共查询到20条相似文献,搜索用时 15 毫秒
1.
Guangcheng Wang Ming Chen Jing Wang Yaping Peng Luyao Li ZhenZhen Xie Bing Deng Shan Chen Wenbiao Li 《Bioorganic & medicinal chemistry letters》2017,27(13):2957-2961
A series of chromone hydrazone derivatives 4a–4p have been synthesized, characterized by 1H NMR and 13C NMR and evaluated for their in vitro α-glucosidase inhibitory activity. Out of these tested compounds, six (4a, 4b, 4d, 4j, 4o and 4p) displayed potent α-glucosidase inhibitory activity with IC50 values in the range of 20.1 ± 0.19 μM to 45.7 ± 0.23 μM, as compared to the standard drug acarbose (IC50 = 817.38 ± 6.27 μM). Among this series, compound 4d (IC50 = 20.1 ± 0.19 μM) with 4-sulfonamide substitution at phenyl part of hydrazide was found to be the most active compound. Lineweaver-Burk plot analysis indicated that compound 4d is a non-competitive inhibitor of α-glucosidase. The binding interactions of the most active analogs were confirmed through molecular docking studies. Docking studies showed 4d are interacting with the residues Glu-276, Asp-214, Asp-349 and Arg-439 through hydrogen bonds, arene-anion and arene-cation interactions. In summary, our studies shown that these chromone hydrazone derivatives are a new class of α-glucosidase inhibitors. 相似文献
2.
In search of better α-glucosidase inhibitors, a series of novel hetarylcoumarins (3a-3j) were designed and synthesized through a facile multicomponent route where p-toluenesulfonic acid (PTSA) was explored as an efficient catalyst. These new scaffolds were further evaluated for their α-glucosidase inhibition potentials. All the derivatives exhibited good to excellent results which were comparable or even better than of standard drug acarbose. Of these compounds, a dihalogenated compound 3f was found to be the most effective one with IC50: 2.53 ± 0.002 µM. Molecular docking has predicted the plausible binding interactions of compounds 3f, 3g and 3j with α-glucosidase. 相似文献
3.
A series of thiazole derivatives 1–21 were prepared, characterized by EI-MS and 1H NMR and evaluated for α-glucosidase inhibitory potential. All twenty one derivatives showed good α-glucosidase inhibitory activity with IC50 value ranging between 18.23 ± 0.03 and 424.41 ± 0.94 μM when compared with the standard acarbose (IC50, 38.25 ± 0.12 μM). Compound (8) (IC50, 18.23 ± 0.03 μM) and compound (7) (IC50 = 36.75 ± 0.05 μM) exhibited outstanding inhibitory potential much better than the standard acarbose (IC50, 38.25 ± 0.12 μM). All other analogs also showed good to moderate enzyme inhibition. Molecular docking studies were carried out in order to find the binding affinity of thiazole derivatives with enzyme. Studies showed these thiazole analogs as a new class of α-glucosidase inhibitors. 相似文献
4.
Isatin base Schiff bases (1–20) were synthesized, characterized by 1H NMR and EI/MS and evaluated for α-glucosidase inhibitory potential. Out of these twenty (20) compounds only six analogs showed potent α-glucosidase inhibitory potential with IC50 value ranging in between 2.2 ± 0.25 and 83.5 ± 1.0 μM when compared with the standard acarbose (IC50 = 840 ± 1.73 μM). Among the series compound 2 having IC50 value (18.3 ± 0.56 μM), 9 (83.5 ± 1.0 μM), 11 (3.3 ± 0.25 μM), 12 (2.2 ± 0.25 μM), 14 (11.8 ± 0.15 μM), and 20 (3.0 ± 0.15 μM) showed excellent inhibitory potential many fold better than the standard acarbose. The binding interactions of these active analogs were confirmed through molecular docking. 相似文献
5.
Thiourea derivatives having benzimidazole 1–17 have been synthesized, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for α-glucosidase inhibition. Identification of potential α-glucosidase inhibitors were done by in vitro screening of 17 thiourea bearing benzimidazole derivatives using Baker’s yeast α-glucosidase enzyme. Compounds 1–17 exhibited a varying degree of α-glucosidase inhibitory activity with IC50 values between 35.83 ± 0.66 and 297.99 ± 1.20 μM which are more better than the standard acarbose (IC50 = 774.5 ± 1.94 μM). Compound 10 and 14 showed significant inhibitory effects with IC50 value 50.57 ± 0.81 and 35.83 ± 0.66 μM, respectively better than the rest of the series. Structure activity relationships were established. Molecular docking studies were performed to understand the binding interaction of the compounds. 相似文献
6.
A series of N-substituted amide linked triazolyl β-d-glucopyranoside derivatives (4a-l) were synthesized and their in vitro inhibitory activity against yeast α-glucosidase enzyme [EC.3.2.1.20] was assessed. Compounds 4e (IC50 = 156.06 μM), 4f (IC50 = 147.94 μM), 4k (IC50 = 127.71 μM) and 4l (IC50 = 121.33 μM) were identified as the most potent inhibitors for α-glucosidase as compared to acarbose (IC50 = 130.98 μM) under the same in vitro experimental conditions. Kinetic study showed that both 4e and 4f inhibit the enzyme in a competitive manner with p-nitrophenyl α-d-glucopyranoside as substrate. Molecular docking studies of 4e, 4f, 4k and 4l were also carried out using homology model of α-glucosidase to find out the binding modes responsible for the inhibitory activity. This study revealed that the binding affinity of compounds 4e, 4f, 4k and 4l for α-glucosidase were −8.2, −8.6, −8.3 and −8.5 kcal/mol respectively, compared to that of acarbose (−8.9 kcal/mol). The results suggest that the N-substituted amide linked triazole glycoconjugates can reasonably mimic the substrates for the yeast α-glucosidase. 相似文献
7.
《Bioorganic & medicinal chemistry》2016,24(21):5374-5379
A novel series of N-arylbenzo[d]oxazol-2-amines (4a–4m) were synthesized and evaluated for their α-glucosidase inhibitory activity. Compounds 4f–4i, 4k and 4m displayed potent inhibitory activity against α-glucosidase with IC50 values in the range of 32.49 ± 0.17–120.24 ± 0.51 μM as compared to the standard drug acarbose. Among all tested compounds, compound 4g having 4-phenoxy substitution at the phenyl ring was found to be the most active inhibitor of α-glucosidase with an IC50 value of 32.49 ± 0.17 μM. Analysis of the kinetics of enzyme inhibition indicated that compound 4g is a noncompetitive inhibitor of α-glucosidase with a Ki value of 31.33 μM. Binding interaction of compound 4g with α-glucosidase was explored by molecular docking simulation. 相似文献
8.
《Bioorganic & medicinal chemistry letters》2014,24(17):4114-4119
A series of oleanolic acid analogs, characterized by structural modifications at position C-3 and C-28 of oleanane skeleton were synthesized and assessed for antiinflammatory potential towards lipopolysaccharide (LPS) induced nitric oxide (NO) production in macrophages. Results revealed that all the synthesized analogs of oleanolic acid inhibit NO production with an IC50 of 2.66–41.7 μM as compared to the specific nitric oxide synthase (NOS) inhibitor, L-NAME (IC50 = 69.21 and 73.18 μM on RAW 264.7 and J774A.1 cells, respectively) without affecting the cell viability when tested at their half maximal concentration. The most potent NO inhibitors (2, 8, 9 and 10) at a concentration of 20 μg/mL also demonstrated mild inhibition (27.9–51.9%) of LPS-induced tumor necrosis factor alpha (TNF-α) and weak inhibition (11.1–37.5%) towards interleukin 1-beta (IL-1β) production in both the cells. The present study paves a direction that analogs of oleanolic acid can be employed as a lead in the development of potent NO inhibitors. Molecular docking studies also showed that 10 (with top Goldscore docking pose 19.05) showed similar interaction as that of co-crystallized inhibitor and, thereby, helps to design the potent inhibitors of TNF-α. 相似文献
9.
Inhibition of α-glucosidase is an effective strategy for controlling the post-prandial hyperglycemia in diabetic patients. For the identification of new inhibitors of this enzyme, a series of new (R)-1-(2-(4-bromo-2-methoxyphenoxy) propyl)-4-(4-(trifluoromethyl) phenyl)-1H-1,2,3-triazole derivatives were synthesized (8a–d and 10a–e). The structures were confirmed by NMR, mass spectrometry and, in case of compound 8a, by single crystal X-ray crystallography. The α-glucosidase inhibitory activities were investigated in vitro. Most derivatives exhibited significant inhibitory activity against α-glucosidase enzyme. Their structure-activity relationship and molecular docking studies were performed to elucidate the active pharmacophore against this enzyme. Compound 10b was the most active analogue with IC50 value of 14.2 µM, while compound 6 was found to be the least active having 218.1 µM. A preliminary structure-activity relationship suggested that the presence of 1H-1,2,3-triazole ring in 1H-1,2,3-triazole derivatives is responsible for this activity and can be used as anti-diabetic drugs. The molecular docking studies of all active compounds were performed, in order to understand the mode of binding interaction and the energy of this class of compounds. 相似文献
10.
A novel 5,6-diaryl-1,2,4-triazine thiazole derivatives (7a-7q) were synthesized and characterized by 1H NMR and 13C NMR and evaluated for their α-glucosidase inhibitory activity. All tested compounds displayed good α-glucosidase inhibitory activity with IC50 values ranging between 2.85 ± 0.13 and 14.19 ± 0.23 μM when compared to the standard drug acarbose (IC50 = 817.38 ± 6.27 μM). Compound 7i (IC50 = 2.85 ± 0.13 μM) exhibited the highest activity among this series of compounds. Molecular docking studies were carried out in order to investigate the binding mode of this class of compounds to α-glucosidase. This study showed that these 5,6-diaryl-1,2,4-triazine thiazole derivatives are a new class of α-glucosidase inhibitors. 相似文献
11.
《Bioorganic & medicinal chemistry》2020,28(7):115359
A series of N,N-diethyl phenyl thioxo-tetrahydropyrimidine carboxamide have been synthesized and investigated for their β-glucuronidase inhibitory activities. All molecules exhibited excellent inhibition with IC50 values ranging from 0.35 to 42.05 µM and found to be even more potent than the standard d-saccharic acid. Structure-activity relationship analysis indicated that the meta-aryl-substituted derivatives significantly influenced β-glucuronidase inhibitory activities while the para-substitution counterpart outperforming moderate potency. The most potent compound in this series was 4g bearing thiophene motif with IC50 of 0.35 ± 0.09 µM. To verify the SAR, molecular docking and molecular dynamics studies were also performed. 相似文献
12.
Hyeju Jo Minho Choi Jaeuk Sim Mayavan Viji Siyuan Li Young Hee Lee Youngsoo Kim Seung-Yong Seo Yuanyuan Zhou Kiho Lee Wun-Jae Kim Jin Tae Hong Heesoon Lee Jae-Kyung Jung 《Bioorganic & medicinal chemistry letters》2017,27(15):3374-3377
We have disclosed our effort to develop caffeic acid derivatives as potent and non-toxic inhibitors of α-MSH-stimulated melanogenesis to treat pigmentation disorders and skin medication including a cosmetic skin-whitening agent. The SAR studies revealed that cyclohexyl ester and secondary amide derivatives of caffeic acid showed significant inhibitory activities. 相似文献
13.
α-Glucosidase is a catabolic enzyme that regulates the body’s plasma glucose levels by providing energy sources to maintain healthy functioning. 2-Amino-thiadiazole (1–13) and 2-amino-thiadiazole based Schiff bases (14–22) were synthesized, characterized by 1H NMR and HREI-MS and screened for α-glucosidase inhibitory activity. All twenty-two (22) analogs exhibit varied degree of α-glucosidase inhibitory potential with IC50 values ranging between 2.30 ± 0.1 to 38.30 ± 0.7 μM, when compare with standard drug acarbose having IC50 value of 39.60 ± 0.70 μM. Among the series eight derivatives 1, 2, 6, 7, 14, 17, 19 and 20 showed outstanding α-glucosidase inhibitory potential with IC50 values of 3.30 ± 0.1, 5.80 ± 0.2, 2.30 ± 0.1, 2.70 ± 0.1, 2.30 ± 0.1, 5.50 ± 0.1, 4.70 ± 0.2, and 5.50 ± 0.2 μM respectively, which is many fold better than the standard drug acarbose. The remaining analogs showed good to excellent α-glucosidase inhibition. Structure activity relationship has been established for all compounds. The binding interactions of these compounds were confirmed through molecular docking. 相似文献
14.
《Bioorganic & medicinal chemistry》2014,22(3):1195-1200
A series of new N-(11H-Indeno[1,2-b]quinoxalin-11-ylidene)benzohydrazide derivatives (3a–3p) were synthesized and evaluated for their α-glucosidase inhibitory activity. The synthesized compounds 3d, 3f, 3g, 3k, 3n, 3p and 4 showed significant α-glucosidase inhibitory activity as compared to acrabose, a standard drug used to treat type II diabetes. Structures of the synthesized compounds were determined by using FT-IR, 1H NMR, 13C NMR, mass spectrometry and elemental analysis techniques. 相似文献
15.
《Bioorganic & medicinal chemistry》2020,28(21):115605
One of the most prevailing metabolic disorder diabetes mellitus has become the global health issue that has to be addressed and cured. Different marketed drugs have been made available for the treatment of diabetes but there is still a need of introducing new therapeutic agents that are economical and have lesser or no side effects. The current study deals with the synthesis of indole acrylonitriles (3–23) and the evaluation of these compounds for their potential for α-glucosidase inhibition. The structures of these synthetic molecules were deduced by using different spectroscopic techniques. Acarbose (IC50 = 2.91 ± 0.02 μM) was used as standard in this study and the synthetic molecules (3–23) have shown promising α-glucosidase inhibitory activity. Compounds 4, 8, 10, 11, 14, 18, and 21 displayed superior inhibition of α-glucosidase enzyme in the range of (IC50 = 0.53 ± 0.01–1.36 ± 0.04 μM) as compared to the standard acarbose. Compound 10 (IC50 = 0.53 ± 0.01 μM) was the most effective inhibitor of this library and displayed many folds enhanced activity in contrast to the standard. Molecular docking of synthetic compounds was performed to verify the binding interactions of ligand with the active site of enzyme. This study had identified a number of potential α-glucosidase inhibitors that can be used for further research to identify a potent therapeutic agent against diabetes. 相似文献
16.
Xanthenone based hydrazone derivatives (5a–n) have been synthesized as potential α-glucosidase inhibitors. All synthesized compounds (5a–n) are characterized by their FTIR, 1H NMR, 13C NMR and HRMS, and in case of 5g also by X-ray crystallographic technique. The compounds unveiled a varying degree of α-glucosidase inhibitory activity when compared with standard acarbose (IC50 = 375.38 ± 0.12 µM). Amongst the series, compound 5l (IC50 = 62.25 ± 0.11 µM) bearing a trifluoromethyl phenyl group is found to be the most active compound. Molecular modelling is performed to establish the binding pattern of the more active compound 5l, which revealed the significance of substitution pattern. The pharmacological properties of molecules are also calculated by MedChem Designer which determines the ADME (absorption, distribution, metabolism, excretion) properties of molecules. The solid state self-assembly of compound 5g is discussed to show the conformation and role of iminoamide moiety in the molecular packing. 相似文献
17.
A novel class of fluoro-substituted tris-chalcones derivatives (5a-5i) was synthesized from phloroglucinol and corresponding benzaldehydes. A three step synthesis method was followed for the production of these tris-chalcone compounds. The structures of the newly synthesized compounds (5a-5i) were confirmed on the basis of IR, 1H NMR, 13C NMR, and elemental analysis. The compounds’ inhibitory activities were tested against human carbonic anhydrase I and II isoenzymes (hCA I and hCA II), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glycosidase (α-Gly). These chalcone derivatives had Ki values in the range of 19.58–78.73 nM for hCA I, 12.23–41.70 nM for hCA II, 1.09–6.84 nM for AChE, 8.30–32.30 nM for BChE and 0.93 ± 0.20–18.53 ± 5.06 nM against α-glycosidase. These results strongly support the promising nature of the tris-chalcone scaffold as selective carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase inhibitor. Overall, due to these derivatives’ inhibitory potential on the tested enzymes, they are promising drug candidates for the treatment of diseases like glaucoma, leukemia, epilepsy; Alzheimer’s disease; type-2 diabetes mellitus that are associated with high enzymatic activity of carbonic anhydrase, acetylcholine esterase, butyrylcholinesterase, and α-glycosidase. 相似文献
18.
《Bioorganic & medicinal chemistry》2016,24(21):5103-5114
A series of bisbenzimidazole derivatives starting from o-phenylenediamine and 4-nitro-o-phenylenediamine were prepared with oxalic acid. Most of the reactions were conducted using both the microwave and conventional methods to compare yields and reaction times. The operational simplicity, environmental friendly conditions and high yield in a significantly short reaction time were the major benefits. All substances’ inhibitory activities against α-glucosidase were evaluated. The results may suggest a significant role for the nature of bisbenzimidazole compounds in their inhibitory action against α-glucosidase. They showed different range of α-glucosidase inhibitory potential with IC50 value ranging between 0.44 ± 0.04 and 6.69 ± 0.01 μM when compared to the standard acarbose (IC50, 13.34 ± 1.26 μM). This has described a new class of α-glucosidase inhibitors. Molecular docking studies were done for all compounds to identify important binding modes responsible for inhibition activity of α-glucosidase. 相似文献
19.
Synthesis, structure, and evaluation of in vitro α-glucosidase enzyme inhibition of a new class of diethylammonium salts of aryl substituted thiobarbituric acid is described. This protocol is straight, environmentally benign and efficient, involving Aldol-Michael addition reaction in one pot fashion. The 3D chemical structures of the synthesized compounds were assigned based on spectroscopic methods and X-ray single crystal diffraction analyses. All synthesized compounds 3a-3n were evaluated for their in vitro α-glucosidase enzyme inhibitory activity, whereas acarbose was used as the standard drug (IC50 = 840 ± 1.73 µM). All tested compounds were found to possess varying degree of α-glucosidase enzyme inhibition activity with (IC50 = 19.46 ± 1.84–415.8 ± 4.0 µM). Compound 3i (IC50 = 19.4 ± 1.84 µM) exhibited the highest activity. To the best of knowledge this is the first report of the in vitro α-glucosidase enzyme inhibition by the diethylamonium salts of aryl substituted thiobarbituric acid. Furthermore, molecular docking studies of selected compounds were also performed to see interactions between active compounds and binding sites. 相似文献
20.
《Bioorganic & medicinal chemistry letters》2020,30(17):127359
A series of novel N-substituted hydrazide derivatives were synthesized by reacting atranorin, a compound with a natural depside structure (1), with a range of hydrazines. The natural product and 12 new analogues (2–13) were investigated for inhibition of α-glucosidase. The N-substituted hydrazide derivatives showed more potent inhibition than the original. The experimental results were confirmed by docking analysis. This study suggests that these compounds are promising molecules for diabetes therapy. Molecular dynamics simulations were carried out with compound 2 demonstrating the best docking model using Gromac during simulation up to 20 ns to explore the stability of the complex ligand-protein. Furthermore, the activity of all synthetic compounds 2–13 against a normal cell line HEK293, used for assessing their cytotoxicity, was evaluated. 相似文献