首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A wide spectrum of commercially available lipases and microbial whole cells catalysts were tested for biotransformations of 2-hydroxy-2-(ethoxyphenylphosphinyl)acetic acid 1 and its butyryl ester. The best results were achieved for biocatalytic hydrolysis of ester: 2-butyryloxy-2-(ethoxyphenylphosphinyl)acetic acid 2 performed by lipase from Candida cylindracea, what gave optically active products with 85% enantiomeric excess, 50% conversion degree and enantioselectivity 32.9 for one pair of enantiomers. Also enzymatic systems of Penicillium minioluteum and Fusarium oxysporum were able to hydrolyze tested compound with high enantiomeric excess (68–93% ee), enantioselectivity (44 for one pair of enantiomers) and conversion degree about 50–55%. Enzymatic acylation of hydroxyphosphinate was successful in case when porcine pancreas lipase was used. After 4 days of biotransformation the conversion reaches 45% but the enantiomeric enrichment of the isomers mixture do not exceed 43%. Obtained chiral compounds are valuable derivatizing agents for spectroscopic (NMR) evaluation of enantiomeric excess for particular compounds (e.g. amino acids).  相似文献   

2.
《Process Biochemistry》2014,49(12):2141-2148
A nitrilase gene from Acidovorax facilis ZJB09122 was cloned and expressed in Escherichia coli BL21 (DE3). To improve the activity of this nitrilase, a key amino acid Phe168 was selected and mutated by site-directed mutagenesis, based on the homology modeling and previously described “hot spot” mutation. After mutation and screening, a mutant (Mut-F168V) with higher activity and stability was obtained. The nitrilase activity of Mut-F168V to hydrolyze 1-cyanocyclohexylacetonitrile was 39.52-fold compared with wild type A. facilis nitrilase (Wt-Acf-Nit). The values of Km and Vmax of Mut-F168V were markedly decreased to 1.89-fold and increased to 50.34-fold as compared to Wt-Acf-Nit, respectively. The biotransformation study showed that 1.0 M of 1-cyanocyclohexylacetonitrile could be regioselectively hydrolyzed to 1-(cyanocyclohexyl) acetic acid with 90% yield. The yield of 1-(cyanocyclohexyl) acetic acid by Mut-F168V was 66.19-fold compared to Wt-Acf-Nit after 1 h at the concentration of 1.0 M 1-cyanocyclohexylacetonitrile as substrate. The 1-(cyanocyclohexyl) acetic acid was subsequently isolated and characterized. The mutant (Mut-F168V) appears promising for potential applications for the industrial production of 1-(cyanocyclohexyl) acetic acid.  相似文献   

3.
Complex formation properties of a novel water soluble thiazolyloxime 2-(4-methylthiazol-2-yl)-2-(hydroxyimino)acetic acid (H3L1) with Cu2+ and Ni2+ were investigated in solution by potentiometrical and spectral (UV-Vis, EPR, NMR) methods. All Cu2+ and most of Ni2+ complex species detected in solution were found to have square-planar MN4 core with oxime and heterocyclic nitrogen atoms which was rationalized in terms of destabilizing effect of repulsive interaction between oxygen atom of carboxylic group and nitrogen atom of thiazole ring in N,O-coordinated ligand conformation. It has been found that stability of metal complexes in a series of oxime ligands is dependent upon basicity of nitrogen atom of oxime group. The thiazolyloxime forms less stable complexes with Cu2+ but stronger ones with Ni2+ ions when compared to parent 2-(hydroxyimino)propanoic acid. The lower stability obtained for Cu2+ complexes was elucidated in terms of negative inductive effect of the thiazole and nitrile substituents as well as an effect of intramolecular attractive interaction between thiazolyl sulfur and oxime oxygen atoms in thiazolyloxime. In the case of Ni2+ the complexes formed are square-planar and it is why thiazolyl ligand is more effective in metal ion binding than simple 2-(hydroxyimino)propanoic acid forming only octahedral species. The solid state structure of the Co3+ complex K3[Co(HL1)3]·5.5H2O (1) was studied by X-ray analysis. The thiazolyloxime ligand is coordinated to Co3+ via oxime nitrogen and carboxylate oxygen atoms forming five-membered chelate rings.  相似文献   

4.
A new lipase which enantioselectively hydrolyzes (±)-trans-3-(4-methoxyphenyl)glycidic acid methyl ester [(±)-MPGM], a key intermediate in the synthesis of diltiazem hydrochloride, was purified from the culture supernatant of Serratia marcescens Sr41 8000. The apparent kinetic constants (Km, Vmax) for hydrolysis of (2S,3R)-MPGM [(+)-MPGM] were 350 mM and 1.7 × 10−3 mol/min/mg protein in a toluene-water (1:1) emulsion system. The lipase did not attack (2R,3S)-MPGM [(−)-MPGM], and (−)-MPGM acted as a competitive inhibitor. The molecular mass was estimated to be 62,000 ± 2,000 from SDS-PAGE. The lipase preferentially hydrolyzed (2S,3R)-3-phenylglycidic acid esters, but did not hydrolyze cinnamic acid esters. The lipase released glycerol and fatty acid from olive oil, and the optimum pH and temperature for hydrolysis of olive oil were pH 8 and 45°C, respectively. The lipase was inhibited by Co2+, Ni2+, Fe2+, Fe3+ and EDTA, and activated by Ca2+, Li+ and SDS. It was presumed that the lipase was a metalloenzyme containing approximately one gram atom of calcium per molecular mass of 62,000. The lipase selectively hydrolyzed the 1,3 ester of triglycerides. Sequencing of the N-terminal amino acids revealed that this lipase was distinct from other known lipases.  相似文献   

5.
(2S,3S)-3-methyl- and 3-isopropylaspartic acids were synthesized by bioconversion of the corresponding alkylfumarates (mesaconate and 3-isopropylfumarate) using β-methylaspartase from cell-free extracts of Clostridium tetanomorphum. Optically pure (2S,3S)-3-alkylaspartic acids were transformed in several steps to benzyl (3S,4R)-3-alkylmalolactonates without any racemization of the two chiral centers. These optically active α,β-substituted-β-lactones were polymerized by anionic ring opening polymerization yielding optically active semi-crystalline polyesters. 13C NMR analysis of poly[benzyl β-3-isopropylmalate] in CDCl3 has shown that only the iso-type stereosequence is present in the polymer, indicating that the macromolecular chain is constituted by the only units of benzyl β-(2S,3S)-3-isopropylmalate monomer. The polymerization reaction was done without any racemization of the two stereogenic centers as in the case of benzyl (3S,4R)-3-methylmalolactonate. © 1996 Wiley-Liss, Inc.  相似文献   

6.
The use of lignocellulosic residues for ethanol production is limited by toxic compounds in fermenting yeasts present in diluted acid hydrolysates like acetic acid and 2-furaldehyde. The respiratory deficient phenotype gives the cell the ability to resist several toxic compounds. So the aim of this work was to evaluate the tolerance to toxic compounds present in lignocellulosic hydrolysates like acetic acid and 2-furaldehyde in Pichia stipitis and its respiratory deficient strains. The respiratory deficient phenotype was induced by exposure to chemical agents such as acriflavine, acrylamide and rhodamine; 23 strains were obtained. The selection criterion was based on increasing specific ethanol yield (g ethanol g?1 biomass) with acetic acid and furaldehyde tolerance. The screening showed that P. stipitis NRRL Y-7124 ACL 2-1RD (lacking cytochrome c), obtained using acrylamide, presented the highest specific ethanol production rate (1.82 g g?1 h?1). Meanwhile, the ACF8-3RD strain showed the highest acetic acid tolerance (7.80 g L?1) and the RHO2-3RD strain was able to tolerate up to 1.5 g L?1 2-furaldehyde with a growth and ethanol production inhibition of 23 and 22 %, respectively. The use of respiratory deficient yeast phenotype is a strategy for ethanol production improvement in a medium with toxic compounds such as hydrolysed sugarcane bagasse amongst others.  相似文献   

7.
Cyclocarya paliurus is a unique plant growing in central China with hypoglycaemic and hypolipaemia effects. To make better use of this functional food resource, cell suspension cultures and triterpenic acid accumulation were studied. Stable and uniform cell suspension cultures were established in liquid basal Murashige and Skoog medium supplemented with 2,4-dichlorophenoxy acetic acid (0.5 mg/L), naphthalene acetic acid (0.3 mg/L) and cytokinin (1.0 mg/L). According to the growth curve and triterpenic acid accumulation curve, the 8 ~ 10th day postinoculation was the optimum time for subculture, and the 14th day was the optimum time for harvest. Murashige and Skoog medium and woody plant medium were suitable for both cell growth and triterpenic acid accumulation. 3% sucrose (w/v), 60 mM total nitrogen (NO3 ?/NH4 + = 2/1), 1.25 mM KH2PO4, 2 mM CaCl2, and 2 mM MgSO4 were all found to be fit for cell growth and triterpenic acid accumulation in a cell suspension culture of Cyclocarya paliurus. Total triterpenic acid, ursolic acid and oleanolic acid content in suspended cultured cells were all significantly higher than that of leaves and calluses (P ? 0.01), with levels up to 6.24, 2.28, and 0.94% (of dry weight), respectively. The betulinic acid content of suspended cultured cells also reached 0.82%, which was significantly higher than that of calluses. These results suggest that suspended cultured cells of Cyclocarya paliurus were rich in triterpenic acids and could be used for the production of total triterpenic acid, ursolic acid, oleanolic acid and betulinic acid.  相似文献   

8.
A tetranuclear Cu(II) complex [Cu4L4(H2O)4](ClO4)4 has been synthesized using the terdentate Schiff base 2-(pyridine-2-yliminomethyl)-phenol (HL) (the condensation product of salicylaldehyde and 2-aminopyridine) and copper perchlorate. Chemical characterizations such as IR and UV/Vis of the complex have been carried out. A single-crystal diffraction study shows that the complex contains a nearly planar tetranuclear core containing four copper atoms, which occupy four equivalent five-coordinate sites with a square pyramidal environment. Magnetic measurements have been carried out over the temperature range 2-300 K and with 100 Oe field strengths. Analysis of magnetic susceptibility data indicates a strong antiferromagnetic (J1 = −638 cm−1) exchange interaction between diphenoxo-bridged Cu(II) centers and a moderate antiferromagnetic (J2 = −34 cm−1) interaction between N-C-N bridged Cu(II) centers. Magnetic exchange interactions (J’s) are also discussed on the basis of a computational study using DFT methodology. The spin density distribution (singlet ground state) is calculated to visualize the effect of delocalization of spin density through bridging groups.  相似文献   

9.
[2H]Steviol (ent-13-hydroxykaur-16-en-19-oic acid) was synthesized from steviol acetate norketone (ent-13-acetoxy-16-oxo-17-norkauran-19-oic acid) by the Wittig reaction using (methyl-d3)triphenylphosphonium bromide. A mixture of steviol analogs was produced containing from one to four 2H/molecule. [2H]Steviol was fed to strain LM-45-399 of the fungus Gibberella fujikuroi which was grown on synthetic medium (ICI, 0% N) in the presence of the growth retardant CCC. [2H]GA1, [2H]GA18, [2H]GA23 and [2H]GA53 were isolated from the fungal medium after 4 days. This strain converted steviol to 13-hydroxy GAs in the highest yields of the four Gibberella strains tested, and in amounts suitable for metabolic studies with higher plants.  相似文献   

10.
The anaerobic oxidation of cysteine, Cys, by Mn(III) in acetic acid solutions has been followed by use of a stopped-flow spectrophotometric method at a temperature of 20 °C. The formation and disappearance of the [Mn(OAc)2Cys] complex was monitored at 350 nm. The rate depends strongly on the acetic acid concentration (and hence also on pH) and led to the conclusion that more than one cysteine-containing species was involved. These mono-cysteinyl complexes are formed by the loss of two protons from the cysteine - one from the - SH and the other from either the -NH3+ or, more likely, the -COOH which is partially protonated at the low pH values involved (0.5-2.5). The rate-determining reprotonation of the bound -COO (or -NH2) is then accompanied by internal electron transfer yielding Mn(II) and the cysteinyl radical, Cys•, which then dimerises to form (inactive) cystine. At high acetic acid concentrations (60-90% AcOH) the tris-acetato species, [Mn(OAc)3], predominates together with some of the bis-complex, [Mn(OAc)2]+, and the active species is [Mn(OAc)2Cys] which decomposes with a rate constant of k2=16.8±0.9 M−1 s−1. At low acetic acid concentrations (20-30% AcOH) the mono-acetato species predominates and the reactive species is [Mn(OH)Cys] for which the rate of decomposition=k2=(1.32±0.11)×104 M−1 s−1. The relative values of the rate constants obtained are discussed, as is the bonding of cysteine to manganese(III).  相似文献   

11.
The substrate specificities of four Cl?-activated arginine aminopeptidases purified from the livers and inflammatory exudates of the rat, human fetal livers, and human erythrocytes were studied using peptides and N-l-aminoacyl-2-naphthylamides as substrates. With 2-naphthylamide substrates, these aminopeptidases showed similar substrate specificity; only the derivatives of Arg and Lys were measurably hydrolyzed. Di- and tripeptides with Arg or Lys as the N-terminal residue were readily split by the enzymes from the livers and inflammatory exudates of the rat and human fetal livers but oligopeptides were not hydrolyzed. Arg- and Lys-peptides were also hydrolyzed by the erythrocyte enzyme but this enzyme additionally split several other peptides, oligopeptides being hydrolyzed at internal bonds. The following properties were similar for all four arginine aminopeptidases: Dipeptides were preferred over tripeptides both in substrate binding and catalysis. The rat and human liver, rat exudate, and human erythrocyte enzymes revealed similar Km values for the best substrates, the values increasing in the following order: ArgPhe, ArgTrp, ArgLys < ArgVal, ArgGly, Arg-2-naphthylamide < ArgGlyGly. The kcat values were also similar for the four arginine aminopeptidases. Arg-2-naphthylamide was by far the most rapidly hydrolyzed substrate by all enzymes followed by ArgPhe and ArgTrp. With peptide substrates the highest Cl? activation (10–20%) was found with ArgPhe and ArgTrp. With Arg-2-naphthylamide, however, the activating effect of 0.2 m Cl? was severalfold. The hydrophobicity of the C-terminal residue of the substrate seemed to play an important role both in the Cl? effect and substrate catalysis. Substrate binding, however, also depended on the charged groups of the substrate. Evidently Arg-2-naphthylamide and the peptides were hydrolyzed at the same active center but the mechanisms involved in the hydrolyses of chromogenic substrates and peptides may be different. It was also concluded that the less specific Cl?-activated enzyme from human erythrocytes does not belong to the same group of Cl?-activated arginine aminopeptidases that show a narrow substrate specificity.  相似文献   

12.
Clostridium thermoaceticum was cultivated in glucose-limited media, and the dissimilation of CO to acetic acid was evaluated. We found that cultures catalyzed the rapid dissimilation of CO to acetic acid and CO2, with the stoichiometry obtained for conversion approximating that predicted from the following reaction: 4CO + 2H2O → CH3CO2H + 2CO2. Growing cultures formed approximately 50 mmol (3 g) of CO-derived acetic acid per liter of culture, with the rate of maximal consumption approximating 9.1 mmol of CO consumed/h per liter of culture. In contrast, resting cells were found not to dissimilate CO to acetic acid. 14CO was incorporated, with equal distribution between the carboxyl and methyl carbons of acetic acid when the initial cultivation gas phase was 100% CO, whereas 14CO2 preferentially entered the carboxyl carbon when the initial gas phase was 100% CO2. Significantly, in the presence of saturating levels of CO, 14CO2 preferentially entered the methyl carbon, whereas saturating levels of CO2 yielded 14CO-derived labeling predominantly in the carboxyl carbon. These findings are discussed in relation to the path of carbon flow to acetic acid.  相似文献   

13.
The ability of (all Z)-7,7-dimethyl-5,8,11,14-eico-satetraenoic acid, (all Z)-7,7-dimethyl-5,8,11-eicosatrienoic acid, (Z,Z)-7,7-dimethyl-5,8-eicosadienoic acid, (all Z)-10,10-dimethyl-5,8,11,14-eicosatetraenoic acid, (all Z)-10,10-dimethyl-5,8,11-eicosatrienoic acid, and rac-(Z,Z)-15-hydroxy-7,7-dimethyl-5,8-eicosadienoic acid to inhibit ionophore-induced slow-reacting substance of anaphylaxis (SRS-A) biosynthesis in rat peritoneal cells was studied. It was thought that compounds such as these might inhibit proton abstractions at the 7 or 10 carbon positions on arachidonic acid which are thought to be important in the mechanism of catalysis of Δ5-lipoxygenase(Δ5-LO). All compounds were found to be potent inhibitors of SRS-A biosynthesis in the in vitro rat peritoneal cell system (IC50 < 10 μM). In fact they were more potent inhibitors in the test system than standard Δ5-LO inhibitors such as NDGA and quercetin. To determine if the mechanism of inhibition of the dimethyl arachidonic acid analogs did involve gD5-LO inhibition these compounds were evaluated in an assay system utilizing the Δ5-LO from rat basophilic leukemia (RBL?1_cells. It was found, however, that these compounds were much less potent inhibitors of this enzyme (IC50 ~ 100 μM) than standard compounds such as NDGA (IC50 0.14 μM) and quercetin (IC50, 0.2 μM). The arachidonic acid analogs were subsequently found to be potent inhibitors of phospholipase A2 (PLA2) enzymes with IC50's between 10–20 μM as inhibitors of a snake venom enzyme. In fact these compounds are among the most potent inhibitors of PLA2 yet studied, having potencies better than standards such as p-bromophenacyl bromide (IC50, 87 μM) and U-10029A (IC50, 36 μM). These results suggest that the methylated arachidonic acid analogs may inhibit SRS-A biosynthesis through inhibiting PLA2.  相似文献   

14.
Degradation of Acetonitrile by Pseudomonas putida   总被引:3,自引:2,他引:1       下载免费PDF全文
A bacterium capable of utilizing high concentrations of acetonitrile as the sole source of carbon and nitrogen was isolated from soil and identified as Pseudomonas putida. This bacterium could also utilize butyronitrile, glutaronitrile, isobutyronitrile, methacrylonitrile, propionitrile, succinonitrile, valeronitrile, and some of their corresponding amides, such as acetamide, butyramide, isobutyramide, methacrylamide, propionamide, and succinamide as growth substrates. Acetonitrile-grown cells oxidized acetonitrile with a Km of 40.61 mM. Mass balance studies with [14C]acetonitrile indicated that nearly 66% of carbon of acetonitrile was released as 14CO2 and 14% was associated with the biomass. Metabolites of acetonitrile in the culture medium were acetic acid and ammonia. The acetate formed in the early stages of growth completely disappeared in the later stages. Cell extracts of acetonitrile-grown cells contained activities corresponding to nitrile hydratase and amidase, which mediate the breakdown of actonitrile into acetic acid and ammonia. Both enzymes were intracellular and inducible and hydrolyzed a wide range of substrates. The specific activity of amidase was at least 150-fold higher than the activity of the enzyme nitrile hydratase.  相似文献   

15.
2-Amino-4-{[3-(carboxymethyl)phenoxy](methoxy)phosphoryl}butanoic acid (GGsTop) is a potent, highly selective, nontoxic, and irreversible inhibitor of γ-glutamyl transpeptidase (GGT). GGsTop has been widely used in academic and medicinal research, and also as an active ingredient (Nahlsgen) in commercial anti-aging cosmetics. GGsTop consists of four stereoisomers due to the presence of two stereogenic centers, i.e., the α-carbon atom of the glutamate mimic (l/d) and the phosphorus atom (RP/SP). In this study, each stereoisomer of GGsTop was synthesized stereoselectively and their inhibitory activity against human GGT was evaluated. The l- and d-configurations of each stereoisomer were determined by a combination of a chiral pool synthesis and chiral HPLC analysis. The synthesis of the four stereoisomers of GGsTop used chiral synthetic precursors that were separated by chiral HPLC on a preparative scale. With respect to the configuration of the α-carbon atom of the glutamate mimic, the l-isomer (kon = 174 M?1 s?1) was ca. 8-fold more potent than the d-isomer (kon = 21.5 M?1 s?1). In contrast, the configuration of the phosphorus atom is critical for GGT inhibitory activity. Based on a molecular modeling approach, the absolute configuration of the phosphorus atom of the active GGsTop isomers was postulated to be SP. The SP-isomers inhibited human GGT (kon = 21.5–174 M?1 s?1), while the RP-isomers were inactive even at concentrations of 0.1 mM.  相似文献   

16.
A new group of acetic acid (7ac, R1 = H), and propionic acid (7df, R1 = Me), regioisomers wherein a N-difluoromethyl-1,2-dihydropyrid-2-one moiety is attached via its C-3, C-4, and C-5 position was synthesized. This group of compounds exhibited a more potent inhibition, and hence selectivity, for the cyclooxygenase-2 (COX-2) relative to the COX-1 isozyme. Attachment of the N-difluoromethyl-1,2-dihydropyrid-2-one ring system to an acetic acid, or propionic acid, moiety confers potent 5-LOX inhibitory activity, that is, absent in traditional arylacetic acid NSAIDs. 2-(1-Difluoromethyl-2-oxo-1,2-dihydropyridin-5-yl)acetic acid (7c) exhibited the best combination of dual COX-2 and 5-LOX inhibitory activities. Molecular modeling (docking) studies showed that the highly electronegative CHF2 substituent present in 7c, that showed a modest selectivity for the COX-2 isozyme, is oriented within the secondary pocket (Val523) present in COX-2 similar to the sulfonamide (SO2NH2) COX-2 pharmacophore present in celecoxib, and that the N-difluoromethyl-1,2-dihydropyrid-2-one pharmacophore is oriented close to the region containing the LOX enzyme catalytic iron (His361, His366, and His545). Accordingly, the N-difluoromethyl-1,2-dihyrdopyrid-2-one moiety possesses properties suitable for the design of dual COX-2/5-LOX inhibitory drugs.  相似文献   

17.
An Wang 《Carbohydrate research》2010,345(9):1216-7185
We describe here the synthesis of two oligosaccharide fragments of the tumor associated carbohydrate antigen LeaLex. While the linear lacto-N-triose I: β-d-Galp-(1→4)-β-d-GlcNAcp-(1→3)-β-d-Galp-OMe is a known compound, this is the first reported preparation of the branched tetrasaccharide β-d-GlcNAcp-(1→3)-β-d-Galp-(1→4)-[α-l-Fucp-(1→3)]-β-d-GlcNAcp-OMe. Our synthetic schemes involved using an N-trichloroacetylated trichloroacetimidate glucosaminyl donor activated with excess TMSOTf at 0 °C for glycosylation at O-3 of galactosyl residues and that of trichloroacetimidate galactosyl donors activated with excess BF3·OEt2 to glycosylate either O-3 or O-4 of glucosamine residues. The fucosylation at O-3 of the glucosamine acceptor was accomplished using a thiofucoside donor activated with copper(II) bromide and tetrabutylammonium bromide. Thus, syntheses of the protected tri- and tetrasaccharides were achieved easily and efficiently using known building blocks. Of particular interest, we also report that these protected oligosaccharides were submitted to dissolving metal conditions (Na-NH3) to provide in one single step the corresponding deprotected compounds. Under these conditions all protecting groups (O-acyl, benzylidene, benzyl, and N-trichloroacetyl) were efficiently cleaved. The work-up procedure for such reactions usually involves quenching with excess methanol and then neutralization with acetic acid. In our work the neutralization was carried out using acetic anhydride rather than acetic acid to ensure N-acetylation of the glucosamine residue. Both fully deprotected compounds were then simply purified and desalted by gel permeation chromatography on a Biogel P2 column eluted with water.  相似文献   

18.
l-threo-2,3-Hexodiulosono-1,4-lactone 2-(arylhydrazones) (2) were prepared by condensation of dehydro-l-ascorbic acid with various arylhydrazines. Reaction of 2 with hydroxylamine gave the 2-(arylhydrazone) 3-oximes (3). On boiling with acetic anhydride, 3 gave 2-aryl-4-(2,3-di-O-acetyl-l-threo-glycerol-l-yl)-1,2,3-triazole-5-carboxylic acid 5,41-lactones (4). On treatment of 4 with liquid ammonia, 2-aryl-4-(l-threo-glycerol-l-yl)-1,2,3-triazole-5-carboxamides (5) were obtained. Acetylation of 5 with acetic anhydride-pyridine gave the triacetates, and vigorous acetylation with boiling acetic anhydride gave the tetraacetyl derivatives. Periodate oxidation of 5 gave the 2-aryl-4-formyl-1,2,3-triazole-5-carboxamides (8), and, on reduction, 8 gave the 2-aryl-4-(hydroxymethyl)-1,2,3-triazole-5-carboxamides, characterized as the monoacetates and diacetates. Controlled reaction of 2 with sodium hydroxide, followed by neutralization, gave 3-(l-threo-glycerol-l-yl)-4,5-isoxazolinedione 4-(arylhydrazones), characterized by their triacetates. Reaction of 2 with HBr-HOAc gave 5-O-acetyl-6-bromo-6-deoxy-l-threo-2,3-hexodiulosono-1,4-lactone 2-(arylhydrazones); these were converted into 4-(2-O-acetyl-3-bromo-3-deoxy-l-threo-glycerol-l-yl)-2-aryl-1,2,3-triazole-5-carboxylic acid 5,41-lactones on treatment with acetic anhydride-pyridine.  相似文献   

19.
Two diastereoisomers, 5R,6R-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (7) and 5S,6S-5-hydroxy-6(9α)-oxido-11α,15S-dihydroxyprost-13-enoic acid (10) were synthesized for evaluation as possible biosynthetic intermediates in the enzymatic transformation of PGH2 or PGG2 into PGI2. The synthetic sequence entails the stereospecific reduction of the 9-keto function in PGE2 methyl ester after protecting the C-11 and C-15 hydroxyls as tbutyldimethylsilyl ethers. The resulting PGF derivative was epoxidized exclusively at the C-5 (6) double bond to yield a mixture of epoxides, which underwent facile rearrangement with SiO2 to yield the 5S,6S and 5R,6R-5-hydroxy-6(9α)-oxido cyclic ethers. It was found that dog aortic microsomes were unable to transform radioactive 9β-5S,6S[3H] or 9β-5R,6R[3H]-5-hydroxy-6(9α)-oxido cyclic ethers into PGI2. Also, when either diastereoisomer was included in the incubation mixture, neither isomer diluted the conversion of [1-14C]arachidonic acid into [1-14C]PGI2.  相似文献   

20.
Submitochondrial particles of bovine heart were hydrolyzed by phospholipase A2 and the products were analyzed by liquid chromatography electrospray ionization-mass spectrometry. We found a fatty acid with a molecular mass of 268 Da and a retention time longer than that of linoleic acid. Next, we synthesized organically cis-9,10-methylenehexadecanoic acid, which has a molecular mass similar to that of the extracted fatty acid, and characterized its high performance liquid chromatography and gas chromatography-mass spectrometry profiles. Using these data we were able to identify endogenous cis-9,10-methylenehexadecanoic acid in rat and human heart and liver tissues that had been hydrolyzed by phospholipase A2. This fatty acid was not detected in tissue extracts that had not been hydrolyzed by phospholipase A2. Similar amounts of cis-9,10-methylenehexadecanoic acid were measured in tissue extracts after total hydrolysis. These results suggest that cis-9,10-methylenehexadecanoic acid is a fatty acid component, in the sn-2 position, of phospholipids in some mammalian tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号