首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrate Uptake and Assimilation following Nitrate Deprivation   总被引:2,自引:0,他引:2  
Upon first exposure to , the uptake and reduction capacities of dark-grown corn (Zea maysL.) roots are initially low, but increase markedly within 6h. The development of the accelerated uptake rate appears to be substrate ‘induced’ as is reductase (NR), the first enzyme in the assimilatory pathway. However, the ‘induction’of uptake is independent of NR induction. The effect of deprivation was studied to determine the role of endogenous on subsequent uptake and reduction. Corn roots were ‘induced’ for 24 h in 0–5 mol m–3 nutrient solution and then exposed for 0 to 32 h to -free nutrient solution. Uptake and reduction of were determined periodically by exposing sets of roots to a1 h pulse of 0.5 mol m–3 . Neither uptake (4.57 µmol root–1 h–1)nor the percentage of absorbed reduced (27%) was changed significantly (P 0.05) by exogenous deprivation. However, the estimated ‘induced’ componentof uptake decreased significantly (50% after 32 h). Concurrently, the ‘non-induced’ basal componentof uptake increased. Previously accumulated decreased from 23 to 4.5 µmol root–1 after 32 h of exogenous deprivation. Nearly equivalent quantities of endogenous were used for translocation and reduction during deprivation. During each 1 h pulse, the amounts of translocation and net efflux of to the uptake solution were similar. Net efflux of was strongly correlated (r = 0.991) to the amount of endogenous . The remaining endogenous and its rate of utilization were apparently sufficient to minimize a rapid declineor complete loss in both the ‘induced’ uptake state and the rate of in vivo assimilation. Key words: reduction, translocation, efflux, root, Zea mays L  相似文献   

2.
Net uptake of by non-nodulated soybean plants [Glycine max (L.) Merr.cv. Ransom] growing in flowing hydroponiccultures containing 0–5, 1.0 and 10-0 mol m–3 was measured daily during a 24-d period of vegetativedevelopment to determine if amplitude of maximum and minimumrates of net uptake are responsive to external concentrations of . Removal of from the replenished solutions during each 24-h period was determinedby ion chromatography. Neither dry matter accumulation nor theperiodicity of oscillations in net uptakerate was altered bythe external concentrations. The maxima of the oscillations in net uptake rate, however, increased nearly3-fold in response to external concentrations. The maxima and minima, respectively, changed from 4.0 and 0–6mmol per gram root dry weight per day at an external solution level of 05 mol m–3 to 15–2and -2–7 mmol per gram root dry weight per day at an external solution level of 10–0mol m–3 . The negative values for minimum net uptake rate from10–0 mol m–3 solutions show that net efflux was occurring andindicate thatthe magnitude of the efflux component of net uptake was responsiveto external concentration of . Key words: Nitrate uptake rate, carbon-nitrogen partitioning, flowing solution culture  相似文献   

3.
The rate of exponential growth of Amphidinium carterae Hulburtwas the same (0.025 h–1) with either or as sole N-source. Nevertheless, in short-term experiments, cells growing exponentially with as N-source took up added 5–6 times faster than . accumulated in the cells. Addition of inhibited, reversibly, disappearance of from the medium; prior N-deprivation of the cells did not affect this inhibition. N-repIetecells, grown with as N-source, took up for several hours both in light and darkness, butthe uptake by such cells soon ceased in darkness although it continued in light. When uptake ceased, the cells could still take up rapidly in darkness. Ammonium taken up was assimilated rapidly into organic-N includingglutamine, other amino acids and protein. Ammonium uptake in darkness was accompanied by the utilizationof cellular polysaccharide, mainly glucose polysaccharide. Mostof this carbon was unavailable for the dark assimilation of. Addition of the analogue, methylammonium, did not initiate polysacchande catabolism. Itis suggested that a control mechanism is in operation, througha product of assimilation, which operates on one or more of the enzymes concerned with polysaccharidebreakdown, for example, -amylase or phosphorylase. Uptake of was accompanied by a high rate of dark 14CO2 fixation and with both Amphidintum klebsii Kof.et Swezy and A. carterae N-deprivation led to a marked increasein this rate following addition of ; addition of had much less effect. The possible implications of these findings for the eco-physiology of marine dinoflagellatesare discussed. Key words: Ammonium, nitrate, CO2 fixation  相似文献   

4.
Allen, S., Thomas, G. E. and Raven, J. A. 1986. Relative uptakerates of inorganic nutrients by and grown Ricinus communis and by two Plantago species.—J. exp. Bot. 37: 419–428. The relative rates of uptake and assimilation of C, N, P, S,Cl, K+ , Na+ Ca2+ and Mg2+ by and grown Ricinus conimunisand by NH4NO3- grown Plantago lanceolata and P. major were calculatedfrom data presented elsewhere. Results showed that for grown Ricinus the short term relativeuptake rates, for each nutrient X did not change significantly over the steady-state periodof exponential growth. The average gave , the mean relative uptake rate during exponential growth, for each nutrient. The amountof each nutrient taken up from a nutrient solution over a periodof time could, therefore, be calculated. For and -grown R. communis,the relative uptake rate of each nutrient was a constant fractionof the relative rate of carbon assimilation. It is suggestedthat this is typical of plants of cauline habit. For both Plantago spp., the relative rates of nitrogen uptakeand assimilation fell significantly during the exponential growthphase It is suggested that this could be a characteristic ofthe growth habit of the rosette plant. Key words: Relative uptake rates, Ricinus, Plantago, ammonium, nitrate, cauline, rosette  相似文献   

5.
The effect of level of different counterion forms of or or both, on establishment of the Rhizobium trifolii-Trifolium repens symbiosis was evaluatedin plants cultured under bacteriologically controlled conditions. Ammonium had little effect on nodule formation, and even after exhaustion there was little compensatory nodule formation. Plant growth, nodule mass and acetylene reductionactivity all declined with increasing levels of . Except for , different counterion forms had little effect on plant growth, nodule numberand mass, and acetylene reduction activity. Ammonium markedlydecreased pH, the extent being dependent upon level and counterion present. Nitrate inhibited nodulation while levels remained in excessof plant uptake. Compensatory nodulation followed exhaustionof or at lower or levels. Nodule mass and acetylene reduction activity decreased, but plant growth increased withincreasing or levels. Nitrate raised the pH of the nutrient solution by one unit orless. Different or counterion forms had little effect on the symbiosis or plant growth. Ammonium nitrate severely inhibited nodulation but on exhaustionmarked compensatory nodulation occurred. The patterns of nodulemass, acetylene reduction activity and plant growth with increasingNH4NO3 levels were similar to or alone. Plants provided with NH4NO3 or no nitrogenwere similar in only slightly decreasing pH. Key words: Ammonium, Nitrate, Ammonium nitrate, Nitrogen fixation, Rhizobium trifolii, Trifolium repens, Symbiosis establishment, Nodulation  相似文献   

6.
Nitrate transport characteristics of an amino acid-grown Zeamays P3377 cell culture line were studied. Age (days after subculturing)of the cells was shown to have a significant effect on transport; older stationary phasecultures did not absorb nitrate from the medium as rapidly asyounger growing cultures. Solution composition had a pronouncedimpact on induction of accelerated nitrate transport and transportrates. Maximum uptake rates required fresh culture media ratherthan simple solutions. Differences in ionic strength among uptakesolutions of equal concentration were shown to affect the apparent uptake rates by changing theactivity coefficient of . The uptake kinetics were established by following uptake for 24h in a wide range of nitrate concentrations. Uptake patternsof cells in solutions ranging from 0.02 to 2 mM were as typicallyreported for plants. The kinetic constants for the Zea mayscell suspension cultures concurred with reports of other solution-culturedcells. When cells were placed in solutions containing greater than 2 mM, uptake patternssuggested a significant passive uptake component. Passive diffusionof was estimated by Nernst analysis and indicated to be an important component of nitrateuptake in maize cell suspension cultures grown in the absenceof nitrate then transferred into nitrate-containing media. Key words: Cell suspension culture, nitrate, passive uptake, Zea mays  相似文献   

7.
The presence of exogenous stimulates O2evolution in illuminated H. africanum cells at the CO2 compensationpoint, and it is likely that reduction in the light uses reductant produced in non-cyclic electron flow.When sources of ATP other than fermentation are absent, thepresence of , light, and a functional non-cyclic electron transport pathway stimulates active, ATP-dependentH2 influx. This is consistent with non-cyclic electron flow associated with reduction being coupled to ATP synthesis. This -dependent ATP synthesis may be quantitatively important as a source ofATP during photolithotrophic growth with as N source in H. africanum and other algal unicells.  相似文献   

8.
The effects of three arginine-specific reagents on uptake were studied using corn seedlings (Zea mays L., GoldenCross Bantam). In the presence of borate, 0.25 mM 2, 3-butanedione(BD) and 1.0 mM 1, 2-cyclohexanedione (CHD) inhibited uptake by 76% and 68%, respectively, compared tothe controls. However, in the absence of borate, only 18% and38% inhibition was observed for 0.25 mM BD and 1.0 mM CHD, respectively.Similarly, 0.5 mM phenylglyoxal (PGO) resulted in 75% inhibition.The degree of inhibition of nitrate uptake exhibited a concentration-dependencewith respect to the reagents. Corn seedlings are 2- or 3-foldmore sensitive to BD than to PGO and CHD, respectively, presumablydue to the unfavourable steric effects of the benzal ring. Uptakeof was partially restored after removal of BD, CHD, and PGO from the uptake medium. No significant differenceswere observed for the ATPase and plasma membrane-associatedvanadate-sensitive H+-ATPase or K+-stimulated ATPase activityin homogenates and microsomal fractions prepared from corn seedlingswhich had been incubated for 2 h in the presence or absenceof 0.5 mM BD or 1.0 mM PGO. This suggests that inhibition ofnitrate uptake by the arginine-specific reagents was not causedby the indirect effect of their binding and inhibiting H+-ATPase.The fact that the arginine-specific reagents strongly inhibit uptake indicates that the transport system has arginine residues at or near the activesite. Key words: Arginine-specific reagents, borate effect, nitrate uptake, reversibility  相似文献   

9.
Net uptake of by non-nodulated soybean plants [Glycme max(L ) Merr cv Ransom] growing in flowing hydroponicculture was measured daily during a 63 d period of reproductivedevelopment between the first florally inductive photopenodand late seed growth Removal of from a replenished solution containing 10 mol m was determined by ion chromatography Uptake of continued throughout reproductive development The net uptakerate of cycled between maxima and minima with a periodicity of oscillation of 3 to 7 d during the floralstage and about 6 d during the fruiting stage. Coupled withincreasing concentrations of carbon and C:N ratios in tissues,the oscillations in net uptake rates of are evidence that the demand for carbohydrate by reproductiveorgans is contingent on the availability of nitrogen in theshoot pool rather than that the demand for nitrogen followsthe flux of carbohydrate into reproductive tissues. Key words: Nitrate uptake rate, carbon-nitrogen partitioning, Glycme max (L ) Merrill  相似文献   

10.
Deane-Drummond, C. E. and Thayer, J.R. 1986. Nitrate transportcharacteristics in Hordeum vulgare L. seedlings using threedifferent tracer techniques.—J. exp. Bot. 37: 429–439. and have been used to investigate various properties of nitrate uptake and translocation intoHordeum vulgare L seedlings. Short term / influx into seed lings grown in CaSO4 was stimulated by after a lag of 2 h. The apparent kinetics of shortterm / influx over the concentration range 0?0–0?7mol m fitted Michaelis-Menten equations The apparent Vmax didnot change when seedlings were used that had been pretreatedin 10 or 100 mmol m–3 and Vmax=3.77 and 3?56µmol g–1 fr. wt. h–1respectively. The apparent Michaelis constants were also similarand Km=0?47 and 0?45 mol m–3 respectively. Longer term pulse chase experiments with the heavy isotope 15Nhave shown that feeding roots with resulted in the preferential appearance of 15N labelled aminoacids in the xylem sap. Pulse chase experiments with the radioisotope13N have shown that feeding shoots with resulted in a radial pattern of distnbution of labelin the leaf veins, which can be detected using autoradiography. The limitations and advantages of all three techniques are comparedby reference to other known experimental data. Key words: 36Chlorate, 13nitrate, 15nitrate, Hordeum vulgare  相似文献   

11.
Oilseed rape (Brassica napus L. cv. Bien venu) plants were grownin a system of flowing solution culture and pre-treated at roottemperatures of 3 ?C or 13 ?C for 7 d with or without N suppliedas 10 mmol m–3 NH4NO3. Subsequently, N was re-suppliedand root temperatures were reversed for 7 d. Shoot temperatureswere common at 20/15 ?C day/night. Net uptake of , and K+, leaf area, root length, and transpirationwere measured and compared with control plants having root temperaturesof 3 ?C and 13 ?C throughout. Plants that were continuouslysupplied with N and pre-treated at 3 ?C showed a 50% increasein total uptake of , and measured at 13 ?C over 7 d compared with control plants at 3?C,but uptake of was 28% lower and uptake of was 43% higher than that shown by control plants at 13 ?C. Pre-treatment at 3 ?C did not enhance the subsequentuptake of total N or of K+ at 13 ?C relative to the 13 ?C control.Transpiration rates at 3 ?C were on average 70% of those at13 ?C. The concentration of total N in plants was halved after7 d without a supply of N, but total dry matter production wasnot significantly affected. N starvation also increased thetemperature sensitivity of subsequent uptake relative to that of uptake. After N starvation at 13 ?C the uptake of and measured at 13 ?C was 50% higher over 7 d than that measuredunder continuous N supply. In contrast, after N starvation at3 ?C the uptake of at 3 ?C was 70% less, whilst uptake was 50% more than the respective totals absorbed by plants that were continuously supplied withN at 3 ?C. After N starvation the uptake of was generally 40–60% of the daily total N uptake, comparedwith 60–80% in plants continuously supplied with N. Key words: Brassica napus, oilseed rape, root temperature, nitrate, ammonium, potassium, N-deficiency, ion uptake rate, transpiration  相似文献   

12.
Experiments with simulated swards of perennial ryegrass (Loliumperenne L.) show the relationship between concentration in flowing nutrient solution, nitrate uptake,plant growth, and the chemical composition of roots and shoots.Rates of uptake exceeding 1 g N m–2 d–1 were maintainedat concentrations in solution down to 0•02 mg N l–1. Short-term studies confirmed that at such lowconcentrations the plants were able to maintain rates of uptakeof about 85% of maximum. Between 0•2 and 200 mg N l–1the concentration of in solution had little effect on rate of uptake or plant growth. With at 1000 and 2000 mg N l–1 there was a marked reductionin weight of the shoots and, more particularly, in the lengthand tensile strength of the roots. There were several significanttrends in mineral composition of the plants (notably in S, Ca,Mg) which were apparently correlated with increasing concentrationof in solution.  相似文献   

13.
Oilseed rape plants (Brassica napus L. cv. Bien venu) were grownin flowing nutrient solution and acclimatized over 49 d to lowroot temperature (5 ?C) prior to treatment at root temperaturesof 3, 7, 11 or 17?C for 14 d, with common air temperature of20/15?C day/night and solution pH 6.0. The effects of root temperatureon growth, uptake and assimilation of N were compared with Nsupplied either as or at 10 mmol m–3. Plant fresh weight, dry weight and leafarea increased with root temperature. Q10 values for specificgrowth rates between 7?C and 17?C were 1.10 and 1.33, respectively,under and nutrition. Fresh weight and leaf area were favoured by nutrition, particularly at 11 ?C and 17 ?C. At each temperaturethe net uptake of over 14 d was similar to that of , increasing 4-fold between 3?C and 17 ?C. Unit absorption rates of increased over the first 3 or 4 d, to an extent that increased with roottemperature. Thereafter, near constant values were maintainedat 3, 7 and 11 ?C. Unit absorption rates of at 3 ?C and 7 ?C did not increase over the first 3 or 4 d. Plantsat 17?C responded differently from those at other temperatures,with steep increases in unit absorption rates of and after day 8. The tendency for plants to adjust unit absorption rates of N over 14 d to become independentof root temperature was limited to the range 7–11 ?C.Q10 values between 7 ?C and 17 ?C for unit absorption rateswere 1.7—1.8 and 1.4—1.5, respectively, for and . Plants at 7, 11 and 17?C absorbed more than was subsequently assimilated, but at 3 ?C the absorption of was insufficient to meet the assimilatory demand. The results are discussed comparativelyfor and and in terms of the factors that determine unit absorption rates of N inresponse to a change in root temperature. Key words: Brassica napus, oilseed rape, root temperature, nitrate, ammonium, ion uptake rate  相似文献   

14.
The effects of Cl and pretreatment on 36Clinflux and influx into Characorallina cells were examined. Both treatments reduced 36Clinflux into C. corallina cells in the acid pH range (4.5–7.0). pretreatment stimulated influx into C. corallina cells, but Cl pretreatment hadno effect. There was a direct inhibitory effect of CI on influx into C. corallina cells, but no apparenteffect on net NO uptake. The time course of 36Cl accumulation into cytoplasmic and vacuolarcompartments during incubation of the cells with showed that significant radioactivity appeared in the vacuolarsap after 30 min. There was a linear increase in the percentageof total 36CI which crossed the tonoplast (c-v). There was noeffect of Cl or pretreatment on accumulation of radioactivity in the vacuole. Thin layer chromatography ofthe vacuolar sap showed that after 2 h only one component waspresent which had an RF which was similar to 36CI. Therate of accumulation of 36C1 in the vacuole could beused to estimate rates of reduction. Key words: Chloride, Chlorate, Chara, Nitrate  相似文献   

15.
Plants of two genotypes of Lolium perenne L. cv. S23 and a L.perenne ? L. multiflorum Lam. hybrid cv. Augusta were grownin flowing solution culture. N was suppled in one treatmentat 10 mmol m–3 NO–3 throughout (HN), and in another(LN) the N supply was terminated after 10 d for 11 d. When was re-supplied both LN and HN plants were leftentire or defoliated. The two genotypes showed similar responsesto all treatments. The concentration of N in shoot dry matterdeclined from 4.4% to 2.0% and in the root from 2.8% to 1.0%over the 11 d of N deprivation, with 95% of the initially present being assimilated during this period. LN plantsassimilated 10% more of their total uptake than did HN plants. The in vitro nitrate reductase activity(NRA) was 10- to 50-fold higher in the youngest fully-expandedleaves than in roots and declined in the leaves during N deprivation.Between 2–6 d after defoliation, there was a large increasein NRA in leaves of HN (but not LN) plants. After defoliationof HN plants, net uptake from 10 mmol m–3 declined to negligible levels within 15 h, but in defoliatedLN plants it increased to levels similar to those of entireHN plants (15–20 µmol h–1 g–1 fr. wt.root) within 8 h. When was re-supplied to entire LN plants, uptake of increased to levels similar to those of entire HN plants within 2.3 h, butdid not markedly exceed that of HN plants for at least 10 h.Net uptake of by LN plants during depletion of stirred static nutrient solutions containing 1.0 mol m–3 lagged behind that by HN plants by 70–100 min, but the maximum unit absorption rate was similar for LNand HN plants (5–7 µmol h–1 g–1 fr.wt. root). The nature of the short-term demand for uptake following recovery from the stresses of defoliation andN starvation is discussed. Key words: Lolium perenne, Lolium multiflorum, N-deficiency, defoliation, nitrate uptake, nitrate reductase, N-assimilation  相似文献   

16.
Spruce (Picea abies (L.) Karst.) seedlings were asepticallycultivated and the effects of different N-nutrition on net uptakeand reduction of nitrate were investigated. The characteristicsof nitrate uptake were calculated, Ks as 0?2 mol m–3 andVmax as 18 µmol g–1 d–1. Low pH, and Al3+ in the medium caused adecrease in nitrate uptake rate. An in vivo assay was set upwhich allowed the measurement of NRA in both roots and needlesof spruce seedlings. The in vivo nitrate reductase activitywas repressed by ammonium and stimulated by nitrate. Nitratereduction was similar to nitrate uptake, negatively affectedby low pH and ammonium. Therefore, a limited N-supply to spruceseemed to occur when pH was low in the rhizosphere combinedwith the presence of Al3+ and . Key words: Spruce, nitrate uptake, nitrate reduction  相似文献   

17.
Two Lolium genotypes, i.e. Lolium perenne cv. S23 and a L. perenne? L. multiflorum hybrid cv. Augusta were, in one treatment,grown in flowing solution culture with a maintained supply of at 10 mmol m–3 throughout. In another treatment, the plants were deprived of for 11 d, was then re-supplied and both control and N-deprived plants were either defoliatedor left entire. Effects of the stresses imposed by N deprivationor defoliation on subsequent net uptake of , shoot and root growth and their interactions were examined.There were no major differences in the behaviour of the twogenotypes throughout. The removal of NO3 supply did not altertotal dry matter production during the 11 d period of deprivationbut the rate of root growth accelerated markedly. There waslittle effect of N deprivation on the specific growth ratesof the recovering defoliated shoots. Cumulative net uptake of closely paralleled the pattern of growth and there were obvious and marked effects of both N deprivationand defoliation. Effects on uptake were more distinctly demonstrated when uptake was expressed on aper unit root or shoot basis, i.e. specific unit absorptionrates (SNO3). In the control plants with sustained supply, there was a progressive decline with time in SNO3, inspite of an increasing shoot: root ratio. After both N deprivationand defoliation treatments there was a rapid initial increasein SNO3, followed by an oscillatory cycle of increasing anddecreasing rates with a 10–11 d period. The relationshipsbetween growth and uptake were complex and did not conform to a previously predicted linear relationshipbetween SNO3, and the ratio total fresh plant weight: root freshweight. The results are discussed in relation to the possiblemechanisms involved. It is suggested that the oscillations inunit absorption rate indicated that the roots of N-deprivedor defoliated plants retained a high capacity for absorptionimmediately after re-supply or defoliation and that the stressedplants were unable to assimilate or utilize taken up; net uptake then decreased through a shift in favourof efflux over influx until the influx mechanism was able todominate and the pattern was then repeated. Key words: Lolium, genotypes, N deprivation, nitrate uptake, defoliation, unit absorption, growth  相似文献   

18.
Three-month-old plants (vegetative stage) of alfalfa (Medicagosaliva L cv. Aragon) were supplied for one week with 1.0dm3(uniformly distributed) nutrient solutions containing 0 or 20mol m–3 . One week after initiation of treatment, the plants were subjected to drought by withholding water. Bacteroidsand cytosol of nodules were obtained at different stages ofstress, and used for enzyme assays and for determination of, and . Proteins of bacteroids were more stable than cytosolic proteinswith respect to the detrimental effects of water stress and. Protein contents of bacteroids and cytosol were inversely related to proteolytic activitiesagainst azocasein in both nodule fractions. Specific nitrate reductase activity (NRA) and nitrite reductaseactivity (NiRA) of bacteroids from -treated plants were inhibited by c. 70% and 45%, respectively, as leafwater potential (w) declined from –0.5 MPa (control) to–1.8 MPa. At still lower w both activities began to increase:NRA was doubled, whereas NiRA only returned to its control level.Cytosolic NRA was strongly inhibited by drought, but the correspondingNiRA remained constant. Ammonia concentration in bacteroids and nodule cytosol keptbasically constant, whereas accumulated in the cytosol at severe stress, due to the activationof bacteroid nitrate reductase. Results indicate that nitrate and nitrite reductases of thebacteroids and the nodule cytosol act in different form: assimilatory,the cytosolic enzymes; and dissimilatory, the enzymes of bacteroidsat low w The possibility that assimilation of also occurs in bacteroids at control or mild waterstress conditions is suggested. Key words: Assimilatory and dissimilatory reduction, bacteroids, Medicago saliva, nodule cytosol, water stress  相似文献   

19.
In a low-input agricultural context, plants facing temporalnutrient deficiencies need to be efficient. By comparing theeffects of NO-starvation in two lines of Arabidopsis thaliana (RIL282 and 432 from the Bay-0xShahdarapopulation), this study aimed to screen the physiological mechanismsallowing one genotype to withstand NO-deprivation better than another and to rate the relative importance of processessuch as nitrate uptake, storage, and recycling. These two lines,chosen because of their contrasted shoot N contents for identicalshoot biomass under N-replete conditions, underwent a 10 d nitratestarvation after 28 d of culture at 5 mM NO. It was demonstrated that line 432 coped betterwith NO-starvation, producing higher shoot and root biomass and sustaining maximal growthfor a longer time. However, both lines exhibited similar featuresunder NO-starvation conditions. In particular, the nitrate pool underwent the same drastic andearly depletion, whereas the protein pool was increased to asimilar extent. Nitrate remobilization rate was identical too.It was proportional to nitrate content in both shoots and roots,but it was higher in roots. One difference emerged: line 432had a higher nitrate content at the beginning of the starvationphase. This suggests that to overcome NO-starvation, line 432 did not directly rely on theN pool composition, nor on nitrate remobilization efficiency,but on higher nitrate storage capacities prior to NO-starvation. Moreover, the higher resistanceof 432 corresponded to a higher nitrate uptake capacity anda 2–9-fold higher expression of AtNRT1.1, AtNRT2.1, andAtNRT2.4 genes, suggesting that the corresponding nitrate transportersmay be preferentially involved under fluctuating N supply conditions. Key words: Arabidopsis thaliana, genetic variability, N partitioning, N recycling, N use efficiency, nitrate deficiency, nitrate remobilization rate, nitrate transporter gene expression, nitrogen reserves, plant development Received 12 July 2007; Revised 21 November 2007 Accepted 17 December 2007  相似文献   

20.
Charge balance and intracellular pH regulation were studiedin Phaseolus vulgaris grown in water culture on or as N source, or nodulated and in N-free medium. Seedlings and 36-d-old plants were analysed for total P, C, organic N and S and ash alkalinity;xylem sap was analysed for mineral ion content and amino acids,amides and dicarboxylates. Both water uptake and H+ or baseexcreted during water culture were measured. It was shown that in -grown plants, H+ excretedwas related directly to the uptake and assimilation of ; there was no cation uptake associated with netH+ exchange. All shoot N was supplied as organic N, mainly glutamine,so that shoot pH perturbation would be limited to uronate productionin situ. This could be regulated by both shoot reduction and the transport of OH-generating carboxylatesin the xylem. In plants on , the great majority of reduction occurred in the root and most of the OHproduced was converted to -COO, transported up the xylemand stored, so that the leaves in particular had a high ashalkalinity (20-fold that in the roots). Some OH, however,was excreted. Nodulated plants had a low N content, compared with the others,indicating a low rate of N2-fixation for the earlier periodof water culture. At harvest, however, the xylem sap organicN content was comparable to that of plants. H+ excretion was in excess of that required for N assimilation.It was concluded that in these plants some net H+/cation exchangehad occurred which may have been a response to low nutrient(i.e. nitrogen) status. Key words: Phaseolus vulgaris, pH regulation, nitrate nutrition, ammonium nutrition, dinitrogen fixation, xylem sap composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号