首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several arenaviruses, chiefly Lassa virus (LASV) and Junin virus in West Africa and Argentina, respectively, cause hemorrhagic fever (HF) disease in humans that is associated with high morbidity and significant mortality. The investigation of antiviral strategies to combat HF arenaviruses is hampered by the requirement of biosafety level 4 (BSL-4) facilities to work with these viruses. These biosafety hurdles could be overcome by the use of recombinant single-cycle infectious arenaviruses. To explore this concept, we have developed a recombinant lymphocytic choriomeningitis virus (LCMV) (rLCMVΔGP/GFP) where we replaced the viral glycoprotein (GP) with the green fluorescent protein (GFP). We generated high titers of GP-pseudotyped rLCMVΔGP/GFP via genetic trans complementation using stable cell lines that constitutively express LCMV or LASV GPs. Replication of these GP-pseudotyped rLCMVΔGP/GFP viruses was restricted to GP-expressing cell lines. This system allowed us to rapidly and reliably characterize and quantify the neutralization activities of serum antibodies against LCMV and LASV within a BSL-2 facility. The sensitivity of the GFP-based microneutralization assay we developed was similar to that obtained with a conventionally used focus reduction neutralization (FRNT) assay. Using GP-pseudotyped rLCMVΔGP/GFP, we have also obtained evidence supporting the feasibility of this approach to identify and evaluate candidate antiviral drugs against HF arenaviruses without the need of BSL-4 laboratories.  相似文献   

2.
评估2019新型冠状病毒病暴发期间在医院开展严重急性呼吸综合征冠状病毒 2 型(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)核酸检测的可行性,为最终在医院开展核酸检测提供参考。熟悉暴露分析和关键点控制(exposure analysis and critical control points,EACCP)工作框架的专业人员在基于医院现实条件下,对SARS-CoV-2检测过程中可能的感染暴露风险和途径进行梳理,建立整个检测流程,验证在配备有发热门诊的医院开展的可行性,并明确降低暴露风险的关键控制点。高风险是在发热门诊标本的采集和灭活处理,中风险是未灭活标本的储运,低风险是灭活标本的储运和检测。优化检验流程能降低检测过程中感染暴露风险,对于高风险的操作,可在生物安全二级实验室(发热门诊或移动采集点等)和相应的安全防护等级下进行操作; EACCP分析方法可用于新发感染性疾病暴发期间的管理。  相似文献   

3.
Viral proteins are known to be methylated by host protein arginine methyltransferases (PRMTs) necessary for the viral life cycle, but it remains unknown whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins are methylated. Herein, we show that PRMT1 methylates SARS-CoV-2 nucleocapsid (N) protein at residues R95 and R177 within RGG/RG motifs, preferred PRMT target sequences. We confirmed arginine methylation of N protein by immunoblotting viral proteins extracted from SARS-CoV-2 virions isolated from cell culture. Type I PRMT inhibitor (MS023) or substitution of R95 or R177 with lysine inhibited interaction of N protein with the 5’-UTR of SARS-CoV-2 genomic RNA, a property required for viral packaging. We also defined the N protein interactome in HEK293 cells, which identified PRMT1 and many of its RGG/RG substrates, including the known interacting protein G3BP1 as well as other components of stress granules (SGs), which are part of the host antiviral response. Methylation of R95 regulated the ability of N protein to suppress the formation of SGs, as R95K substitution or MS023 treatment blocked N-mediated suppression of SGs. Also, the coexpression of methylarginine reader Tudor domain-containing protein 3 quenched N protein–mediated suppression of SGs in a dose-dependent manner. Finally, pretreatment of VeroE6 cells with MS023 significantly reduced SARS-CoV-2 replication. Because type I PRMT inhibitors are already undergoing clinical trials for cancer treatment, inhibiting arginine methylation to target the later stages of the viral life cycle such as viral genome packaging and assembly of virions may represent an additional therapeutic application of these drugs.  相似文献   

4.
5.
6.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.  相似文献   

7.
8.
9.
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection causes Coronavirus Disease 2019 (COVID-19), a pandemic that seriously threatens global health. SARS-CoV-2 propagates by packaging its RNA genome into membrane enclosures in host cells. The packaging of the viral genome into the nascent virion is mediated by the nucleocapsid (N) protein, but the underlying mechanism remains unclear. Here, we show that the N protein forms biomolecular condensates with viral genomic RNA both in vitro and in mammalian cells. While the N protein forms spherical assemblies with homopolymeric RNA substrates that do not form base pairing interactions, it forms asymmetric condensates with viral RNA strands. Cross-linking mass spectrometry (CLMS) identified a region that drives interactions between N proteins in condensates, and deletion of this region disrupts phase separation. We also identified small molecules that alter the size and shape of N protein condensates and inhibit the proliferation of SARS-CoV-2 in infected cells. These results suggest that the N protein may utilize biomolecular condensation to package the SARS-CoV-2 RNA genome into a viral particle.

The packaging of the SARS-CoV-2 genome is mediated by the nucleocapsid (N) protein; this study shows that the N protein forms liquid condensates with viral genomic RNA and identifies small molecules that alter these condensates.  相似文献   

10.
Cardiomyocytes are quite resistant to gene transfer using standard techniques. We developed an expression vector carrying an attenuated but infectious and replicative coxsackievirus B3 (CVB3) genome, and unique ClaI-StuI cloning sites for an exogenous gene, whose product can be released from the nascent viral polyprotein by 2Apro cleavage. This vector was tested as an expression vehicle for green fluorescent protein (GFP). The vector transiently expressed GFP in cell cultures for at least ten passages and delivered functional GFP to the infected cardiomyocytes for at least 6 days. Moreover, the recombinant viruses showed virulence attenuation in vitro and in vivo. The findings suggest that the recombinant CVB3 vector could be a useful tool for viral tracking study and delivering exogenous proteins to cardiomyocytes.  相似文献   

11.
Besides its importance as model organism in eukaryotic cell biology, yeast species have also developed into an attractive host for the expression, processing, and secretion of recombinant proteins. Here we investigated foreign protein secretion in four distantly related yeasts (Candida glabrata, Pichia pastoris, Saccharomyces cerevisiae, and Schizosaccharomyces pombe) by using green fluorescent protein (GFP) as a reporter and a viral secretion signal sequence derived from the K28 preprotoxin (pptox), the precursor of the yeast K28 virus toxin. In vivo expression of GFP fused to the N-terminal pptox leader sequence and/or expression of the entire pptox gene was driven either from constitutive (PGK1 and TPI1) or from inducible and/or repressible (GAL1, AOX1, and NMT1) yeast promoters. In each case, GFP entered the secretory pathway of the corresponding host cell; confocal fluorescence microscopy as well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western analysis of cell-free culture supernatants confirmed that GFP was efficiently secreted into the culture medium. In addition to the results seen with GFP, the full-length viral pptox was correctly processed in all four yeast genera, leading to the secretion of a biologically active virus toxin. Taken together, our data indicate that the viral K28 pptox signal sequence has the potential for being used as a unique tool in recombinant protein production to ensure efficient protein secretion in yeast.  相似文献   

12.
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves as a self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.  相似文献   

13.
Classical antiviral therapies target viral proteins and are consequently subject to resistance. To counteract this limitation, alternative strategies have been developed that target cellular factors. We hypothesized that such an approach could also be useful to identify broad-spectrum antivirals. The influenza A virus was used as a model for its viral diversity and because of the need to develop therapies against unpredictable viruses as recently underlined by the H1N1 pandemic. We proposed to identify a gene-expression signature associated with infection by different influenza A virus subtypes which would allow the identification of potential antiviral drugs with a broad anti-influenza spectrum of activity. We analyzed the cellular gene expression response to infection with five different human and avian influenza A virus strains and identified 300 genes as differentially expressed between infected and non-infected samples. The most 20 dysregulated genes were used to screen the connectivity map, a database of drug-associated gene expression profiles. Candidate antivirals were then identified by their inverse correlation to the query signature. We hypothesized that such molecules would induce an unfavorable cellular environment for influenza virus replication. Eight potential antivirals including ribavirin were identified and their effects were tested in vitro on five influenza A strains. Six of the molecules inhibited influenza viral growth. The new pandemic H1N1 virus, which was not used to define the gene expression signature of infection, was inhibited by five out of the eight identified molecules, demonstrating that this strategy could contribute to identifying new broad anti-influenza agents acting on cellular gene expression. The identified infection signature genes, the expression of which are modified upon infection, could encode cellular proteins involved in the viral life cycle. This is the first study showing that gene expression-based screening can be used to identify antivirals. Such an approach could accelerate drug discovery and be extended to other pathogens.  相似文献   

14.
Infection with a transforming human papillomavirus (HPV) such as type 16 (of species Alphapapillomavirus 9) causes ano-genital and oral tumours via viral persistence in human squamous cell epithelia. Epidemiological studies showed that the naturally occurring HPV16 Asian-American (AA) variant (sublineage D2/D3) is found more often than the European Prototype (EP) (sublineage A1) in high-grade cervical neoplasia and tumours compared to non-cancer controls. Just three amino acid changes within the early gene, E6, of HPV16 AA have been linked to this augmented tumourigenicity. The AAE6 variant''s greater immortalizing and transforming potential over EPE6 has recently been confirmed in retrovirally-transduced keratinocytes expressing the E6 gene only. However, the tumourigenic role of the full-length viral genome of HPV16 has not yet been addressed with regard to these E6 variants. To investigate this process in the context of these two HPV16 E6 genotypes, an organotypic tissue culture model was used to simulate the HPV infectious life cycle. The AAE6 variant demonstrated an enhanced ability over EPE6 to drive the viral life cycle toward tumourigenesis, as evidenced phenotypically—by a more severe grade of epithelial dysplasia with higher proliferation and deregulated differentiation, and molecularly—by high viral oncogene E6 and E7 expression, but lack of productive viral life cycle markers. In contrast, EPE6 had low E6 and E7 but high E1∧E4 expression, indicative of a productive life cycle. We suggest increased viral integration into the host genome for AAE6 as one possible mechanism for these observed differences from EPE6. Additionally, we found downstream effects on immortalization and host innate immune evasion. This study highlights how minor genomic variations in transforming viruses can have a significant affect on their tumourigenic ability.  相似文献   

15.
The inability to grow human noroviruses in cell culture has greatly impeded the studies of their pathogenesis and immunity. Vesiviruses, in the family Caliciviridae, grow efficiently in cell culture and encode a unique protein in the subgenomic region designated as leader of the capsid protein (LC). We hypothesized that LC might be associated with the efficient replication of vesiviruses in cell culture and promote the replication of human norovirus in cells. To test this hypothesis, a recombinant plasmid was engineered in which the LC region of feline calicivirus (FCV) was placed under the control of the cytomegalovirus promoter (pCI-LC) so that the LC protein could be provided in trans to replicating calicivirus genomes bearing a reporter gene. We constructed pNV-GFP, a recombinant plasmid containing a full-length NV genome with a green fluorescent protein (GFP) in the place of VP1. The transfection of pNV-GFP in MVA-T7-infected cells produced few GFP-positive cells detected by fluorescence microscopy and flow cytometry analysis. When pNV-GFP was cotransfected with pCI-LC in MVA-T7-infected cells, we observed an increase in the number of GFP-positive cells (ca. 3% of the whole-cell population). Using this cotransfection method with mutagenesis study, we identified potential cis-acting elements at the start of subgenomic RNA and the 3′ end of NV genome for the virus replication. We conclude that LC may be a viral factor which promotes the replication of NV in cells, which could provide a clue to growing the fastidious human noroviruses in cell culture.  相似文献   

16.
17.
Papillomaviruses, long associated with benign skin tumors, have been linked more recently to human cancers, particularly to cervical carcinoma. Molecular analysis of the virus has identified the transforming gene and its regulation by both viral and cellular trans:-acting factors. This viral regulatory mechanism is altered in carcinomas. However, lack of progress in developing an in vitro system has hampered investigation of the viral life cycle and the biology of the virus--host: cell interaction.  相似文献   

18.
Institutional biosafety committees (IBCs) have been charged with the oversight and review of biosafety at thousands of biocontainment labs nationwide, hundreds of which are high-level BSL-3 and BSL-4 labs. In light of the recent rapid proliferation of BSL-3 and BSL-4 facilities and the increases in research in the areas of biodefense, select agents, recombinant DNA, and synthetic biology and dual-use research, questions have been raised about whether IBCs are fulfilling their oversight responsibilities. This article reviews information on the responsibilities and expectations of IBCs as currently constituted and provides an analysis of IBC performance from survey data of hundreds of research institutions over the past several years. The findings highlight serious ongoing problems with IBCs' adherence to NIH Guidelines. This raises questions about the current voluntary governance framework as an effective system to monitor and oversee U.S. research facilities, including high-containment facilities, and their research activities. The findings strongly suggest the need for immediate improvement or replacement of the IBC system.  相似文献   

19.
Hepatitis C virus (HCV) is a hepatotropic virus with a host-range restricted to humans and chimpanzees. Although HCV RNA replication has been observed in human non-hepatic and murine cell lines, the efficiency was very low and required long-term selection procedures using HCV replicon constructs expressing dominant antibiotic-selectable markers1-5. HCV in vitro research is therefore limited to human hepatoma cell lines permissive for virus entry and completion of the viral life cycle. Due to HCVs narrow species tropism, there is no immunocompetent small animal model available that sustains the complete HCV replication cycle 6-8. Inefficient replication of HCV in non-human cells e.g. of mouse origin is likely due to lack of genetic incompatibility of essential host dependency factors and/or expression of restriction factors.We investigated whether HCV propagation is suppressed by dominant restriction factors in either human cell lines derived from non-hepatic tissues or in mouse liver cell lines. To this end, we developed two independent conditional trans-complementation methods relying on somatic cell fusion. In both cases, completion of the viral replication cycle is only possible in the heterokaryons. Consequently, successful trans-complementation, which is determined by measuring de novo production of infectious viral progeny, indicates absence of dominant restrictions.Specifically, subgenomic HCV replicons carrying a luciferase transgene were transfected into highly permissive human hepatoma cells (Huh-7.5 cells). Subsequently, these cells were co-cultured and fused to various human and murine cells expressing HCV structural proteins core, envelope 1 and 2 (E1, E2) and accessory proteins p7 and NS2. Provided that cell fusion was initiated by treatment with polyethylene-glycol (PEG), the culture released infectious viral particles which infected naïve cells in a receptor-dependent fashion.To assess the influence of dominant restrictions on the complete viral life cycle including cell entry, RNA translation, replication and virus assembly, we took advantage of a human liver cell line (Huh-7 Lunet N cells 9) which lacks endogenous expression of CD81, an essential entry factor of HCV. In the absence of ectopically expressed CD81, these cells are essentially refractory to HCV infection 10 . Importantly, when co-cultured and fused with cells that express human CD81 but lack at least another crucial cell entry factor (i.e. SR-BI, CLDN1, OCLN), only the resulting heterokaryons display the complete set of HCV entry factors requisite for infection. Therefore, to analyze if dominant restriction factors suppress completion of the HCV replication cycle, we fused Lunet N cells with various cells from human and mouse origin which fulfill the above mentioned criteria. When co-cultured cells were transfected with a highly fusogenic viral envelope protein mutant of the prototype foamy virus (PFV11) and subsequently challenged with infectious HCV particles (HCVcc), de novo production of infectious virus was observed. This indicates that HCV successfully completed its replication cycle in heterokaryons thus ruling out expression of dominant restriction factors in these cell lines. These novel conditional trans-complementation methods will be useful to screen a large panel of cell lines and primary cells for expression of HCV-specific dominant restriction factors.  相似文献   

20.
Recent studies using cell culture infection systems that recapitulate the entire life cycle of hepatitis C virus (HCV) indicate that several nonstructural viral proteins, including NS2, NS3, and NS5A, are involved in the process of viral assembly and release. Other recent work suggests that Ser-168 of NS2 is a target of CK2 kinase–mediated phosphorylation, and that this controls the stability of the genotype 1a NS2 protein. Here, we show that Ser-168 is a critical determinant in the production of infectious virus particles. Substitution of Ser-168 with Ala (or Gly) ablated production of infectious virus by cells transfected with a chimeric viral RNA (HJ3-5) containing core-NS2 sequences from the genotype 1a H77 virus within the background of genotype 2a JFH1 virus. An S168A substitution also impaired production of virus by cells transfected with JFH1 RNA. This mutation did not alter polyprotein processing or genome replication. This defect in virus production could be rescued by expression of wt NS2 in trans from an alphavirus replicon. The trans-complementing activities of NS2 from genotypes 1a and 2a demonstrated strong preferences for rescue of the homologous genotype. Importantly, the S168A mutation did not alter the association of core or NS5A proteins with host cell lipid droplets, nor prevent the assembly of core into particles with sedimentation and buoyant density properties similar to infectious virus, indicating that NS2 acts subsequent to the involvement of core, NS5A, and NS3 in particle assembly. Second-site mutations in NS2 as well as in NS5A can rescue the defect in virus production imposed by the S168G mutation. In aggregate, these results indicate that NS2 functions in trans, in a late-post assembly maturation step, perhaps in concert with NS5A, to confer infectivity to the HCV particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号