首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A series of twenty seven substituted 2-(2-oxobenzo[d]oxazol-3(2H)-yl)acetamide derivatives were designed based on our earlier reported Mycobacterium tuberculosis (MTB) enoyl-acyl carrier protein reductase (InhA) lead. Compounds were evaluated for MTB InhA inhibition study, in vitro activity against drug-sensitive and -resistant MTB strains, and cytotoxicity against RAW 264.7 cell line. Among the compounds tested, 2-(6-nitro-2-oxobenzo[d]oxazol-3(2H)-yl)-N-(5-nitrothiazol-2-yl)acetamide (30) was found to be the most promising compound with IC50 of 5.12 ± 0.44 μM against MTB InhA, inhibited drug sensitive MTB with MIC 17.11 μM and was non-cytotoxic at 100 μM. The interaction with protein and enhancement of protein stability in complex with compound 30 was further confirmed biophysically by differential scanning fluorimetry.  相似文献   

2.
Growing resistance of prevalent antitubercular (antiTB) agents in clinical isolates of Mycobacterium tuberculosis (MTB) provoked an urgent need to discover novel antiTB agents. Enoyl acyl carrier protein (ACP) reductase (InhA) from Mtb is a well known and thoroughly studied as antitubucular therapy target. Here we have reported the discovery of potent antiTB agents through ligand and structure based approaches using computational tools. Initially compounds with more than 0.500 Tanimoto similarity coefficient index using functional class fingerprints (FCFP_4) to the reference chemotype were mined from the chemdiv database. Further, the molecular docking was performed to select the compounds on the basis of their binding energies, binding modes, and tendencies to form reasonable interactions with InhA (PDB ID = 2NSD) protein. Eighty compounds were evaluated for antitubercular activity against H37RV M. tuberculosis strain, out of which one compound showed MIC of 5.70 μM and another showed MIC of 13.85 μM. We believe that these two new scaffolds might be the good starting point from hit to lead optimization for new antitubercular agents.  相似文献   

3.
Novel C-aryl glucoside SGLT2 inhibitors containing 1,3,4-thiadiazole moieties were designed and synthesized. Among the compounds tested, biaryl-type compounds containing pyrazine 59, 2-furan 61, and 3-thiophene 71 showed the best in vitro inhibitory activities to date (IC50 = 3.51–7.03 nM) against SGLT2. A selected compound 61, demonstrated reasonable blood glucose-lowering effects, indicating that the information obtained from the SAR studies in this 1,3,4-thiadiazolylmethylphenyl glucoside series might help to design more active SGLT2 inhibitors that are structurally related.  相似文献   

4.
A series of new thioether/sulfone compounds containing 1,2,3-thiadiazole and 1,3,4-oxadiazole/1,3,4-thiadiazole moiety were synthesized, the structures of all products were confirmed by IR, 1H NMR, 13C NMR, and element analysis. Preliminary antifungal activity test showed that compound 8a exhibited moderate antifungal activity against Fusarium oxysporum at 50 μg/mL. Preliminary antiviral activity results showed that compounds 7a, 7c, 7d, 8a, and 9a displayed high antiviral activity against tobacco mosaic virus. The present work demonstrates that thioether/sulfone heterocyclic derivatives could be considered as new lead compounds for antiviral studies.  相似文献   

5.
A series of novel hybrid molecules containing 1,3,4-oxadiazole and 1,3,4-thiadiazole bearing Schiff base moiety were designed, synthesized and evaluated for their in vitro antitumor activities against SMMC-7721, MCF-7 and A549 human tumor cell lines by CCK-8 assay. The bioassay results demonstrated that most of the tested compounds showed potent antitumor activities, and some compounds exhibited stronger effects than positive control 5-fluorouracil (5-FU) against various cell lines. Among these compounds, compound 8d showed the best inhibitory effect against SMMC-7721 cells, with IC50 value of 2.84 μM. Compounds 8k and 8n displayed highly effective antitumor activities against MCF-7 cells, with IC50 values of 4.56 and 4.25 μM, respectively. Compounds 8a and 8n exhibited significant antiproliferative activity against A549 cells, with IC50 values of 4.11 and 4.13 μM, respectively. The pharmacological results suggest that the substituents of phenyl ring on the 1,3,4-oxadiazole are vital for modulating antiproliferative activities against various tumor cell lines.  相似文献   

6.
Here, we report the design, synthesis and structure activity relationship of novel small molecule opioid ligands based on 5-amino substituted (tetrahydronaphthalen-2-yl)methyl moiety with N-phenyl-N-(piperidin-2-yl)propionamide derivatives. We synthesized various molecules including amino, amide and hydroxy substitution on the 5th position of the (tetrahydronaphthalen-2-yl)methyl moiety. In our further designs we replaced the (tetrahydronaphthalen-2-yl)methyl moiety with benzyl and phenethyl moiety. These N-phenyl-N-(piperidin-2-yl)propionamide analogues showed moderate to good binding affinities (850–4 nM) and were selective towards the μ opioid receptor over the δ opioid receptors. From the structure activity relationship studies, we found that a hydroxyl substitution at the 5th position of (tetrahydronapthalen-2yl)methyl group, ligands 19 and 20, showed excellent binding affinities 4 and 5 nM, respectively, and 1000 fold selectivity towards the μ opioid relative to the delta opioid receptor. The ligand 19 showed potent agonist activities 75 ± 21 nM, and 190 ± 42 nM in the GPI and MVD assays. Surprisingly the fluoro analogue 20 showed good agonist activities in MVD assays 170 ± 42 nM, in contrast to its binding affinity results.  相似文献   

7.
The 70% aqueous methanolic extract of the Chinese plant Aristolochia manshuriensis was found to contain two novel substituted phenanthrene compounds, SCH 546909 (1), and another phenanthrene glycoside (2). The structures of 1 and 2 were established based on NMR studies. They were identified as inhibitors of the CDK2 enzyme. Compound 1 was found to be a potent inhibitor of the CDK2 enzyme with an IC50 of 140 nM, whereas compound 2 was found to be less active with an IC50 of >10 μM.  相似文献   

8.
A series of novel 1,3-selenazole-containing 1,3,4-thiadiazole derivatives bearing Schiff base moieties were synthesized and evaluated for their in vitro antiproliferative activities against human breast cancer cell MCF-7 and mouse lymphocyte leukemia cell L1210 by CCK-8 assay. The majority of the compounds showed better activity against MCF-7 cell, compared with lead compound PCS. In particular, compound 6c was the most potent compound with IC50 value of 4.02 μM.  相似文献   

9.
A potent series of substituted 2-phenyl-2H-indazole-7-carboxamides were synthesized and evaluated as inhibitors of poly (ADP-ribose) polymerase (PARP). This extensive SAR exploration culminated with the identification of substituted 5-fluoro-2-phenyl-2H-indazole-7-carboxamide analog 48 which displayed excellent PARP enzyme inhibition with IC50 = 4 nM, inhibited proliferation of cancer cell lines deficient in BRCA-1 with CC50 = 42 nM and showed encouraging pharmacokinetic properties in rats compared to the lead 6.  相似文献   

10.
Synthesis, structure, and evaluation of in vitro α-glucosidase enzyme inhibition of a new class of diethylammonium salts of aryl substituted thiobarbituric acid is described. This protocol is straight, environmentally benign and efficient, involving Aldol-Michael addition reaction in one pot fashion. The 3D chemical structures of the synthesized compounds were assigned based on spectroscopic methods and X-ray single crystal diffraction analyses. All synthesized compounds 3a-3n were evaluated for their in vitro α-glucosidase enzyme inhibitory activity, whereas acarbose was used as the standard drug (IC50 = 840 ± 1.73 µM). All tested compounds were found to possess varying degree of α-glucosidase enzyme inhibition activity with (IC50 = 19.46 ± 1.84–415.8 ± 4.0 µM). Compound 3i (IC50 = 19.4 ± 1.84 µM) exhibited the highest activity. To the best of knowledge this is the first report of the in vitro α-glucosidase enzyme inhibition by the diethylamonium salts of aryl substituted thiobarbituric acid. Furthermore, molecular docking studies of selected compounds were also performed to see interactions between active compounds and binding sites.  相似文献   

11.
A class of novel 2-aminobenzothiazoles have been identified as NPY Y1 antagonists. Various N-heterocyclic substituted aminophenethyl-2-aminobenzothiazole analogs were synthesized to explore the SAR. Isothiourea analogs and ligands with high potency (Ki 30 nM) have been identified.  相似文献   

12.
Based on a recent report that 1-methyl-3-phenylpyrrolyl analogues are moderately potent reversible inhibitors of the enzyme monoamine oxidase B (MAO-B), a series of structurally related N-methyl-2-phenylmaleimidyl analogues has been prepared and evaluated as inhibitors of MAO-B. In general, the maleimides were more potent competitive inhibitors than the corresponding pyrrolyl analogues. N-Methyl-2-phenylmaleimide was found to be the most potent inhibitor with an enzyme–inhibitor dissociation constant (Ki value) of 3.49 μM, approximately 30-fold more potent than 1-methyl-3-phenylpyrrole (Ki = 118 μM). This difference in activities may be dependent upon the ability of the maleimidyl heterocyclic system to act as a hydrogen bond acceptor. This is in correspondence with literature reports which suggest that hydrogen bond formation is involved in stabilizing inhibitor–MAO-B complexes. Also reported here is a brief kinetic study of the hydrolysis of the N-methyl-2-phenylmaleimidyl analogues in aqueous solution. The findings of the inhibition studies are discussed with reference to the rate and extent of hydrolysis.  相似文献   

13.
The properties of Trematosphaeria mangrovei laccase enzyme purified on Sephadex G-100 column were investigated. SDS–PAGE of the purified laccase enzyme showed a single band at 48 kDa. The pure laccase reached its maximal activity at temperature 65 °C, pH 4.0 with Km equal 1.4 mM and Vmax equal 184.84 U/mg protein. The substrate specificity of the purified laccase was greatly influenced by the nature and position of the substituted groups in the phenolic ring. The pure laccase was tested with some metal ions and inhibitors, FeSO4 completely inhibited laccase enzyme and also highly affected by (NaN3) at a concentration of 1 mM. Amino acid composition of the pure enzyme was also determined. Carbohydrate content of purified laccase enzyme was 23% of the enzyme sample. The UV absorption spectra of the purified laccase enzyme showed a single peak at 260–280 nm.  相似文献   

14.
The purpose of the work was to identify novel inhibitors of the enzyme NQO2. Using computational molecular modelling, a QSAR (R2 = 0.88) was established, relating inhibitory potency with calculated binding affinity. From this, the imidazoacridin-6-one, NSC660841, was identified as the most potent inhibitor of NQO2 yet reported (IC50 = 6 nM).  相似文献   

15.
Tyrosinase is a key enzyme during the production of melanins in plants and animals. A class of novel N-aryl-N′-substituted phenylthiourea derivatives (3a–i, 6ak) were designed, synthesized and their inhibitory effects on the diphenolase activity of mushroom tyrosinase were evaluated. The results showed some 4,5,6,7-tetrahydro-2-[[(phenylamino)thioxomethyl]amino]-benzo[b]thiophene-3-carboxylic acid derivatives (3a–i) exhibited moderate inhibitory potency on diphenolase activity of tyrosinase. When the scaffold of 4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylic acid was replaced with 2-(1,3,4-thiadiazol-2-yl)thio acetic acid, the inhibitory activity of compounds (6ak) against tyrosinase was improved obviously; especially, the inhibitory activity of compound 6h (IC50 = 6.13 μM) is significantly higher than kojic acid (IC50 = 33.3 μM). Moreover, the analysis on inhibition mechanism revealed that compound 6h might plays the role as a noncompetitive inhibitor.  相似文献   

16.
BackgroundOriginally the glycoside hydrolase (GH) family 70 only comprised glucansucrases of lactic acid bacteria which synthesize α-glucan polymers from sucrose. Recently we have identified 2 novel subfamilies of GH70 enzymes represented by the Lactobacillus reuteri 121 GtfB and the Exiguobacterium sibiricum 255-15 GtfC enzymes. Both enzymes catalyze the cleavage of (α1  4) linkages in maltodextrin/starch and the synthesis of consecutive (α1  6) linkages. Here we describe a novel GH70 enzyme from the nitrogen-fixing Gram-negative bacterium Azotobacter chroococcum, designated as GtfD.MethodsThe purified recombinant GtfD enzyme was biochemically characterized using the amylose-staining assay and its products were identified using profiling chromatographic techniques (TLC and HPAEC-PAD). Glucans produced by the GtfD enzyme were analyzed by HPSEC-MALLS-RI, methylation analysis, 1D/2D [1]H/[13]C NMR spectroscopy and enzymatic degradation studies.ResultsThe A. chroococcum GtfD is closely related to GtfC enzymes, sharing the same non-permuted domain organization also found in GH13 enzymes and displaying 4,6-α-glucanotransferase activity. However, the GtfD enzyme is unable to synthesize consecutive (α1  6) glucosidic bonds. Instead, it forms a high molecular mass and branched α-glucan with alternating (α1  4) and (α1  6) linkages from amylose/starch, highly similar to the reuteran polymer synthesized by the L. reuteri GtfA glucansucrase from sucrose.ConclusionsIn view of its origin and specificity, the GtfD enzyme represents a unique evolutionary intermediate between family GH13 (α-amylase) and GH70 (glucansucrase) enzymes.General significanceThis study expands the natural repertoire of starch-converting enzymes providing the first characterization of an enzyme that converts starch into a reuteran-like α-glucan polymer, regarded as a health promoting food ingredient.  相似文献   

17.
A series of 1,3,4-oxadiazole-2 (3H)-thiones and 1,3,4-thiadiazole-2 (3H)-thiones were synthesized and evaluated for their inhibitory activities against the two nucleotide pyrophosphatase phosphodiesterase 1 enzymes. Dixon, as well as Lineweaver–Burk plots, and their secondary replots have indicated that the inhibition was of pure non-competitive type, against both snake venom and pure human recombinant enzymes as the Vmax values decreases without affecting the Km values. 5-[4-(t-Butyldimethylsilyloxy)-phenyl]-1,3,4-thiadiazole-2 (3H)-thione (17) and [4-(t-butyldimethylsilyloxy)-phenyl]-1,3,4-oxadiazole-2 (3H)-thione (1) were found to be the most active compounds with IC50 values 66.47 and 368 μM, respectively. The Ki values were 100 μM and 360 μM against the snake venom and human recombinant NPP1 enzyme, respectively. Most active compounds were found to be non-toxic in neutrophil viability assay.  相似文献   

18.
A series of novel alkynyl substituted 3,4-dihydropyrimidin-2(1H)-one (DHPM) derivatives were designed, synthesized and evaluated in vitro as potential inhibitors of chorismate mutase (CM). All these compounds were prepared via a multi-component reaction (MCR) involving sequential I2-mediated Biginelli reaction followed by Cu-free Sonogashira coupling. Some of them showed promising inhibitory activities when tested at 30 μM. One compound showed dose dependent inhibition of CM with IC50 value of 14.76 ± 0.54 μM indicating o-alkynylphenyl substituted DHPM as a new scaffold for the discovery of promising inhibitors of CM.  相似文献   

19.
Non-tropane-based photoaffinity ligands for the dopamine transporter (DAT) are relatively unexplored in contrast to tropane-based compounds such as cocaine. In order to fill this knowledge gap, a ligand was synthesized in which the aromatic ring of pyrovalerone was substituted with a photoreactive azido group. The analog 1-(4-azido-3-iodophenyl)-2-pyrrolidin-1-yl-pentan-1-one demonstrated appreciable binding affinity for the DAT (Ki = 78 ± 18 nM), suggesting the potential utility of a radioiodinated version in structure-function studies of this protein.  相似文献   

20.
A small library of N-benzyl indolequinuclidinone (IQD) analogs has been identified as a novel class of cannabinoid ligands. The affinity and selectivity of these IQDs for the two established cannabinoid receptor subtypes, CB1 and CB2, was evaluated. Compounds 8 (R = R2 = H, R1 = F) and 13 (R = COOCH3, R1 = R2 = H) exhibited high affinity for CB2 receptors with Ki values of 1.33 and 2.50 nM, respectively, and had lower affinities for the CB1 receptor (Ki values of 9.23 and 85.7 nM, respectively). Compound 13 had the highest selectivity of all the compounds examined, and represents a potent cannabinoid ligand with 34-times greater selectivity for CB2R over CB1R. These findings are significant for future drug development, given recent reports demonstrating beneficial use of cannabinoid ligands in a wide variety of human disease states including drug abuse, depression, schizophrenia, inflammation, chronic pain, obesity, osteoporosis and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号