C]ADPs which have bound to BF1 by exchange after equilibrium dialysis, one was readily lost by gel filtration on Sephadex G-50; the loss of bound [14C]ADP was markedly reduced by incubation of BF1 with aurovertin, a specific ligand of the beta subunit which is known to increase the affinity of the beta subunit for nucleotides (Issartel, J.-P., and Vignais, P. V. (1984) Biochemistry 23, 6591-6595). Upon photoirradiation of BF1 with [alpha-32P]2-azido-ADP, only the beta subunit was labeled; concomitantly, bound ADP was released, but the content in bound ATP remained stable. These results suggest that specific sites located on the three beta subunits bind nucleotides in a reversible manner. Consequently, the tightly bound ATP of native BF1 would be located on the alpha subunits.  相似文献   

17.
1. Like other energy-transducing membranes, chloroplast membranes bear a coupling ATPase with especially tight binding sites for adenine nucleotides. Membranes washed several times still contain 2.5 nmol ATP and 1.3 nmol ADP bound per mg chlorophyll, which is equivalent to 1.9 ATP and 1.0 ADP per coupling ATPase. 2. In de-energized membranes, these nucleotides exchange to only a limited extent with added nucleotides. In membranes illuminated in the presence of pyocyanine, however, complete exchange of the bound nucleotides occurs rapidly, irrespective of whether ATP or ADP is present in the medium. 3. Pi can exchange into these nucleotided at both the beta and gamma positions when the membranes are energized in the presence of Mg-2+. Equilibrium with the beta and gamma groups of th ebound nucleotides is, however, not complete. 4. The inhibitors and uncouplers Dio-9, S13 and EDTA have different effects on the exchange of nucleotides, the exchange of inorganic phosphate and photophosphorylation. 5. The bound ATP level on the membrane is stable to a wide variety of conditions. The ADP level, however, drops to near zero under conditions of maximal activation of the emmbrane ATPase.  相似文献   

18.
D. Bar-Zvi  N. Shavit 《BBA》1982,681(3):451-458
Inactivation of the chloroplast ATPase upon tight nucleotide binding was studied with several adenine nucleotide analogs. Compared with ADP, the other nucleoside diphosphates were less effective in the follwing order: IDP >?-ADP > 1-oxido-ADP > GDP. The nucleotide analogs compete with ADP for binding to the tight nucleotide-binding site(s) on the ATPase and also prevent further inactivation by ADP. AdoPP[NH]P also causes inactivation but has a lower affinity than ADP. [3H]GDP binds tightly to the ATPase, but the resulting enzyme-GDP complex is more readily dissociable than the enzyme-ADP complex. Although both nucleotides appear to bind to the same site, the catalytic and binding properties of the coresponding nucletide-enzyme complexes differ. Binding of GDP also decreases the rate and extent of the sontaneous decay of the activated enzyme. PPi decreases the rate of inacivation caused by ADP and also the level of tigthly buond ADP. Based on these results, we suggest that two different confomations of the ATPase exist which contain tigthly bound ADP. The active conformation is conveted to the inactive conformation in the absence of a continued supply of energy by illumination or ATP hydrolysis.  相似文献   

19.
The alpha (62,000-dalton) and beta (49,000-dalton) subunits of Methanosarcina barkeri ATPase were purified to homogeneity. The subunits and ATPase complex were trypsinized in the presence of various nucleotides. ATP and ADP changed the trypsin sensitivity of the alpha subunit in the complex and isolated forms, suggesting the presence of a nucleotide-binding site in the alpha subunit.  相似文献   

20.
BACKGROUND: The globular domain of the membrane-associated F(1)F(o)-ATP synthase complex can be detached intact as a water-soluble fragment known as F(1)-ATPase. It consists of five different subunits, alpha, beta, gamma, delta and epsilon, assembled with the stoichiometry 3:3:1:1:1. In the crystal structure of bovine F(1)-ATPase determined previously at 2.8 A resolution, the three catalytic beta subunits and the three noncatalytic alpha subunits are arranged alternately around a central alpha-helical coiled coil in the gamma subunit. In the crystals, the catalytic sites have different nucleotide occupancies. One contains the triphosphate form of the nucleotide, the second contains the diphosphate, and the third is unoccupied. Fluoroaluminate complexes have been shown to mimic the transition state in several ATP and GTP hydrolases. In order to understand more about its catalytic mechanism, F(1)-ATPase was inhibited with Mg(2+)ADP and aluminium fluoride and the structure of the inhibited complex was determined by X-ray crystallography. RESULTS: The structure of bovine F(1)-ATPase inhibited with Mg(2+)ADP and aluminium fluoride determined at 2.5 A resolution differs little from the original structure with bound AMP-PNP and ADP. The nucleotide occupancies of the alpha and beta subunits are unchanged except that both aluminium trifluoride and Mg(2+)ADP are bound in the nucleotide-binding site of the beta(DP) subunit. The presence of aluminium fluoride is accompanied by only minor adjustments in the surrounding protein. CONCLUSIONS: The structure appears to mimic a possible transition state. The coordination of the aluminofluoride group has many features in common with other aluminofluoride-NTP hydrolase complexes. Apparently, once nucleotide is bound to the catalytic beta subunit, no additional major structural changes are required for catalysis to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号