首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing resistance to every major class of antibiotics and a dearth of novel classes of antibacterial agents in development pipelines has created a dwindling reservoir of treatment options for serious bacterial infections. The bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV, are validated antibacterial drug targets with multiple prospective drug binding sites, including the catalytic site targeted by the fluoroquinolone antibiotics. However, growing resistance to fluoroquinolones, frequently mediated by mutations in the drug-binding site, is increasingly limiting the utility of this antibiotic class, prompting the search for other inhibitor classes that target different sites on the topoisomerase complexes. The highly conserved ATP-binding subunits of DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as excellent candidates for the development of dual-targeting antibacterial agents with broad-spectrum potential. However, to date, no natural product or small molecule inhibitors targeting these sites have succeeded in the clinic, and no inhibitors of these enzymes have yet been reported with broad-spectrum antibacterial activity encompassing the majority of Gram-negative pathogens. Using structure-based drug design (SBDD), we have created a novel dual-targeting pyrimidoindole inhibitor series with exquisite potency against GyrB and ParE enzymes from a broad range of clinically important pathogens. Inhibitors from this series demonstrate potent, broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens of clinical importance, including fluoroquinolone resistant and multidrug resistant strains. Lead compounds have been discovered with clinical potential; they are well tolerated in animals, and efficacious in Gram-negative infection models.  相似文献   

2.
The structurally related bacterial topoisomerases DNA gyrase (GyrB) and topoisomerase IV (ParE) have long been recognized as prime candidates for the development of broad spectrum antibacterial agents. However, GyrB/ParE targeting antibacterials with spectrum that encompasses robust Gram-negative pathogens have not yet been reported. Using structure-based inhibitor design, we optimized a novel pyrrolopyrimidine inhibitor series with potent, dual targeting activity against GyrB and ParE. Compounds were discovered with broad antibacterial spectrum, including activity against Pseudomonas aeruginosa, Acinetobacter baumannii and Escherichia coli. Herein we describe the SAR of the pyrrolopyrimidine series as it relates to key structural and electronic features necessary for Gram-negative antibacterial activity.  相似文献   

3.
The bacterial topoisomerases DNA gyrase (GyrB) and topoisomerase IV (ParE) are essential enzymes that control the topological state of DNA during replication. The high degree of conservation in the ATP-binding pockets of these enzymes make them appealing targets for broad-spectrum inhibitor development. A pyrrolopyrimidine scaffold was identified from a pharmacophore-based fragment screen with optimization potential. Structural characterization of inhibitor complexes conducted using selected GyrB/ParE orthologs aided in the identification of important steric, dynamic and compositional differences in the ATP-binding pockets of the targets, enabling the design of highly potent pyrrolopyrimidine inhibitors with broad enzymatic spectrum and dual targeting activity.  相似文献   

4.
The synthesis and antibacterial activities of three chemotypes of DNA supercoiling inhibitors based on imidazolo[1,2-a]pyridine and [1,2,4]triazolo[1,5-a]pyridine scaffolds that target the ATPase subunits of DNA gyrase and topoisomerase IV (GyrB/ParE) is reported. The most potent scaffold was selected for optimization leading to a series with potent Gram-positive antibacterial activity and a low resistance frequency.  相似文献   

5.
Tuberculosis and other bacterial diseases represent a significant threat to human health. The DNA topoisomerases are excellent targets for chemotherapy, and DNA gyrase in particular is a well-validated target for antibacterial agents. Naphthoquinones (e.g. diospyrin and 7-methyljuglone) have been shown to have therapeutic potential, particularly against Mycobacterium tuberculosis. We have found that these compounds are inhibitors of the supercoiling reaction catalyzed by M. tuberculosis gyrase and other gyrases. Our evidence strongly suggests that the compounds bind to the N-terminal domain of GyrB, which contains the ATPase active site, but are not competitive inhibitors of the ATPase reaction. We propose that naphthoquinones bind to GyrB at a novel site close to the ATPase site. This novel mode of action could be exploited to develop new antibacterial agents.  相似文献   

6.
Kibdelomycin is a complex novel antibiotic, discovered by applying a highly sophisticated chemical-genetic Staphylococcus aureus Fitness Test (SaFT) approach, that inhibits the clinically established bacterial targets, gyrase and topoisomerase IV. It exhibits broad-spectrum antibacterial activity against aerobic bacteria including MRSA and Acinetobacter baumannii. It is slowly bactericidal and has a low frequency of resistance. In an anaerobic environment, it exhibits narrow-spectrum activity and inhibits the growth of gut bacteria Clostridium difficile (MIC 0.125 μg/mL) without affecting the growth of commensal Gram-negative organisms particularly, Bacteroides sp. It is highly efficacious in the hamster model of C. difficile infection providing 100% protection at >6 mg/kg and 80% protection at 1.56 mg/kg by oral dosing without systemic exposure. X-ray co-crystal structures of kibdelomycin bound to GyrB and ParE showed a unique dual arm ‘U shaped’ multisite binding never encountered with any other gyrase inhibitors. Kibdelomycin is poised for preclinical development for C. difficile treatment, and most importantly, the co-crystal structures of kibdelomycin provide unique insight for structure-guided structure modification, which could lead to better broader-spectrum systemic antibiotic potentially covering many ESKAPE pathogens.  相似文献   

7.
Coumarins are inhibitors of the ATP hydrolysis and DNA supercoiling reactions catalysed by DNA gyrase. Their target is the B subunit of gyrase (GyrB), encoded by the gyrB gene. The exact mode and site of action of the drugs is unknown. We have identified four mutations conferring coumarin resistance to Escherichia coli: Arg-136 to Cys, His or Ser and Gly-164 to Val. In vitro, the ATPase and supercoiling activities of the mutant GyrB proteins are reduced relative to the wild-type enzyme and show resistance to the coumarin antibiotics. Significant differences in the susceptibility of mutant GyrB proteins to inhibition by either chlorobiocin and novobiocin or coumermycin have been found, suggesting wider contacts between coumermycin and GyrB. We discuss the significance of Arg-136 and Gly-164 in relation to the notion that coumarin drugs act as competitive inhibitors of the ATPase reaction.  相似文献   

8.
《Gene》1996,174(1):121-128
We have cloned and sequenced two overlapping DNA fragments (3236 bp) containing a gene encoding the ATPase subunit of a type II DNA topoisomerase from the hyperthermophilic bacterion Thermotoga maritima (Tm Top2B). The deduced protein is composed of 636 aa with a calculated molecular mass of 72 415 Da. It shares significant similarities with the ATPase subunits of mesophilic bacterial DNA topoisomerases II, either DNA gyrase (GyrB) or DNA topoisomerase IV (ParE). Although the highest similarity scores are obtained with GyrB proteins (55% identity with Bacillus subtilis DNA gyrase), a detailed phylogenetic analysis of all known DNA topoisomerases II does not allow us to determine if Tm Top2B corresponds to a DNA gyrase or a DNA topoisomerase IV. This hyperthermophilic Top2B protein exhibits a larger amount of charged amino acids than its mesophilic homologues, a feature which could be important for its thermostability. No gyrA-like gene has been found near top2B. A gene coding for a transaminase B-like protein was found in the upstream region of top2B.  相似文献   

9.
The subunits of topoisomerase IV (topo IV), the ParC and ParE proteins in Escherichia coli, were purified to near homogeneity from the respective overproducers. They revealed type II topoisomerase activity only when they were combined with each other. In the presence of Mg2+ and ATP, topo IV was capable of relaxing a negatively or positively supercoiled plasmid DNA or converting the knotted P4 phage DNA, whether nicked or ligated, to a simple ring. However, supercoiling activity was not detected. The topoisomerase activity was not detectable when the purified ParC and ParE proteins were combined with the purified GyrB and GyrA proteins, respectively. This is consistent with the result that neither a parC nor a parE mutation was compensated by transformation with a plasmid carrying either the gyrA or the gyrB gene. Simultaneous introduction of both the gyrA and gyrB plasmids corrected the phenotypic defect of parC and parE mutants. The results suggest that DNA gyrase can substitute for topo IV at least in some part of the function for chromosome partitioning. Antisera were prepared against the purified ParC, ParE, GyrA, and GyrB proteins and used to investigate cellular localization of these gene products. ParC protein was found to be specifically associated with inner membranes only in the presence of DNA. This result suggests that one of the functions of topo IV might be to anchor chromosomes on membranes as previously proposed for eukaryotic topoisomerase II.  相似文献   

10.
Bacterial DNA topoisomerases are essential for bacterial growth and are attractive, important targets for developing antibacterial drugs. Consequently, different potent inhibitors that target bacterial topoisomerases have been developed. However, the development of potent broad-spectrum inhibitors against both Gram-positive (G+) and Gram-negative (G) bacteria has proven challenging. In this study, we carried out biophysical studies to better understand the molecular interactions between a potent bis-pyridylurea inhibitor and the active domains of the E-subunits of topoisomerase IV (ParE) from a G+ strain (Streptococcus pneumoniae (sParE)) and a G strain (Pseudomonas aeruginosa (pParE)). NMR results demonstrated that the inhibitor forms a tight complex with ParEs and the resulting complexes adopt structural conformations similar to those observed for free ParEs in solution. Further chemical-shift perturbation experiments and NOE analyses indicated that there are four regions in ParE that are important for inhibitor binding, namely, α2, the loop between β2 and α3, and the β2 and β6 strands. Surface plasmon resonance showed that this inhibitor binds to sParE with a higher KD than pParE. Point mutations in α2 of ParE, such as A52S (sParE), affected its binding affinity with the inhibitor. Taken together, these results provide a better understanding of the development of broad-spectrum antibacterial agents.  相似文献   

11.
The rise in bacterial resistance to antibiotics demonstrates the medical need for new antibacterial agents. One approach to this problem is to identify new antibacterials that act through validated drug targets such as bacterial DNA gyrase. DNA gyrase uses the energy of ATP hydrolysis to introduce negative supercoils into plasmid and chromosomal DNA and is essential for DNA replication. Inhibition of the ATPase activity of DNA gyrase is the mechanism by which coumarin-class antibiotics such as novobiocin inhibit bacterial growth. Although ATPase inhibitors exhibit potent antibacterial activity against gram-positive pathogens, no gyrase ATPase activity from a gram-positive organism is described in the literature. To address this, we developed and optimized an enzyme-coupled phosphate assay and used this assay to characterize the ATPase kinetics of Streptococcus pneumoniae gyrase. The S. pneumoniae enzyme exhibits cooperativity with ATP and requires organic potassium salts. We also studied inhibition of the enzyme by novobiocin. Apparent inhibition constants for novobiocin increased linearly with ATP concentration, indicative of an ATP-competitive mechanism. Similar binding affinities were measured by isothermal titration calorimetry. These results reveal unique features of the S. pneumoniae DNA gyrase ATPase and demonstrate the utility of the assay for screening and kinetic characterization of ATPase inhibitors.  相似文献   

12.
The nucleotide sequence of a DNA gyrase B subunit gene (gyrB) from Treponema pallidum has been determined. Southern blot analysis of T. pallidum chromosomal DNA indicated that this gene is present as a single copy. The organization of genes flanking the gyrB gene is unique in comparison to that of other bacteria. The gyrB gene encodes a 637 amino acid protein whose deduced sequence has a high degree of homology with type-II topoisomerase ATPase subunits (GyrB and ParE). Five type-II topoisomerase motifs, an ATP-binding site (Walker A), and amino acid residues that putatively interact with ATP, are highly conserved in the T. pallidum GyrB protein.  相似文献   

13.
One of the major mechanisms followed by the therapeutic agents to target the causative organism of TB, mycobacterium tuberculosis (Mtb), involves disruption of the replication cycle of the pathogen DNA. The process involves two steps that occur simultaneously, ie, breakage and reunion of DNA at gyrase A (GyrA) domain and ATP hydrolysis at gyrase B (GyrB) domain. Current therapy for multi-drug resistant TB involves FDA approved, Fluoroquinolone-based antibiotics, which act by targeting the replication process at GyrA domain. However, resistance against fluoroquinolones due to mutations in the GyrA domain has limited the use of this therapy and shifted the focus of the research community on the GyrB domain. Thus, this study involves in silico designing of chemotherapeutic agents for resistant TB by targeting GyrB domain. In the current study, a pharmacophore model for GyrB domain was generated using reported inhibitors. It was utilized as a query search against three commercial databases to identify GyrB domain inhibitors. Additionally, a qualitative Hip-Hop pharmacophore model for GyrA was also developed on the basis of some marketed fluoroquinolone-based GyrA inhibitors, to remove non-selective gyrase inhibitors obtained in virtual screening. Further, molecular dynamic simulations were carried out to determine the stability of the obtained molecules in complex with both the domains. Finally, Molecular mechanics with generalized Born and surface area solvation score was calculated to determine the binding affinity of obtained molecule with both domains to determine the selectivity of the obtained molecules that resulted in seven putative specific inhibitors of GyrB domain.  相似文献   

14.
Fighting bacterial resistance is a challenging task in the field of medicinal chemistry. DNA gyrase represents a validated antibacterial target and has drawn much interest in recent years. By a structure-based approach we have previously discovered compound 1, an indolinone derivative, possessing inhibitory activity against DNA gyrase. In the present paper, a detailed biophysical characterization of this inhibitor is described. Using mass spectrometry, NMR spectroscopy, and fluorescence experiments we have demonstrated that compound 1 binds reversibly to the ATP-binding site of the 24 kDa N-terminal fragment of DNA gyrase B from Escherichia coli (GyrB24) with low micromolar affinity. Based on these data, a plausible molecular model of compound 1 in the active site of GyrB24 was constructed. The predicted binding mode explains the competitive inhibitory mechanism with respect to ATP and forms a useful basis for further development of potent DNA gyrase inhibitors.  相似文献   

15.
The range of antibiotic therapy for the control of bacterial infections is becoming increasingly limited because of the rapid rise in multidrug resistance in clinical bacterial isolates. A few diseases, such as tuberculosis, which were once thought to be under control, have re-emerged as serious health threats. These problems have resulted in intensified research to look for new inhibitors for bacterial pathogens. Of late, the peptidoglycan (PG) layer, the most important component of the bacterial cell wall has been the subject of drug targeting because, first, it is essential for the survivability of eubacteria and secondly, it is absent in humans. The last decade has seen tremendous inputs in deciphering the 3-D structures of the PG biosynthetic enzymes. Many inhibitors against these enzymes have been developed using virtual and high throughput screening techniques. This review discusses the mechanistic and structural properties of the PG biosynthetic enzymes and inhibitors developed in the last decade.  相似文献   

16.
DNA gyrase, a type II topoisomerase that introduces negative supercoils into DNA, is a validated antibacterial drug target. The holoenzyme is composed of 2 subunits, gyrase A (GyrA) and gyrase B (GyrB), which form a functional A(2)B(2) heterotetramer required for bacterial viability. A novel fluorescence polarization (FP) assay has been developed and optimized to detect inhibitors that bind to the adenosine triphosphate (ATP) binding domain of GyrB. Guided by the crystal structure of the natural product novobiocin bound to GyrB, a novel novobiocin-Texas Red probe (Novo-TRX) was designed and synthesized for use in a high-throughput FP assay. The binding kinetics of the interaction of Novo-TRX with GyrB from Francisella tularensis has been characterized, as well as the effect of common buffer additives on the interaction. The assay was developed into a 21-μL, 384-well assay format and has been validated for use in high-throughput screening against a collection of Food and Drug Administration-approved compounds. The assay performed with an average Z' factor of 0.80 and was able to identify GyrB inhibitors from a screening library.  相似文献   

17.
Bacterial DNA gyrase is an attractive target for the investigation of new antibacterial agents. Inhibitors of the GyrB subunit, which contains the ATP-binding site, are described in this communication. Novel, substituted 5-(1H-pyrazol-3-yl)thiazole compounds were identified as inhibitors of bacterial gyrase. Structure-guided optimization led to greater enzymatic potency and moderate antibacterial potency. Data are presented for the demonstration of selective enzyme inhibition of Escherichia coli GyrB over Staphlococcus aureus GyrB.  相似文献   

18.
《Journal of molecular biology》2019,431(18):3427-3449
Type II topoisomerases regulate DNA topology by making a double-stranded break in one DNA duplex, transporting another DNA segment through this break and then resealing it. Bacterial type IIA topoisomerase inhibitors, such as fluoroquinolones and novel bacterial topoisomerase inhibitors, can trap DNA cleavage complexes with double- or single-stranded cleaved DNA. To study the mode of action of such compounds, 21 crystal structures of a “gyraseCORE” fusion truncate of Staphyloccocus aureus DNA gyrase complexed with DNA and diverse inhibitors have been published, as well as 4 structures lacking inhibitors. These structures have the DNA in various cleavage states and appear to track trajectories along the catalytic paths of the DNA cleavage/religation steps. The various conformations sampled by these multiple “gyraseCORE” structures show rigid body movements of the catalytic GyrA WHD and GyrB TOPRIM domains across the dimer interface. Conformational changes common to all compound-bound structures suggest common mechanisms for DNA cleavage-stabilizing compounds. The structures suggest that S. aureus gyrase uses a single moving-metal ion for cleavage and that the central four base pairs need to be stretched between the two catalytic sites, in order for a scissile phosphate to attract a metal ion to the A-site to catalyze cleavage, after which it is “stored” in another coordination configuration (B-site) in the vicinity. We present a simplified model for the catalytic cycle in which capture of the transported DNA segment causes conformational changes in the ATPase domain that push the DNA gate open, resulting in stretching and cleaving the gate-DNA in two steps.  相似文献   

19.
抗菌肽及其临床应用研究进展   总被引:1,自引:0,他引:1  
抗菌肽是生物体在抵抗病原微生物的防御反应过程中产生的一类具有抗微生物活性的小分子多肽。抗菌肽是机体天然免疫系统的重要组成部分,具有广谱的抗革兰氏阳性、阴性菌活性,对真菌、某些有包膜的病毒、寄生虫以及肿瘤细胞也有抑制活性。抗菌肽具有不同于传统抗生素的独特抗菌机制,病原菌不宜对其产生耐药性,有可能成为一种新的抗生素替代品。介绍了抗菌肽的来源与分类、理化特性与生物学活性,并重点阐述其最新的临床应用进展。  相似文献   

20.
DNA gyrase, a type II topoisomerase found predominantly in bacteria, is the target for a variety of ‘poisons’, namely natural product toxins (e.g. albicidin, microcin B17) and clinically important synthetic molecules (e.g. fluoroquinolones). Resistance to both groups can be mediated by pentapeptide repeat proteins (PRPs). Despite long-term studies, the mechanism of action of these protective PRPs is not known. We show that a PRP, QnrB1 provides specific protection against fluoroquinolones, which strictly requires ATP hydrolysis by gyrase. QnrB1 binds to the GyrB protein and stimulates ATPase activity of the isolated N-terminal ATPase domain of GyrB (GyrB43). We probed the QnrB1 binding site using site-specific incorporation of a photoreactive amino acid and mapped the crosslinks to the GyrB43 protein. We propose a model in which QnrB1 binding allosterically promotes dissociation of the fluoroquinolone molecule from the cleavage complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号