首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The DNA puff BhC4-1 gene is amplified and highly expressed in the salivary gland of Bradysia hygida late larvae. Using affinity-purified polyclonal antibodies we have identified the product of the BhC4-1 gene as a 43 kDa polypeptide which is present in extracts of salivary glands from late fourth instar larvae and in the corresponding gland secretion, but not in glands from earlier stages. We also demonstrate that this protein is produced mainly in the S1 and S3 regions of the salivary gland, where BhC4-1 amplification levels are more pronounced and larger amounts of mRNA are produced. By immunoelectron microscopy the BhC4-1 protein was detected in secretory granules of the S1 and S3 regions, and localized in fibrous structures present in the saliva.  相似文献   

6.
The injection of hydroxyurea at a critical time during the fourth larval instar inhibits the development of all DNA puffs in the salivary gland chromosomes of Bradysia hygida. RNA puff formation is not disturbed and larval development continues. The effect is explained as a result of a selective and general inhibitory action of the drug on DNA synthesis during the time when gene amplification occurs in the salivary glands. The incorporation of uridine into the chromosome regions where DNA puff development has been inhibited is sharply decreased in comparison with the incorporation into non-amplifying parts of the same chromosomes. The interpretation proposed for the cytologic observations seems to offer a better understanding of the nature of the DNA puffs.  相似文献   

7.
The characterization of DNA puff BhC4-1 expression was extended and its response to 20-hydroxyecdysone investigated in Bradysia hygida and in transgenic Drosophila carrying the BhC4-1 gene. In both organisms the activation of BhC4-1 in salivary glands occurs at the end of the larval stage coinciding with the peak in ecdysone titers which induces metamorphosis. Injections of 20-hydroxyecdysone into mid-fourth instar larvae of B. hygida show that the induction of BhC4-1 expression, as well as amplification and puff C4 expansion, are late events induced by the hormone. This late response of BhC4-1 expression was also observed in transgenic salivary glands cultivated in the presence of 20-hydroxyecdysone. In vitro studies using transgenic Drosophila indicate that both repressor and activator factors regulate the timing of BhC4-1 expression in salivary glands.  相似文献   

8.
The Drosophila embryonic salivary gland is a migrating tissue that undergoes a stereotypic pattern of migration into the embryo. We demonstrate that the migratory path of the salivary gland requires the PDGF/VEGF pathway. The PDGF/VEGF receptor, Pvr, is strongly expressed in the salivary glands, and Pvr mutations cause abnormal ventral curving of the glands, suggesting that Pvr is involved in gland migration. Although the Pvr ligands, Pvf1 and Pvf2, have distinct expression patterns in the Drosophila embryo, mutations for either one of the ligands result in salivary gland migration defects similar to those seen in embryos that lack Pvr. Rescue experiments indicate that the PDGF/VEGF pathway functions autonomously in the salivary gland. The results of this study demonstrate that the Drosophila PDGF/VEGF pathway is essential for proper positioning of the salivary glands.  相似文献   

9.
10.
Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation.  相似文献   

11.
《Developmental biology》1987,122(2):396-406
A simple assay system for gene regulation using chromosomal puffing as an index of gene activity was established. Salivary glands of Drosophila melanogaster treated with a mild detergent, digitonin, were permeable to high molecular substances, including β-galactosidase (MW 465,000). The permeabilized salivary glands retained the ability to form puffs at the ecdysterone-stimulated loci (74EF and 75B) in response to the hormone. Incubation of the permeabilized salivary glands at puff stage 1 (PS1) for 2 hr in a medium containing both ecdysterone and a homogenate of intact salivary glands at puff stage 8–9 (PS8–9) induced a puff at 78C, where puffing occurs only at puff stages 6–11 in vivo. The puff at 78C was not induced when the permeabilized PS1 glands were incubated with the combination of ecdysterone and a homogenate of the PS1 salivary glands. Likewise, the 78C puff was not induced in intact PS1 salivary glands by a 2-hr incubation with ecdysterone and PS8–9 gland homogenate. These results indicate that a factor(s) required for 78C puff formation is present in PS8–9 but not in PS1 salivary glands and that factor(s) can permeate digitonin-treated salivary glands but not intact glands. The effectiveness of the permeabilized salivary glands as an assay system for gene-regulating factors is discussed.  相似文献   

12.
13.
Endogenous ecdysterone has been bonded to chromosomal loci by irradiation of Ch. tentans salivary glands. The hormone has been localized on the polytene chromosomes by indirect immunofluorescence microscopy. Hormone binding to chromosomes is stage-specific. Seven chromosomal loci could be identified which specifically bound hormone in larval salivary glands, and 21 chromosomal loci which specifically bound hormone in prepupal salivary glands. All puffs that have been described by Clever (1961) as being inducible by ecdysterone have been found to contain irreversibly bound ecdysterone in prepupal salivary gland chromosomes. A small number of puff sites in larval salivary gland chromosomes exhibited varying amounts of bound ecdysterone, (as judged by fluorescence intensity) most notably 117B and Balbiani rings 1 and 3 on chromosome IV. In addition to stage specific binding sites, there were many others showing equal binding of the hormone in both, larval and prepupal, stages of development. — Fluorescence intensities (reflecting the amount of bonded hormone) at puff sites along the tip section of the prepupal salivary gland chromosome arm IR have been computed indicating that differences between fluorescence intensities of different puffs can be expressed as multiples of a basic fluorescence intensity. Thus, the amount of fluorescence intensity (bonded hormone) in the various puffs may be quantized. — The data indicate that in Ch. tentans salivary glands ecdysterone acts, at the chromosomal level. The development of larvae into prepupae generates more puff sites and more hormone binding. This is discussed in the light of current models of hormone-receptor function.  相似文献   

14.
15.
16.
17.
18.
19.
The gene for a major salivary gland secretion protein (Sgs-1) in Drosophila melanogaster has been mapped to chromosome 2 between dp (13.0) and cl (16.5). In the late third instar larva, a puff forms in this region. This puff (25 B) regresses as the ecdysteroid concentration increases prior to puparium formation. Quantitative analysis of the secretory protein 1, showed that, when present in extra dose, region 25 B results in a significant elevation in its relative amount. This suggests that the structural gene for this protein is localized in this region and that its synthesis is directly correlated to the activity of the 25 B puff.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号