首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Climate variability is a key driver of physiological responses in common grass species in grasslands of North America. Differences in microanatomical traits among coexisting species may influence physiological responses to climate variability over large geographic scales. The goal of this research was to determine leaf-level physiological and microanatomical trait variability among four dominant C4 grass species across a natural precipitation gradient. Physiological traits were observed to vary significantly across the gradient with greater variability than microanatomical traits. Microanatomical traits were shown to predict physiological responses in A. gerardii and P. virgatum, but the nature of the relationships varied between species. These results illustrate that microanatomical and physiological traits vary across a precipitation gradient, there are clear linkages between microanatomy and physiology in grass species, and this evidence underscores the need for further investigation using phylogenetically diverse assemblages.  相似文献   

2.
The mechanisms by which global change alters the genotypic structure of populations by selection remain unclear. Key to this understanding is elucidating genotype–phenotype relationships under different environmental conditions as genotypes could differ in their plasticity or in their tolerance to changing environmental conditions. We have previously observed selection of certain genotypes of the dominant C4 grass Andropogon gerardii L. within the on-going Rainfall Manipulation Plots (RaMPs) experiment at Konza Prairie Biological Station in Kansas. The RaMPs experiment has been experimentally imposing ambient and more variable (altered) precipitation patterns since 1998. Here, we studied phenotypic differences among six genotypes to gain insight into what drove the pattern of selection previously observed and assess potential genotype × environmental interactions. In 2008 and 2009 we sampled individuals of genotypes in the RaMPs and within unmanipulated reference plots located adjacent to the RaMPs experiment. For each individual, we measured both leaf-level (specific leaf area, stomatal conductance) and whole-plant growth (height, biomass) traits. We consistently detected differences among genotypes in the reference plots. Additionally, when focusing on two genotypes found in the altered and ambient RaMPs we observed no genotype × environment interactions. Overall, we found in an intact population of A. gerardii there exists phenotypic variability among genotypes, but no genotype × environment interactions. Thus our results demonstrate that differences in plasticity of genotypes do no explain the pattern of selection we observed.  相似文献   

3.
Ecosystem responses to climate change will largely be driven by responses of the dominant species. However, if co-dominant species have traits that lead them to differential responses, then predicting how ecosystem structure and function will be altered is more challenging. We assessed differences in response to climate change factors for the two dominant C4 grass species in tallgrass prairie, Andropogon gerardii and Sorghastrum nutans, by measuring changes in a suite of plant ecophysiological traits in response to experimentally elevated air temperatures and increased precipitation variability over two growing seasons. Maximum photosynthetic rates, stomatal conductance, water-use efficiency, chlorophyll fluorescence, and leaf water potential varied with leaf and canopy temperature as well as with volumetric soil water content (0–15 cm). Both species had similar responses to imposed changes in temperature and water availability, but when differences occurred, responses by A. gerardii were more closely linked with changes in air temperature whereas S. nutans was more sensitive to changes in water availability. Moreover, S. nutans was more responsive overall than A. gerardii to climate alterations. These results indicate both grass species are responsive to forecast changes in temperature and precipitation, but their differential sensitivity to temperature and water availability suggest that future population and community structure may vary based on the magnitude and scope of an altered climate.  相似文献   

4.
Climate change has the potential to alter the genetic diversity of plant populations with consequences for community dynamics and ecosystem processes. Recent research focused on changes in climatic means has found evidence of decreased precipitation amounts reducing genetic diversity. However, increased variability in climatic regimes is also predicted with climate change, but the effects of this aspect of climate change on genetic diversity have yet to be investigated. After 10 years of experimentally increased intra-annual variability in growing season precipitation regimes, we report that the number of genotypes of the dominant C4 grass, Andropogon gerardii Vitman, has been significantly reduced in native tallgrass prairie compared with unmanipulated prairie. However, individuals showed a different pattern of genomic similarity with increased precipitation variability resulting in greater genome dissimilarity among individuals when compared to unmanipulated prairie. Further, we found that genomic dissimilarity was positively correlated with aboveground productivity in this system. The increased genomic dissimilarity among individuals in the altered treatment alongside evidence for a positive correlation of genomic dissimilarity with phenotypic variation suggests ecological sorting of genotypes may be occurring via niche differentiation. Overall, we found effects of more variable precipitation regimes on population-level genetic diversity were complex, emphasizing the need to look beyond genotype numbers for understanding the impacts of climate change on genetic diversity. Recognition that future climate change may alter aspects of genetic diversity in different ways suggests possible mechanisms by which plant populations may be able to retain a diversity of traits in the face of declining biodiversity.  相似文献   

5.
Dominant grasses can suppress subordinate species in grassland restorations. Examining factors that influence performance of a dominant grass when interacting with subordinate forbs may provide insights for maintaining plant community diversity. The objective of our study was to determine how soils of different restoration ages and functionally different forbs influence the performance (using biomass and tillering rate as proxies) of a dominant grass: Andropogon gerardii. Sites included a cultivated field and two restored prairies (4 or 16 years after restoration) at Konza Prairie (NE Kansas). We hypothesized A. gerardii performance would be greater in more degraded soils and when interacting with legumes. Soil structure, nutrient status, and microbial biomass were measured in soil that was used to conduct the plant interaction study. Andropogon gerardii performance was measured during an 18-week greenhouse experiment using the relative yield index calculated from net absolute tillering rate and final biomass measurements in three soil restoration age treatments combined with four interacting forb treatments. Restoration improved soil structure, reduced plant-available nutrients, and increased microbial biomass. Relative yield index values of A. gerardii were greater with non-legumes than legumes. Andropogon gerardii performed best in degraded soils, which may explain the difficulty in restoring tallgrass prairie diversity in long-term cultivated soil. Results from this study suggest practices that promote soil aggregation and fungal biomass, coupled with including a high abundance of legumes in seed mixes could reduce dominance of A. gerardii and likely increase plant diversity in tallgrass prairie restorations.  相似文献   

6.
《Plant Ecology & Diversity》2013,6(3-4):523-536
Background: Genetic differentiation in phenotypic traits is often observed among forest tree populations, but less is known about patterns of adaptive variation within populations. Such variation is expected to enhance the survival likelihood of extant populations under climate change.

Aims: Scots pine (Pinus sylvestris) occurs over a spatially and temporally heterogeneous landscape in Scotland. Our goal was to examine whether populations had differentiated genetically in timing of bud flush in response to spatial heterogeneity and whether variation was also maintained within populations.

Methods: Two common-garden studies, involving maternal families of seedlings from 21 native pinewoods, were established and variation in the trait was measured at the beginning of the second growing season.

Results: Populations showed genetic differences in the trait correlated with the length of growing season at their site of origin, but the majority of variation was observed within populations. Populations also differed in their levels of variation in the trait; a pattern that may be influenced by spatial variation in the extent of temporal climate variability.

Conclusions: Our findings suggest that populations have adapted to their home environments and that they also have substantial ability to adapt in situ to changes in growing season length.  相似文献   

7.
The microscale distribution of polyploid variants of the dominant grass big bluestem (Andropogon gerardii) in virgin tallgrass prairie was mapped using flow cytometry. The correlation between DNA content and polyploidy allows the use of flow cytometry for nondestructive determination of polyploidy in intact plants. At Konza Prairie, local plots contained from 0 to 100% hexaploid cytotypes but most showed fine-scale mixing of the polyploid variants. The relationship of cytotype frequency to moisture availability or burning history was nonsignificant.  相似文献   

8.
Chang CC  Smith MD 《Oecologia》2012,168(4):1091-1102
To improve the understanding of how native plant diversity influences invasion, we examined how population and community diversity may directly and indirectly be related to invasion in a natural field setting. Due to the large impact of the dominant C4 grass species (Andropogon gerardii) on invasion resistance of tallgrass prairie, we hypothesized that genetic diversity and associated traits within a population of this species would be more strongly related to invasion than diversity or traits of the rest of the community. We added seeds of the exotic invasive C4 grass, A. bladhii, to 1-m2 plots in intact tallgrass prairie that varied in genetic diversity of A. gerardii and plant community diversity, but not species richness. We assessed relationships among genetic diversity and traits of A. gerardii, community diversity, community aggregated traits, resource availability, and early season establishment and late-season persistence of the invader using structural equation modeling (SEM). SEM models suggested that community diversity likely enhanced invasion indirectly through increasing community aggregated specific leaf area as a consequence of more favorable microclimatic conditions for seedling establishment. In contrast, neither population nor community diversity was directly or indirectly related to late season survival of invasive seedlings. Our research suggests that while much of diversity–invasion research has separately focused on the direct effects of genetic and species diversity, when taken together, we find that the role of both levels of diversity on invasion resistance may be more complex, whereby effects of diversity may be primarily indirect via traits and vary depending on the stage of invasion.  相似文献   

9.
Large herbivore grazing is a widespread disturbance in mesic savanna grasslands which increases herbaceous plant community richness and diversity. However, humans are modifying the impacts of grazing on these ecosystems by removing grazers. A more general understanding of how grazer loss will impact these ecosystems is hampered by differences in the diversity of large herbivore assemblages among savanna grasslands, which can affect the way that grazing influences plant communities. To avoid this we used two unique enclosures each containing a single, functionally similar large herbivore species. Specifically, we studied a bison (Bos bison) enclosure at Konza Prairie Biological Station, USA and an African buffalo (Syncerus caffer) enclosure in Kruger National Park, South Africa. Within these enclosures we erected exclosures in annually burned and unburned sites to determine how grazer loss would impact herbaceous plant communities, while controlling for potential fire-grazing interactions. At both sites, removal of the only grazer decreased grass and forb richness, evenness and diversity, over time. However, in Kruger these changes only occurred with burning. At both sites, changes in plant communities were driven by increased dominance with herbivore exclusion. At Konza, this was caused by increased abundance of one grass species, Andropogon gerardii, while at Kruger, three grasses, Themeda triandra, Panicum coloratum, and Digitaria eriantha increased in abundance.  相似文献   

10.

Background and Aims

The collection of field data on plant traits is time consuming and this makes it difficult to examine changing patterns of traits along large-scale climate gradients. The present study tests whether trait information derived from regional floras can be used in conjunction with pre-existing quadrat data on species presence to derive meaningful relationships between specific morphometric traits and climate.

Methods

Quadrat records were obtained for 867 species in 404 sites from northern China (38–49°N, 82–132°E) together with information on the presence/absence of key traits from floras. Bioclimate parameters for each site were calculated using the BIOME3 model. Principal component analysis and correlation analysis were conducted to determine the most important climate factors. The Akaike Information Criterion was used to select the best relationship between each trait and climate. Canonical correspondence analysis was used to explore the relationships between climate and trait occurrence.

Key Results

The changing abundance of life form, leaf type, phenology, photosynthetic pathway, leaf size and several other morphometric traits are determined by gradients in plant-available moisture (as measured by the ratio of actual to potential evapotranspiration: α), growing-season temperature (as measured by growing degree-days on a 0 ° base: GDD0) or a combination of these. Different plant functional types (PFTs, as defined by life form, leaf type and phenology) reach maximum abundance in distinct areas of this climate space: for example, evergreen trees occur in the coldest, wettest environments (GDD0 < 2500 °Cd, α > 0·38), and deciduous scale-leaved trees occur in drier, warmer environments than deciduous broad-leaved trees. Most leaf-level traits show similar relationships with climate independently of PFT: for example, leaf size in all PFTs increases as the environment becomes wetter and cooler. However, some traits (e.g. petiole length) display different relationships with climate in different PFTs.

Conclusions

Based on presence/absence species data and flora-based trait assignments, the present study demonstrates ecologically plausible trends in the occurrence of key plant traits along climate gradients in northern China. Life form, leaf type, phenology, photosynthetic pathway, leaf size and other key traits reflect climate. The success of these analyses opens the possibility of using quadrat- and flora-based trait analyses to examine climate–trait relationships in other regions of the world.  相似文献   

11.
Background and AimsDisplacement of native plant species by non-native invaders may result from differences in their carbon economy, yet little is known regarding how variation in leaf traits influences native–invader dynamics across climate gradients. In Hawaii, one of the most heavily invaded biodiversity hotspots in the world, strong spatial variation in climate results from the complex topography, which underlies variation in traits that probably drives shifts in species interactions.MethodsUsing one of the most comprehensive trait data sets for Hawaii to date (91 species and four islands), we determined the extent and sources of variation (climate, species and species origin) in leaf traits, and used mixed models to examine differences between natives and non-native invasives.Key ResultsWe detected significant differences in trait means, such that invasives were more resource acquisitive than natives over most of the climate gradients. However, we also detected trait convergence and a rank reversal (natives more resource acquisitive than invasives) in a sub-set of conditions. There was significant intraspecific trait variation (ITV) in leaf traits of natives and invasives, although invasives expressed significantly greater ITV than natives in water loss and photosynthesis. Species accounted for more trait variation than did climate for invasives, while the reverse was true for natives. Incorporating this climate-driven trait variation significantly improved the fit of models that compared natives and invasives. Lastly, in invasives, ITV was most strongly explained by spatial heterogeneity in moisture, whereas solar energy explains more ITV in natives.ConclusionsOur results indicate that trait expression and ITV vary significantly between natives and invasives, and that this is mediated by climate. These findings suggest that although natives and invasives are functionally similar at the regional scale, invader success at local scales is contingent on climate.  相似文献   

12.
Summary Responses to clipping and bison grazing in different environmental contexts were examined in two perennial grass species, Andropogon gerardii and Panicum virgatum, on the Konza Prairie in northeastern Kansas. Grazed tillers had lower relative growth rates (RGR) than clipped tillers following defoliation but this difference was transient and final biomass was not affected by mode of defoliation. Grazed tillers of both species had higher RGR throughout the season than ungrazed tillers, resulting in exact compensation for tissue lost to defoliation. However, A. gerardii tillers which had been grazed repeatedly the previous year (1988) had reduced relative growth rates, tiller biomass and tiller survival in 1989. This suggests that the short-term increase in aboveground relative growth rates after defoliation had a cost to future plant growth and tiller survival.In general, the two species had similar responses to defoliation but their responses were altered differentially by fire. The increase in RGR following defoliation of A. gerardii was relatively greater on unburned than burned prairie, and was influenced by topographic position. P. virgatum responses to defoliation were similar in burned and unburned prairie. Thus grazing, fire, and topographical position all interact to influence tiller growth dynamics and these two species respond differently to the fire and grazing interaction. In addition, fire may interact with grazing pattern to influence a plants' grazing history and thus its long-term performance.  相似文献   

13.
Jumpponen A 《Mycorrhiza》2011,21(6):453-464
Use of the reverse-transcribed small subunit of the ribosomal RNA (rRNA) was tested for exploring seasonal dynamics of fungal communities associated with the roots of the dominant tallgrass prairie grass, Andropogon gerardii. Ribosomal RNA was extracted, reverse-transcribed, and PCR-amplified in four sampling events in May, July, September, and November. Analyses of cloned PCR amplicons indicated that the A. gerardii rhizospheres host phylogenetically diverse fungal communities and that these communities are seasonally dynamic. Operational taxonomic units with Basic Local Alignment Search Tool affinities within the order Helotiales were dominant in the rhizosphere in May. These putative saprobes were largely replaced by arbuscular mycorrhizal fungi with likely affinities within Glomerales suggesting that the fungal communities are not only compositionally but also functionally dynamic. These data suggest replacement of functional guilds comprised of saprobic fungi by mutualistic fungi in the course of a growing season.  相似文献   

14.
Background and AimsThe persistence of a plant population under a specific local climatic regime requires phenotypic adaptation with underlying particular combinations of alleles at adaptive loci. The level of allele diversity at adaptive loci within a natural plant population conditions its potential to evolve, notably towards adaptation to a change in climate. Investigating the environmental factors that contribute to the maintenance of adaptive diversity in populations is thus worthwhile. Within-population allele diversity at adaptive loci can be partly driven by the mean climate at the population site but also by its temporal variability.MethodsThe effects of climate temporal mean and variability on within-population allele diversity at putatively adaptive quantitative trait loci (QTLs) were evaluated using 385 natural populations of Lolium perenne (perennial ryegrass) collected right across Europe. For seven adaptive traits related to reproductive phenology and vegetative potential growth seasonality, the average within-population allele diversity at major QTLs (HeA) was computed.Key ResultsSignificant relationships were found between HeA of these traits and the temporal mean and variability of the local climate. These relationships were consistent with functional ecology theory.ConclusionsResults indicated that temporal variability of local climate has likely led to fluctuating directional selection, which has contributed to the maintenance of allele diversity at adaptive loci and thus potential for further adaptation.  相似文献   

15.

Questions

Rapid climate change in northern latitudes is expected to influence plant functional traits of the whole community (community-level traits) through species compositional changes and/or trait plasticity, limiting our ability to anticipate climate warming impacts on northern plant communities. We explored differences in plant community composition and community-level traits within and among four boreal peatland sites and determined whether intra- or interspecific variation drives community-level traits.

Location

Boreal biome of western North America.

Methods

We collected plant community composition and functional trait data along dominant topoedaphic and/or hydrologic gradients at four peatland sites spanning the latitudinal extent of the boreal biome of western North America. We characterized variability in community composition and community-level traits of understorey vascular and moss species both within (local-scale) and among sites (regional-scale).

Results

Against expectations, community-level traits of vascular plant and moss species were generally consistent among sites. Furthermore, interspecific variation was more important in explaining community-level trait variation than intraspecific variation. Within-site variation in both community-level traits and community composition was greater than among-site variation, suggesting that local environmental gradients (canopy density, organic layer thickness, etc.) may be more influential in determining plant community processes than regional-scale gradients.

Conclusions

Given the importance of interspecific variation to within-site shifts in community-level traits and greater variation of community composition within than among sites, we conclude that climate-induced shifts in understorey community composition may not have a strong influence on community-level traits in boreal peatlands unless local-scale environmental gradients are substantially altered.  相似文献   

16.
Over the past decade, functional traits that influence plant performance and thus, population, community, and ecosystem biology have garnered increasing attention. Generally lacking, however, has been consideration of how ubiquitous arbuscular mycorrhizas influence plant allometric and stoichiometric functional traits. We assessed how plant dependence on and responsiveness to mycorrhizas influence plant functional traits of a warm‐season, C4 grass, Andropogon gerardii Vitman, and the contrasting, cool‐season, C3 grass, Elymus canadensis L. We grew both host species with and without inoculation with mycorrhizal fungi, across a broad gradient of soil phosphorus availabilities. Both host species were facultatively mycotrophic, able to grow without mycorrhizas at high soil phosphorus availability. A. gerardii was most dependent upon mycorrhizas and E. canadensis was weakly dependent, but highly responsive to mycorrhizas. The high dependence of A. gerardii on mycorrhizas resulted in higher tissue P and N concentrations of inoculated than noninoculated plants. When not inoculated, E. canadensis was able to take up both P and N in similar amounts to inoculated plants because of its weak dependence on mycorrhizas for nutrient uptake and its pronounced ability to change root‐to‐shoot ratios. Unlike other highly dependent species, A. gerardii had a high root‐to‐shoot ratio and was able to suppress colonization by mycorrhizal fungi at high soil fertilities. E. canadensis, however, was unable to suppress colonization and had a lower root‐to shoot ratio than A. gerardii. The mycorrhiza‐related functional traits of both host species likely influence their performance in nature: both species attained the maximum responsiveness from mycorrhizas at soil phosphorus availabilities similar to those of tallgrass prairies. Dependence upon mycorrhizas affects performance in the absence of mycorrhizas. Responsiveness to mycorrhizal fungi is also a function of the environment and can be influenced by both mycorrhizal fungus species and soil fertility.  相似文献   

17.
Phenotypic distribution within species can vary widely across environmental gradients but forecasts of species’ responses to environmental change often assume species respond homogenously across their ranges. We compared predictions from species and phenotype distribution models under future climate scenarios for Andropogon gerardii, a widely distributed, dominant grass found throughout the central United States. Phenotype data on aboveground biomass, height, leaf width, and chlorophyll content were obtained from 33 populations spanning a ~1000 km gradient that encompassed the majority of the species’ environmental range. Species and phenotype distribution models were trained using current climate conditions and projected to future climate scenarios. We used permutation procedures to infer the most important variable for each model. The species‐level response to climate was most sensitive to maximum temperature of the hottest month, but phenotypic variables were most sensitive to mean annual precipitation. The phenotype distribution models predict that A. gerardii could be largely functionally eliminated from where this species currently dominates, with biomass and height declining by up to ~60% and leaf width by ~20%. By the 2070s, the core area of highest suitability for A. gerardii is projected to shift up to ~700 km northeastward. Further, short‐statured phenotypes found in the present‐day short grass prairies on the western periphery of the species’ range will become favored in the current core ~800 km eastward of their current location. Combined, species and phenotype models predict this currently dominant prairie grass will decline in prevalence and stature. Thus, sourcing plant material for grassland restoration and forage should consider changes in the phenotype that will be favored under future climate conditions. Phenotype distribution models account for the role of intraspecific variation in determining responses to anticipated climate change and thereby complement predictions from species distributions models in guiding climate adaptation strategies.  相似文献   

18.
Intraspecific trait variation is caused by genetic and plastic responses to environment. This intraspecific diversity is captured in immense natural history collections, giving us a window into trait variation across continents and through centuries of environmental shifts. Here we tested if hypotheses based on life history and the leaf economics spectrum explain intraspecific trait changes across global spatiotemporal environmental gradients. We measured phenotypes on a 216‐year time series of Arabidopsis thaliana accessions from across its native range and applied spatially varying coefficient models to quantify region‐specific trends in trait coordination and trait responses to climate gradients. All traits exhibited significant change across space or through time. For example, δ15N decreased over time across much of the range and leaf C:N increased, consistent with predictions based on anthropogenic changes in land use and atmosphere. Plants were collected later in the growing season in more recent years in many regions, possibly because populations shifted toward more spring germination and summer flowering as opposed to fall germination and spring flowering. When climate variables were considered, collection dates were earlier in warmer years, while summer rainfall had opposing associations with collection date depending on regions. There was only a modest correlation among traits, indicating a lack of a single life history/physiology axis. Nevertheless, leaf C:N was low for summer‐ versus spring‐collected plants, consistent with a life history–physiology axis from slow‐growing winter annuals to fast‐growing spring/summer annuals. Regional heterogeneity in phenotype trends indicates complex responses to spatiotemporal environmental gradients potentially due to geographic genetic variation and climate interactions with other aspects of environment. Our study demonstrates how natural history collections can be used to broadly characterize trait responses to environment, revealing heterogeneity in response to anthropogenic change.  相似文献   

19.

Aims

Inter-specific comparisons of plant traits may vary depending on intra-specific variation. Here we examine the impact of root branching order and season on key functional root traits for grass species. We also compare root traits among co-existing grass species as a step towards defining root trait syndromes.

Methods

Monocultures of 13 grass species, grown under field conditions and subjected to intensive management, were used to record root trait values for coarse roots (1st order, >0.3?mm), fine roots (2nd and 3rd orders, <0.2?mm) and mixed root samples over three growing seasons.

Results

Branching order and species had a significant effect on root trait values, whereas season showed a marginal effect. The diameter of coarse roots was more variable than that of fine roots and, as expected, coarse roots had higher tissue density and lower specific root length values than fine roots. Principal component analysis run on eight root traits provided evidence for two trait syndromes related to resource acquisition and conservation strategies across grass species.

Conclusions

Our data show that root branching order is the main determinant of root trait variation among species. This highlights the necessity to include the proportion of fine vs coarse roots when measuring traits of mixed root samples.  相似文献   

20.
Intraspecific functional trait variability plays an important role in the response of plants to environmental changes. However, it is still unclear how the variability differs across three nested spatial scales (individual, plot, and site) and which determinants (climatic, soil, and ontogenetic variables) shape the trait variability. Along a latitudinal gradient in Korean pine broadleaved forest of northeast China, we quantified the extent of intraspecific variability of four functional traits in two dominant trees Pinus koraiensis and Fraxinus mandshurica at eight sites, including specific leaf area, leaf dry matter content (morphological traits) and leaf nitrogen content, leaf phosphorus content (physiological traits). Results showed a large trait variation within and between species (coefficient variation: 6.07–23.3%). The leaf physiological traits of F. mandshurica and morphological traits of P. koraiensis were more responsive at site scale, while the morphological traits of F. mandshurica and physiological traits of P. koraiensis were more responsive at individual scale. In addition, abiotic and biotic factors explaining functional trait variation differ markedly between the two tree species, with physiological trait of F. mandshurica being more associated with climate and soil, while traits variability in P. koraiensis was not affected by climate, soil, and ontogeny, except for leaf phosphorus content. Overall, we can predict that the physiological traits of broadleaved species tend to be more sensitive to environmental changes, while pines are more sensitive to competition. It is critical to determine which spatial scale and trait type should be taken into account in predictive models of vegetation dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号