首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In moths, sex pheromone components are detected by pheromone-specific olfactory receptor neurons (ph-ORNs) housed in sensilla trichodea in the male antennae. In Grapholita molesta, ph-ORNs are highly sensitive and specific to the individual sex pheromone components, and thus help in the detection and discrimination of the unique conspecific pheromone blend. Plant odors interspersed with a sub-optimal pheromone dose are reported to increase male moth attraction. To determine if the behavioral synergism of pheromone and plant odors starts at the ph-ORN level, single sensillum recordings were performed on Z8-12:Ac and E8-12:Ac ph-ORNs (Z-ORNs and E-ORNs, respectively) stimulated with pheromone–plant volatile mixtures. First, biologically meaningful plant-volatile doses were determined by recording the response of plant-specific ORNs housed in sensilla auricillica and trichodea to several plant odorants. This exploration provided a first glance at plant ORNs in this species. Then, using these plant volatile doses, we found that the spontaneous activity of ph-ORNs was not affected by the stimulation with plant volatiles, but that a binary mixture of sex pheromone and plant odorants resulted in a small (about 15%), dose-independent, but statistically significant, reduction in the spike frequency of Z-ORNs with respect to stimulation with Z8-12:Ac alone. The response of E-ORNs to a combination of E8-12:Ac and plant volatiles was not different from E8-12:Ac alone. We argue that the small inhibition of Z-ORNs caused by physiologically realistic plant volatile doses is probably not fully responsible for the observed behavioral synergism of pheromone and plant odors.  相似文献   

2.
Conus venom peptides: correlating chemistry and behavior   总被引:1,自引:0,他引:1  
Chemical communication in scarab beetles involves female-released long-distance sex pheromones. Electrophysiological recordings using tungsten microelectrodes demonstrated two types of olfactory receptor neurons in the scarab beetle Anomala cuprea, each specific for one of the two pheromone components (R)-buibuilactone and (R)-japonilure, respectively. No neurons were found that responded specifically to enantiomers of the pheromone compounds, i.e. (S)-buibuilactone and (S)-japonilure. Pheromone receptor neurons are present in high numbers on both the male and the female antenna, with a lower sensitivity in the females. As in bark beetles and moths, the pheromone receptor neurons in A. cuprea are very sensitive and selective. The difference in response thresholds between (R)- and (S)-enantiomers is almost three orders of magnitude. Pheromone receptor neurons are found in sensilla placodea located in a defined area on each lamella in the antennal club. (R)-buibuilactone and (R)-japonilure neurons are always found in different sensilla. Both types of sensilla contain two neurons, with the pheromone-sensitive neuron displaying a high spike amplitude and the second neuron, not responding to any of the tested compounds, always with a lower spike amplitude. Accepted: 19 December 1998  相似文献   

3.
    
Adult moths possess an organ in their labial palps, the labial-palp pit organ, which is specialized for sensing carbon dioxide (CO2). They use CO2 as a cue to detect healthy plants and find food or lay eggs on them. The molecular bases of the CO2 receptor in Drosophila melanogaster and Aedes aegypti have been reported, but the molecular mechanisms of the CO2 receptor in Lepidoptera remains elusive. In this study, we first re-examined three putative Helicoverpa armigera CO2 gustatory receptor genes (HarmGr1, HarmGr2, and HarmGr3), and then analyzed expression patterns of them. RT-PCR results verified they were predominantly expressed in the labial palps of H. armigera. Thus, we used in situ hybridization to localize the expression of three genes in the labial palps. We found that all three genes were co-expressed in the same cells of the labial palps. Next, we employed the Xenopus laevis oocyte expression system and the two-electrode voltage-clamp recording to study the function of the three genes. Results showed that only oocytes co-expressing HarmGr1 and HarmGr3 or co-expressing HarmGr1, HarmGr2 and HarmGr3 gave robust responses to NaHCO3. Finally, we confirmed that the sensory cells in labial palps of both females and males show dose dependent responses to CO2 stimuli by using single sensillum recording. Our work uncovers that HarmGr1 and HarmGr3 are indispensable and sufficient for CO2 sensing in labial palps of H. armigera.  相似文献   

4.
Olfactory receptor neurons present in two morphological sensillum types on the male Schistocerca gregaria antenna were for the first time investigated physiologically when stimulated with behaviourally relevant odours. Neurons present in trichoid/basiconic sensilla showed clear excitatory responses to compounds present in the male-produced aggregation pheromone and also to a plant produced compound. Sensilla could be categorised physiologically according to the responses of their receptor neurons to the tested stimuli. Also receptor neurons present in sensilla coeloconica responded to aggregation pheromone components, but always in an inhibitory fashion. These neurons could, however, be excited by a plant produced compound and by some acids present in the nymphal odour. The antennal lobe of the male S. gregaria was observed to contain about 1000 very small glomerular structures. Single receptor neurons were stained from the antenna to the antennal lobe using a cobalt lysine technique. These stainings revealed a multi glomerular axonal branching pattern of antennal receptor neurons.Abbreviations AN antennal nerve - AL antennal lobe - RN receptor neuron  相似文献   

5.
In the grasslands of northeastern Kansas, adult populations of Anomoea flavokansiensis, an oligophagous leaf beetle (subfamily Clytrinae), specialize on Illinois bundleflower (Desmanthus illinoensis) even though other reported host species commonly occur and are simultaneously available. We performed choice feeding tests to examine whether A. flavokansiensis adults have a fixed feeding preference for bundleflower. In choice tests, beetles ate similar amounts of bundleflower and honey locust (Gleditsia triacanthos). In addition, we measured fecundity and longevity of adults in no-choice tests to determine if adults were adapted solely to bundleflower. In no-choice tests, fecundity and longevity were no different for adults feeding on bundleflower and honey locust. We next examined the influence of host plant on the attractiveness of beetle eggs to ants. In northeastern Kansas, Crematogaster lineolata ants are attracted to A. flavokansiensis eggs and carry them into their nests where the larvae hatch and apparently reside as inquilines. C. lineolata exhibited a strong preference for eggs from female A. flavokansiensis that fed exclusively on bundleflower compared to eggs from females that fed exclusively on honey locust. Local populations of A. flavokansiensis in northeastern Kansas may specialize on bundleflower to increase the chances of their eggs being transported by C. lineolata ants into their nests. C. lineolata nests may serve as a predator-free and sheltered environment in which A. flavokansiensis eggs undergo embryogenesis. Received: 1 September 1997 / Accepted: 9 February 1998  相似文献   

6.
    
The response of antennal olfactory receptor neurons (ORNs) of Monochamus galloprovincialis to several odourants was tested using single sensillum electrophysiology. Behaviourally active pheromone, and kairomone (host and sympatric bark beetle pheromone) odours were tested alongside smoke compounds released by burnt wood that are potentially attractive to the insect. The antennae bore several types of sensilla. Two plate areas in the proximal and distal ends of each antennal segment were covered with basiconic sensilla that responded to the odour stimuli. Sensilla basiconica contained one or two cells of different spike amplitude. The 32 male and 38 female ORNs tested responded with excitations or inhibitions to the different plant odours. In general the response of male and female receptors was very similar so they were pooled to perform a cluster analysis on ORN responses. Six ORNs were clearly specialised for pheromone reception. Responses to kairomone and smoke odours were less specific than those of pheromone, but a group of 9 cells was clearly excited by smoke compounds (mainly eugenol and 4-methyl 2-methoxyphenol), a group of 8 cells was very responsive to α-pinene, β-pinene and cis-verbenol, and a group of 14 cells responded to a wider range of compounds. The rest of the cells (47%) were either non-responsive or slightly inhibited by smoke compounds. Dose–response curves were obtained for several compounds. Different compounds induced significantly different latencies and these appeared to be unrelated to their boiling point.  相似文献   

7.
Electrophysiological parameters were measured at different temperatures in resting and pheromone-stimulated olfactory sensilla trichodea of male Antheraea polyphemus (Saturniidae). A method for selective cooling of either the olfactory hair or the antennal branch was developed.The resting preparation resistance increased with lower temperatures, the transepithelial potential decreased. These effects were also observed when the antennal branch was cooled, but were absent during cooling the hair, suggesting a major influence of auxiliary cells on the transepithelial potential and resistance. Together with the preparation resistance, the responses to pheromone stimuli increased with lower temperatures.Computer simulation of the current flow in the sensillum showed that the temperature dependence of responses to pheromone can be explained by modulation of resting resistances of cell membranes alone, without effects of temperature on stimulus transduction. The weak temperature dependence of transepithelial potential might be due to temperature dependence of the electrogenic pump producing the transepithelial potential.Selective cooling of the olfactory hair had no effect on the shape of nerve impulses, cooling of the antennal branch caused changes similar to that obtained by cooling the entire sensillum. This supports the idea that the nerve impulses are generated in the soma of the receptor cell.Abbreviations R prep preparation resistance - R prep reduction of R prep during chemical stimulation - TEP transepithelial potential - TEP receptor-potential amplitude - t hd half-time of decline of the receptor potential - t hr half-time of rise of the receptor potential  相似文献   

8.
Insect repellents are widely used to protect against insect bites and thus prevent allergic reaction and the spread of disease. To gain insight into the mosquito’s response to chemicals repellents, we investigated the interaction between the olfactory system of the mosquito Culex quinquefasciatus Say and chemical repellents using single sensillum recording. The interactions of 50 repellent chemicals with olfactory receptor neurons were measured in six different types of mosquito sensilla: long sharp trichoid (LST), short sharp trichoid (SST), short blunt trichoid I (SBT-I), short blunt trichoid II (SBT-II), short blunt trichoid-curved (SBT-C), and grooved peg (GP). A single olfactory neuron reacted to the chemical repellents in each of the sensilla except for SBT-I and SBT-II, where two neurons were involved. Other than LST and GP, which showed no or very weak responses to the repellents tested, all the sensilla showed significant excitatory responses to certain types of repellents. Terpene-derived chemicals such as eucalyptol, α-pinene, and camphor, stimulated olfactory receptor neurons in a dose-dependent manner and mosquitoes responded more strongly to terpene-derived chemical repellents than to non-terpene-derived chemicals such as dimethyl phthalate. Mosquitoes also exhibited a similar response to stereoisomers of chemicals such as (−)-β-pinene versus (+)-β-pinene, and (−)-menthone versus (+)-menthone. This study not only demonstrates the effects of chemical repellents on the mosquito olfactory system but also provides important information that will assist those screening new mosquito repellents and designing new mosquito control agents.  相似文献   

9.
Since 1969, weed biological control (WBC) practitioners have met at a series of 14 International Symposia on Biological Control of Weeds (ISBCWs). These gatherings have had no societal organization, thus the published proceedings are the main source of information on the recent history of this sub-discipline. Only 1144 individuals (mostly entomologists and plant pathologists) have ever attended an ISBCW: 338 (29.6%) have been at more than one symposium, bringing the total number of attendees to 1972. About 75% of these have come from the main WBC implementing nations, the USA, Australia, South Africa, Canada, and New Zealand. The present analysis of ISBCW attendees has led to estimates that the global WBC research and development effort over the last 50 years has been the domain of about 450–550 WBC practitioners. WBC is presently beleaguered in the USA, Canada and Australia and attendance figures at recent ISBCWs are in decline. A case is made that these trends are largely due to the negative perceptions and damaging consequences of two decades of debates that have exaggerated the risks of non-target impacts and impeded progress in WBC. Further procrastination seems inevitable but in the interests of agriculture and conservation, WBC will need to be deployed more extensively if invasive alien (i.e., introduced, non-indigenous) plants are to be suppressed. In this context, the recent releases of WBC agents in Europe are signal events. It is mooted that a more formal and structured organization for the ISBCW meetings and perhaps a ‘rebranding’ of the sub-discipline is needed to champion and rekindle the practice of WBC.  相似文献   

10.
For the last 40 years, many authors have attempted to characterize the main patterns of plant-insect evolutionary interactions and understand their causes. In the present work on African seed-beetles (Coleoptera: Bruchidae), we have performed a 10-year field work to sample seeds of more than 300 species of potential host-plants (from the family Fabaceae), to obtain bruchids by rearing. This seed sampling in the field was followed by the monitoring of adult emergences which gave us the opportunity to identify host-plant use accurately. Then, by using molecular phylogenetics (on a combined data set of four genes), we have investigated the relationships between host-plant preferences and insect phylogeny. Our objectives were to investigate the level of taxonomic conservatism in host-plant fidelity and host-plant chemistry. Our results indicate that phylogenetically related insects are associated with phylogenetically related host-plants but the phylogeny of the latter cannot alone explain the observed patterns. Major host shifts from Papilionoideae to Mimosoideae subfamilies have happened twice independently suggesting that feeding specialization on a given host-plant group is not always a dead end in seed-beetles. If host-plant taxonomy and chemistry in legumes generally provide consistent data, it appears that the nature of the seed secondary compounds may be the major factor driving the diversification of a large clade specializing on the subfamily Mimosoideae in which host-plant taxonomy is not consistent with chemical similarity.  相似文献   

11.
根据国内外的最新研究成果,从他感化合物和植物的营养物质、有毒物质、形态特征、密度、多样性以及分布等化学和物理因子两方面阐述了植物、植食性昆虫及其天敌三营养层次间直接和间接的相互关系,揭示了植物在三者关系中的核心作用,并就目前在该领域中的一些常用的研究方法作了介绍.  相似文献   

12.
Antennal olfactory receptor neurons (ORNs) for pheromone and plant volatile compounds were identified and characterized in male and female clover root weevil, Sitona lepidus (Gyllenhal), using the single sensillum recording technique with five pheromone-related compounds, and 40 host and non-host plant volatile compounds. Overall, seven different types of olfactory sensilla containing specialized ORNs were identified in each sex of S. lepidus. Among them, three different types of sensilla in the males and two types in the females housed ORNs specialized for pheromone-related compounds. The ORNs in males were specialized for 4-methyl-3,5-heptanedione or one or more of four stereoisomers of 5-hydroxy-4-methyl-3-heptanone. In contrast, female sensilla did not contain ORNs sensitive to 4-methyl-3,5-heptanedione while they contained ORNs sensitive to and specialized for the stereoisomers of (4S,5S)-5-hydroxy-4-methyl-3-heptanone. In addition to the pheromone-related ORNs, four types of olfactory sensilla contained ORNs responsive to plant volatile compounds in male S. lepidus, and five types in females. Most of the ORNs identified in S. lepidus showed a high degree of specificity to specific volatile compounds although some of the active compounds showed overlapping response spectra in the ORNs across different types of sensilla. The most active plant volatile compounds were the four green leaf volatile compounds, (E)-2-hexenol, (Z)-2-hexenol, (Z)-3-hexenol and (E)-2-hexenal, and isomers of two monoterpenols, (±)-linalool and (±)-α-terpineol, all eliciting strong responses from relatively large numbers of ORNs in male and female S. lepidus. Our study indicates that S. lepidus has a set of highly sensitive and selective ORNs for pheromone and plant volatile compounds. Further work is needed to elucidate the behavioral implications of these findings.  相似文献   

13.
The ability of pheromone receptor cells of male Antheraea polyphemus (Saturniidae) to resolve stimulus pulses was determined at different temperatures (8°, 18°, 28°C). The cells were stimulated by repeated 20-ms puffs of the pheromone components (E, Z)-6, 11-hexadecadienyl acetate and (E, Z)-6,11-hexadecadienal. At higher temperatures, higher frequencies of stimulus pulses were resolved by the nerve-impulse response: about 1.25 pulses per second at 8°C, 2.5 pulses/s at 18°C and 5 pulses/s at 28°C. The decreased ability of receptor cells to resolve stimulus pulses at low temperatures may reduce the male moth's chance of reaching the pheromone source. The peak nerve-impulse frequency increased whereas the duration of nerve-impulse responses to single stimulus pulses decreased at higher temperatures. At a given temperature and stimulus intensity the peak nerveimpulse frequency decreased with shorter intervals between the stimulus pulses, but the duration of the responses remained almost constant. The time needed for recovery from adaptation caused by a single stimulus pulse was longer at lower temperatures. The aldehyde receptor cell recovered more quickly than the acetate cell. At low stimulus concentration, the resolution ability of the acetate cell was strongly decreased, whereas in the aldehyde cell it was only slightly impaired.  相似文献   

14.
15.
    
We investigate the response profiles of the antennal olfactory sensory neurones (OSNs) in male and female gorse pod moth Cydia succedana to host and nonhost volatiles, using the single sensillum recording technique. Eight different classes of olfactory sensilla are identified in female C. succedana and five different classes of olfactory sensilla in males. Nineteen different classes of OSNs are identified from the sensilla in females, and nine different classes of OSNs in the male sensilla. All classes of sensilla, except class F7 and class M1 sensilla, co‐compartmentalize two or three OSNs in each sensillum, and the OSNs present in the same sensillum are specialized for different volatiles. Most plant‐volatile OSNs exhibit phasic‐tonic type of temporal responses, whereas the pheromone OSNs in male C. succedana show rather phasic responses. The majority of OSNs identified in C. succedana display highly specialized responses to a narrow range of volatiles, whereas only a small proportion of OSNs show broad response spectra. Two most abundant classes of OSNs exhibit highly specialized responses to β‐myrcene and (E)‐β‐ocimene, two major volatiles released by gorse (Ulex europaeus), the main host of C. succedana. By contrast, several other classes of OSNs exhibit highly specialized responses to geraniol, (Z)‐3‐hexen‐1‐ol, (±)‐α‐terpineol, citral and benzyl acetate, which are produced by various nonhost plants. Taking the results of the present study together, we suggest that C. succedana use the combinational input from a set of highly specialized OSNs for host plant volatiles and another set of highly specialized OSNs for nonhost volatiles to discriminate between hosts and nonhosts.  相似文献   

16.
Plant–herbivore–parasitoid interactions are a common occurrence in terrestrial food webs. Few parasitoids are thought to be shared by host insects of different feeding guilds because different parasitism strategies are required to use hosts of different feeding types. However, this assumption has rarely been tested using data from nature. To clarify whether parasitoids are shared among host guilds, I examined the structure of parasitoid communities on herbivore guilds associated with two Rhododendron species (Ericaceae) in a temperate secondary forest in central Japan. Leaf- and flower-feeding insects were collected from Rhododendron reticulatum and Rhododendron macrosepalum shrubs and reared in the laboratory for 3 years from April 1999 to March 2002. In total, 79 species of holometabolous herbivores (Lepidoptera, Diptera, Coleoptera, and Hymenoptera) were recorded, with 62 species on R. reticulatum and 51 species on R. macrosepalum. A total of 81 parasitoid species (Hymenoptera and Diptera) was recorded from the sampled herbivores, with 48 species from those on R. reticulatum and 50 species from those on R. macrosepalum. In total, 36 herbivore species were parasitised by 1–18 parasitoid species per host species, although the number of parasitoid species was strongly affected by sample size. Parasitoids that had two or more host species frequently attacked herbivore species from different families or on different host plants, whereas they did not attack species from different herbivore guilds; no parasitoids were shared between external feeders and rollers. Therefore, my results support the hypothesis that few parasitoids are shared among herbivores of different feeding guilds.  相似文献   

17.
根据国内外的最新研究成果 ,从他感化合物和植物的营养物质、有毒物质、形态特征、密度、多样性以及分布等化学和物理因子两方面阐述了植物、植食性昆虫及其天敌三营养层次间直接和间接的相互关系 ,揭示了植物在三者关系中的核心作用 ,并就目前在该领域中的一些常用的研究方法作了介绍 .  相似文献   

18.
    
Olfactory responses at the receptor level have been thoroughly described in Drosophila melanogaster by electrophysiological methods. Single sensilla recordings (SSRs) measure neuronal activity in intact individuals in response to odors. For sensilla that contain more than one olfactory receptor neuron (ORN), their different spontaneous spike amplitudes can distinguish each signal under resting conditions. However, activity is mainly described by spike frequency.Some reports on ORN response dynamics studied two components in the olfactory responses of ORNs: a fast component that is reflected by the spike frequency and a slow component that is observed in the LFP (local field potential, the single sensillum counterpart of the electroantennogram, EAG). However, no apparent correlation was found between the two elements.In this report, we show that odorant stimulation produces two different effects in the fast component, affecting spike frequency and spike amplitude. Spike amplitude clearly diminishes at the beginning of a response, but it recovers more slowly than spike frequency after stimulus cessation, suggesting that ORNs return to resting conditions long after they recover a normal spontaneous spike frequency. Moreover, spike amplitude recovery follows the same kinetics as the slow voltage component measured by the LFP, suggesting that both measures are connected.These results were obtained in ab2 and ab3 sensilla in response to two odors at different concentrations. Both spike amplitude and LFP kinetics depend on odorant, concentration and neuron, suggesting that like the EAG they may reflect olfactory information.  相似文献   

19.
In the Japanese scarab beetle, Phyllopertha diversa, olfactory receptor neurones specific for the detection of so-called general green leaf volatiles (GLV) display a high specificity and sensitivity. Three main types of green-leaf-volatile-detecting receptor neurones specific to (Z)-3-hexenyl acetate, (E)-2-hexenal and (Z)-3-hexenol, respectively, were identified. Each type responded at a very low stimulus concentration to the key stimulus, and required at least a thousand-fold increase in concentration to respond to any of the other GLVs tested. Flower-odour-and pheromone-detecting receptor neurones were also identified. Olfactory sensilla housing plant-odour- or pheromone-detecting receptor neurones displayed clear morphological differences, and were also separated into different antennal regions.  相似文献   

20.
    
This study investigated whether contact with the olfactory bulb was necessary for developing and renewing olfactory receptor neurons (ORNs) to attain normal odorant responsiveness, and whether the anatomical and functional recoveries of the olfactory epithelium were similar in both bulbectomized (BE) and bilaterally axotomized (AX) preparations. In vivo electrophysiological recordings were obtained in response to amino acids, a bile acid [taurolithocholic acid sulfate(TLCS)] and a pheromonal odorant [17α, 20β,-dihydroxy-4-pregnen-3-one (17,20P)] from sexually immature goldfish. Both transmission and scanning electron microscopy indicated that the olfactory epithelium degenerated in BE and AX goldfish. Within 1–2 weeks subsequent to the respective surgeries, responses to high concentrations (>0.1 mmol · l−1) of the more stimulatory amino acids remained, whereas responses were no longer obtainable to TLCS and 17,20P. At 4 weeks, responses to amino acid stimuli recovered to control levels, while responses to TLCS and 17,20P were minimal. By 7 weeks post bilateral axotomy, the olfactory epithelium recovered to a condition similar to control sensory epithelium; however, the rate of degeneration and proliferation of receptor neurons in BE preparations appeared to remain in balance, thus blocking further recovery of the olfactory epithelium. At 7 weeks post surgery, odorant responses of AX and BE goldfish to TLCS and 17,20P were still recovering. Accepted: 14 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号