首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interleukin-10 (IL-10) is an anti-inflammatory cytokine with important immunoregulatory functions. It is primarily secreted by antigen-presenting cells such as activated T-cells, monocytes, B-cells and macrophages. In biologically functional form, it exists as a homodimer that binds to tetrameric heterodimer IL-10 receptor and induces downstream signaling. IL-10 is associated with survival, proliferation and anti-apoptotic activities of various cancers such as Burkitt lymphoma, non-Hodgkins lymphoma and non-small scell lung cancer. In addition, it plays a central role in survival and persistence of intracellular pathogens such as Leishmania donovani, Mycobacterium tuberculosis and Trypanosoma cruzi inside the host. The signaling mechanisms of IL-10 cytokine are not well explored and a well annotated pathway map has been lacking. To this end, we developed a pathway resource by manually annotating the IL-10 induced signaling molecules derived from literature. The reactions were categorized under molecular associations, activation/inhibition, catalysis, transport and gene regulation. In all, 37 molecules and 76 reactions were annotated. The IL-10 signaling pathway can be freely accessed through NetPath, a resource of signal transduction pathways previously developed by our group.  相似文献   

3.
4.
Urotensin-II is a polypeptide ligand with neurohormone-like activity. It mediates downstream signaling pathways through G-protein-coupled receptor 14 (GPR14) also known as urotensin receptor (UTR). Urotensin-II is the most potent endogenous vasoconstrictor in mammals, promoting cardiovascular remodelling, cardiac fibrosis, and cardiomyocyte hypertrophy. It is also involved in other physiological and pathological activities, including neurosecretory effects, insulin resistance, atherosclerosis, kidney disease, and carcinogenic effects. Moreover, it is a notable player in the process of inflammatory injury, which leads to the development of inflammatory diseases. Urotensin-II/UTR expression stimulates the accumulation of monocytes and macrophages, which promote the adhesion molecules expression, chemokines activation and release of inflammatory cytokines at inflammatory injury sites. Therefore, urotensin-II turns out to be an important therapeutic target for the treatment options and management of associated diseases. The main downstream signaling pathways mediated through this urotensin-II /UTR system are RhoA/ROCK, MAPKs and PI3K/AKT. Due to the importance of urotensin-II systems in biomedicine, we consolidated a network map of urotensin-II /UTR signaling. The described signaling map comprises 33 activation/inhibition events, 31 catalysis events, 15 molecular associations, 40 gene regulation events, 60 types of protein expression, and 11 protein translocation events. The urotensin-II signaling pathway map is made freely accessible through the WikiPathways Database (https://www.wikipathways.org/index.php/Pathway:WP5158). The availability of comprehensive urotensin-II signaling in the public resource will help understand the regulation and function of this pathway in normal and pathological conditions. We believe this resource will provide a platform to the scientific community in facilitating the identification of novel therapeutic drug targets for diseases associated with urotensin-II signaling.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-022-00672-4.  相似文献   

5.
Interleukin-17A (IL-17A) is one of the member of IL-17 family consisting of other five members (IL-17B to IL-17F). The Gamma delta (γδ) T cells and T helper 17 (Th17) cells are the major producers of IL-17A. Aberrant signaling by IL-17A has been implicated in the pathogenesis of several autoimmune diseases including idiopathic pulmonary fibrosis, acute lung injury, chronic airway diseases, and cancer. Activation of the IL-17A/IL-17 receptor A (IL-17RA) system regulates phosphoinositide 3-kinase/AKT serine/threonine kinase/mammalian target of rapamycin (PI3K/AKT/mTOR), mitogen-activated protein kinases (MAPKs) and activation of nuclear factor-κB (NF-κB) mediated signaling pathways. The IL-17RA activation orchestrates multiple downstream signaling cascades resulting in the release of pro-inflammatory cytokines such as interleukins (IL)-1β, IL-6, and IL-8, chemokines (C-X-C motif) and promotes neutrophil-mediated immune response. Considering the biomedical importance of IL-17A, we developed a pathway resource of signaling events mediated by IL-17A/IL-17RA in this study. The curation of literature data pertaining to the IL-17A system was performed manually by the NetPath criteria. Using data mined from the published literature, we describe an integrated pathway reaction map of IL-17A/IL-17RA consisting of 114 proteins and 68 reactions. That includes detailed information on IL-17A/IL-17RA mediated signaling events of 9 activation/inhibition events, 17 catalysis events, 3 molecular association events, 68 gene regulation events, 109 protein expression events, and 6 protein translocation events. The IL-17A signaling pathway map data is made freely accessible through the WikiPathways Database (https://www.wikipathways.org/index.php/Pathway: WP5242).Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-022-00686-y.  相似文献   

6.
7.
8.
Thrombopoietin (THPO), also known as megakaryocyte growth and development factor (MGDF), is a cytokine involved in the production of platelets. THPO is a glycoprotein produced by liver and kidney. It regulates the production of platelets by stimulating the differentiation and maturation of megakaryocyte progenitors. It acts as a ligand for MPL receptor, a member of the hematopoietic cytokine receptor superfamily and is essential for megakaryocyte maturation. THPO binding induces homodimerization of the receptor which results in activation of JAKSTAT and MAPK signaling cascades that subsequently control cellular proliferation, differentiation and other signaling events. Despite the importance of THPO signaling in various diseases and biological processes, a detailed signaling network of THPO is not available in any publicly available database. Therefore, in this study, we present a resource of signaling events induced by THPO that was manually curated from published literature on THPO. Our manual curation of thrombopoietin pathway resulted in identification of 48 molecular associations, 66 catalytic reactions, 100 gene regulation events, 19 protein translocation events and 43 activation/inhibition reactions that occur upon activation of thrombopoietin receptor by THPO. THPO signaling pathway is made available on NetPath, a freely available human signaling pathway resource developed previously by our group. We believe this resource will provide a platform for scientific community to accelerate further research in this area on potential therapeutic interventions.  相似文献   

9.
The apelin receptor (APLNR) is a class A (rhodopsin-like) G-protein coupled receptor with a wide distribution throughout the human body. Activation of the apelin/APLNR system regulates AMPK/PI3K/AKT/mTOR and RAF/ERK1/2 mediated signaling pathways. APLNR activation orchestrates several downstream signaling cascades, which play diverse roles in physiological effects, including effects upon vasoconstriction, heart muscle contractility, energy metabolism regulation, and fluid homeostasis angiogenesis. We consolidated a network map of the APLNR signaling map owing to its biomedical importance. The curation of literature data pertaining to the APLNR system was performed manually by the NetPath criteria. The described apelin receptor signaling map comprises 35 activation/inhibition events, 38 catalysis events, 4 molecular associations, 62 gene regulation events, 113 protein expression types, and 4 protein translocation events. The APLNR signaling pathway map data is made freely accessible through the WikiPathways Database (https://www.wikipathways.org/index.php/Pathway:WP5067).Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00614-6.  相似文献   

10.
11.
Elabela (ELA; also called Apela and Toddler) is one of the recently discovered ligand among the two endogenous peptide ligands (Apelin and Elabela) of the apelin receptor (APLNR, also known as APJ). Elabela-induced signaling plays a crucial role in diverse biological processes, including formation of the embryonic cardiovascular system and early placental development by reducing the chances of occurrence of preeclampsia during pregnancy. It also plays the major role in the renoprotection by reducing kidney injury and the inflammatory response and regulation of gene expression associated with heart failure and fibrosis. Elabela may be processed into different active peptides, each of which binds to APLNR and predominantly activates the signals through PI3K/AKT pathway. Owing to its biomedical importance, we developed a consolidated signaling map of Elabela, in accordance with the NetPath criteria. The presented Elabela signaling map comprises 12 activation/inhibition events, 15 catalysis events, 1 molecular association, 34 gene regulation events and 32 protein expression events. The Elabela signaling pathway map is freely made available through the WikiPathways Database (https://www.wikipathways.org/index.php/Pathway:WP5100).Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00640-4.  相似文献   

12.
Bradykinin, a member of the kallikrein-kinin system (KKS), is associated with an inflammatory response pathway with diverse vascular permeability functions, including thrombosis and blood coagulation. In majority, bradykinin signals through Bradykinin Receptor B2 (B2R). B2R is a G protein-coupled receptor (GPCR) coupled to G protein family such as Gαqs, Gαq/Gα11,i1, and Gβ1γ2. B2R stimulation leads to the activation of a signaling cascade of downstream molecules such as phospholipases, protein kinase C, Ras/Raf-1/MAPK, and PI3K/AKT and secondary messengers such as inositol-1,4,5-trisphosphate, diacylglycerol and Ca2+ ions. These secondary messengers modulate the production of nitric oxide or prostaglandins. Bradykinin-mediated signaling is implicated in inflammation, chronic pain, vasculopathy, neuropathy, obesity, diabetes, and cancer. Despite the biomedical importance of bradykinin, a resource of bradykinin-mediated signaling pathway is currently not available. Here, we developed a pathway resource of signaling events mediated by bradykinin. By employing data mining strategies in the published literature, we describe an integrated pathway reaction map of bradykinin consisting of 233 reactions. Bradykinin signaling pathway events included 25 enzyme catalysis reactions, 12 translocations, 83 activation/inhibition reactions, 11 molecular associations, 45 protein expression and 57 gene regulation events. The pathway map is made publicly available on the WikiPathways Database with the ID URL: https://www.wikipathways.org/index.php/Pathway:WP5132. The bradykinin-mediated signaling pathway map will facilitate the identification of novel candidates as therapeutic targets for diseases associated with dysregulated bradykinin signaling.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00652-0.  相似文献   

13.
Severe acute respiratory syndrome coronaviruses (SARS-CoVs) caused worldwide epidemics over the past few decades. Extensive studies on various strains of coronaviruses provided a basic understanding of the pathogenesis of the disease. Presently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading a global pandemic with unprecedented challenges. This is the third coronavirus outbreak of this century. A signaling pathway map of signaling events induced by SARS-CoV infection is not yet available. In this study, we present a literature-annotated signaling pathway map of reactions induced by SARS-CoV infected cells. Multiple signaling modules were found to be orchestrated including PI3K-AKT, Ras-MAPK, JAK-STAT, Type 1 IFN and NFκB. The signaling pathway map of SARS-CoV consists of 110 molecules and 101 reactions mediated by SARS-CoV proteins. The pathway reaction data are available in various community standard data exchange formats including Systems Biology Graphical Notation (SBGN). The pathway map is publicly available through the GitHub repository and data in various formats can be freely downloadable.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00642-2.  相似文献   

14.
Interferon gamma (IFN-γ), is a cytokine, which is an important regulator of host defense system by mediating both innate and adaptive immune responses. IFN-γ signaling is primarily associated with inflammation and cell-mediated immune responses. IFN-γ is also represented as antitumor cytokine which facilitates immunosurveillance in tumor cells. In addition, IFN-γ mediated signaling also elicits pro-tumorigenic transformations and promotes tumor progression. Impact of IFN-γ signaling in mammalian cells has been widely studied which indicate that IFN-γ orchestrates distinct cellular functions including immunomodulation, leukocyte trafficking, apoptosis, anti-microbial, and both anti- and pro-tumorigenic role. However, a detailed network of IFN-γ signaling pathway is currently lacking. Therefore, we systematically curated the literature information pertaining to IFN-γ signaling and develop a comprehensive signaling network to facilitate better understanding of IFN-γ mediated signaling. A total of 124 proteins were catalogued that were experimentally proven to be involved in IFN-γ signaling cascade. These 124 proteins were found to participate in 81 protein-protein interactions, 94 post-translational modifications, 20 translocation events, 54 activation/inhibiton reactions. Further, 236 differential expressed genes were also documented in IFN-γ mediated signaling. IFN-γ signaling pathway is made freely available to scientific audience through NetPath at (http://www.netpath.org/pathways?path_id=NetPath_32). We believe that documentation of reactions pertaining to IFN-γ signaling and development of pathway map will facilitate further research in IFN-γ associated human diseases including cancer.  相似文献   

15.
16.
The auxins, plant hormones, play a crucial role in many aspects of plant development by regulating cell division, elongation and differentiation. Toyocamycin, a nucleoside-type antibiotic, was identified as auxin signaling inhibitor in a screen of microbial extracts for inhibition of the auxin-inducible reporter gene assay. Toyocamycin specifically inhibited auxin-responsive gene expression, but did not affect other hormone-inducible gene expression. Toyocamycin also blocked auxin-enhanced degradation of the Aux/IAA repressor modulated by the SCF(TIR1) ubiquitin-proteasome pathway without inhibiting proteolytic activity of proteasome. Furthermore, toyocamycin inhibited auxin-induced lateral root formation and epinastic growth of cotyledon in the Arabidopsis thaliana plant. This evidence suggested that toyocamycin would act on the ubiquitination process regulated by SCF(TIR1) machineries. To address the structural requirements for the specific activity of toyocamycin on auxin signaling, the structure-activity relationships of nine toyocamycin-related compounds, including sangivamycin and tubercidin, were investigated.  相似文献   

17.
BACKGROUND: A Boolean network is a simple computational model that may provide insight into the overall behavior of genetic networks and is represented by variables with two possible states (on/off), of the individual nodes/genes of the network. In this study, a Boolean network model has been used to simulate a molecular pathway between two neurotransmitter receptor, dopamine and glutamate receptor, systems in order to understand the consequence of using logic gate rules between nodes, which have two possible states (active and inactive). RESULTS: The dynamical properties of this Boolean network model of the biochemical pathway shows that, the pathway is stable and that, deletion/knockout of certain biologically important nodes cause significant perturbation to this network. The analysis clearly shows that in addition to the expected components dopamine and dopamine receptor 2 (DRD2), Ca(2+) ions play a critical role in maintaining stability of the pathway. CONCLUSION: So this method may be useful for the identification of potential genetic targets, whose loss of function in biochemical pathways may be responsible for disease onset. The molecular pathway considered in this study has been implicated with a complex disorder like schizophrenia, which has a complex multifactorial etiology.  相似文献   

18.
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has been declared a pandemic by WHO. The clinical manifestation and disease progression in COVID-19 patients varies from minimal symptoms to severe respiratory issues with multiple organ failure. Understanding the mechanism of SARS-CoV-2 interaction with host cells will provide key insights into the effective molecular targets for the development of novel therapeutics. Recent studies have identified virus-mediated phosphorylation or activation of some major signaling pathways, such as ERK1/2, JNK, p38, PI3K/AKT and NF-κB signaling, that potentially elicit the cytokine storm that serves as a major cause of tissue injuries. Several studies highlight the aggressive inflammatory response particularly ‘cytokine storm’ in SARS-CoV-2 patients. A depiction of host molecular dynamics triggered by SARS-CoV-2 in the form of a network of signaling molecules will be helpful for COVID-19 research. Therefore, we developed the signaling pathway map of SARS-CoV-2 infection using data mined from the recently published literature. This integrated signaling pathway map of SARS-CoV-2 consists of 326 proteins and 73 reactions. These include information pertaining to 1,629 molecular association events, 30 enzyme catalysis events, 43 activation/inhibition events, and 8,531 gene regulation events. The pathway map is publicly available through WikiPathways: https://www.wikipathways.org/index.php/Pathway:WP5115.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00632-4.  相似文献   

19.
Glutamate metabolism plays a vital role in biosynthesis of nucleic acids and proteins. It is also associated with a number of different stress responses. Deficiency of enzymes involved in glutamate metabolism is associated with various disorders including gyrate atrophy, hyperammonemia, hemolytic anemia, γ-hydoxybutyric aciduria and 5-oxoprolinuria. Here, we present a pathway map of glutamate metabolism representing metabolic intermediates in the pathway, 107 regulator molecules, 9 interactors and 3 types of post-translational modifications. This pathway map provides detailed information about enzyme regulation, protein-enzyme interactions, post-translational modifications of enzymes and disorders due to enzyme deficiency. The information included in the map was based on published experimental evidence reported from mammalian systems.  相似文献   

20.
Among the signal transduction pathways in higher eukaryotes, the two-component system (TCS) is unique to plants. In the model plant Arabidopsis thaliana, it consists of more than 30 proteins, including eight receptors, five phosphotransmitters and 23 response regulators. One of its important functions is to perceive and transduce the signal of the plant hormone cytokinin. The basic signal flow within the TCS is well-understood, but it is unclear how this pathway is integrated with the remainder of the proteome. Thus, knowledge about the interactions of TCS proteins should contribute to the understanding of their mode of action. Therefore, we conducted medium-scale yeast two-hybrid screens focusing on those members of the TCS, which are thought to be involved in cytokinin signaling. In total, more than 6.3 x 10 (7) transformants were screened resulting in the identification of 160 different interactions, of which 136 were novel. Most of the interacting proteins belong to the functional categories of signal transduction and protein metabolism. TCS proteins and their interactors localized to the same subcellular compartment in many cases, a prerequisite to being of biological relevance. The resulting interaction network map revealed large differences in the connectivity. Cytokinin receptors (AHK2, CRE1/AHK4) showed the highest numbers of different interaction partners. This study is the first systematic protein-protein interaction experiment for a plant signal system and provides numerous starting points for further analysis of the molecular mechanisms used to convert the signal carried by the TCS into biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号