首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AmfS, a class III lantipeptide serves as a morphogen in Streptomyces griseus. Here, we constructed a high production system of AmfS in S. griseus. We isolated S. griseus Grd1 strain defective in glucose repression of aerial mycelium formation and found it suitable for the overproduction of AmfS. Two expression vectors carrying the strong and constitutive ermE2 promoter were constructed using a multicopy number plasmid, pIJ702. The use of the Grd1 strain combined with the expression vectors enabled high production of AmfS by S. griseus into its culture broth. The expression system was also effective for the generation of abundant AmfS derived from Streptomyces avermitilis. In addition, site-directed mutagenesis revealed the amino acid residues essential for the morphogen activity of AmfS. These results indicate that the constructed system enables efficient production of class III lantipeptides by Streptomyces.  相似文献   

2.
Spore germination in streptomycetes was shown to be stimulated by exogenously added A-factor. Agar medium either containing or not containing A-factor was inoculated with spore suspensions of three strains differing in their ability to produce regulators of the A-factor group: Streptomyces griseus 773, which produces A-factor and two its lower homologs; S. coelicolor A3(2), which forms six Acl-factors (A-factor analogues); and S. avermitilis JCM5070, which fails to form regulators of this group. A count of the grown colonies showed that exogenous A-factor stimulated spore germination in strains that were themselves able to synthesize regulators of the A-factor group. In S. griseus 773, the number of germinated spores increased by 67% on average after the addition of A-factor to the medium in an amount of 10 g/ml. In strain S. coelicolor A3 (2), the number of germinated spores increased by 75% after the addition of 1 g/ml of A-factor. During germination of the S. avermitilis JCM5070 spores, no changes in the CFU number was observed after the addition of A-factor.  相似文献   

3.
Streptomyces species have a linear chromosome of approximately 8 Mb in size. Many strains also carry linear plasmids. Most of these linear elements contain terminal proteins covalently bound to the 5 ends of the DNA. Using a method for the visualisation of terminal DNA fragments in agarose gels, it was possible to see three fragments in S. rimosus and five fragments in S. avermitilis. The method was also used to clone the 298 bp BamHI fragment carrying the left end of plasmid SLP2. Analysis of the sequence showed that the end resembled other Streptomyces chromosome and plasmid ends, but there were eight palindromes (instead of seven) and a tandem duplication of a 14 bp sequence.  相似文献   

4.
The presence of -butyrolactone autoregulators and their receptor proteins were investigated in five representative strains of non-Streptomyces actinomycetes producing commercially important secondary metabolites. Ethyl acetate extracts of culture were assayed using wild-type S. virginiae for virginiae butanolide, S. lavendulae FRI-5 for IM-2, and S. griseus HH1 for A-factor. Actinoplanes teichomyceticus and Amycolatopsis mediterranei were shown to produce autoregulators. Corresponding autoregulator-binding activities were found in the crude cell-free lysates of these strains, using the binding assay with tritium-labeled autoregulator analogues as ligands, which suggests that non-Streptomyces actinomycetes might have autoregulator-dependent signaling cascades.  相似文献   

5.
6.
Macrophomina phaseoli, the cause of root rot of cotton, was inhibited byStreptomyces albus, S. griseus andS. noursei in agar culture.S. aureofaciens, S. flaveolus, S. rimosus, S. scabies andS. venezuelae were non-antagonistic. Only the antagonisticStreptomyces were found to reduceMacrophomina infection on cotton seedlings in soil without any deleterious effect on cotton growth.  相似文献   

7.
Examination was made on the morphological and cultural characteristics of the lutease-producing Streptomyces strain No. OP-4-5 isolated from a dust. The strain was identified as Streptomyces griseus. In addition, it was proved that 2 strains of Streptomyces griseus produce lutease in a test for lutease production in Streptomyces species. Streptomyces parvus and Streptomyces niveoruber also produce the same enzyme. However, production of the lutease by these 4 strains was less than that of produced by Streptomyces griseus strain No. OP-4-5 which was isolated by the authors.  相似文献   

8.
Summary In vitro phosphorylation reactions using extracts of Streptomyces griseus cells and -[32P]ATP revealed the presence of multiple phosphorylated proteins. Most of the phosphorylations were distinctly inhibited by staurosporine and K-252a which are known to be eukaryotic protein kinase inhibitors. The in vitro experiments also showed that phosphorylation was greatly enhanced by manganese and inhibition of phosphorylation by staurosporine and K-252a was partially circumvented by 10 mM manganese. A calcium-activated protein kinase(s) was little affected by these inhibitors. Herbimycin and radicicol, known to be tyrosine kinase inhibitors, completely inhibited the phosphorylation of one protein. Consistent with their in vitro effects the protein kinase inhibitors inhibited aerial mycelium formation and pigment production by S. griseus. All these data suggest that S. griseus possesses several protein kinases of eukaryotic type which are essential for morphogenesis and secondary metabolism. In vitro phosphorylation of some proteins in a staurosporine-producing Streptomyces sp. was also inhibited by staurosporine, K-252a and herbimycin, which suggests the presence of a mechanism for self-protection in this microorganism.  相似文献   

9.
The production of siderophores by four Streptomyces strains, S. ambofaciens, S. coelicolor, S. lividans, and S. viridosporus, was studied under iron-limited conditions. S. viridosporus produced two different siderophores: the linear desferrioxamine B and the cyclic desferrioxamine E. The latter was produced by the other strains and was the main siderophore of S. ambofaciens. The linear desferrioxamine G was the major form of S. coelicolor and S. lividans. The uptake rates of 55Fe-labeled ferrioxamines by S. lividans and S. viridosporus showed that the G form was incorporated less efficiently than the B and E forms.  相似文献   

10.
We present evidence for the coexistence and coevolution of antibiotic resistance and biosynthesis genes in soil bacteria. The distribution of the streptomycin (strA) and viomycin (vph) resistance genes was examined in Streptomyces isolates. strA and vph were found either within a biosynthetic gene cluster or independently. Streptomyces griseus strains possessing the streptomycin cluster formed part of a clonal complex. All S. griseus strains possessing solely strA belonged to two clades; both were closely related to the streptomycin producers. Other more distantly related S. griseus strains did not contain strA. S. griseus strains with only vph also formed two clades, but they were more distantly related to the producers and to one another. The expression of the strA gene was constitutive in a resistance‐only strain whereas streptomycin producers showed peak strA expression in late log phase that correlates with the switch on of streptomycin biosynthesis. While there is evidence that antibiotics have diverse roles in nature, our data clearly support the coevolution of resistance in the presence of antibiotic biosynthetic capability within closely related soil dwelling bacteria. This reinforces the view that, for some antibiotics at least, the primary role is one of antibiosis during competition in soil for resources.  相似文献   

11.
Summary A 7.2 kbBglII restriction fragment, which increases the production of several extracellular enzymes, including alkaline phosphatase, amylase, protease, lipase and -galactosidase, was cloned inStreptomyces lividans from the DNA ofS. griseus ATCC 10137. This gene (namedsaf) showed a positive gene dosage effect on production of extracellular enzymes. When thesaf gene was introduced into cells in high copy numbers it delayed the formation of pigments and spores inS. lividans and also retarded actinorhodin production inStreptomyces coelicolor. Thesaf gene hybridized with specific bands in the DNA of severalStreptomyces strains tested. A 1 kb fragment containing thesaf gene was sequenced and contains an open reading frame (ORF) of 306 nucleotides which encodes a polypeptide of Mr 10 500. This ORF is contained within a fragment of 432 by which retained activity inStreptomyces. A fragment with promoter activity is present upstream of thesaf reading frame. The predicted Saf polypeptide has a strong positive charge, and does not show a typical amino acid composition for a membrane protein, and contains a DNA-binding domain similar to those found in several regulatory proteins.  相似文献   

12.
The gene coding for the glutaryl 7-aminocephalosporanic acid (GL 7-ACA) acylase from Pseudomonas diminuta KAC-1 was cloned and expressed in Escherichia coli. The acylase gene was composed of 2160 base pairs and encoded a polypeptide of 720 amino acid residues. The E. coli BL21 carrying pET2, the plasmid construct for high expression of GL 7-ACA acylase gene, produced this enzyme at approx. 30% of the total proteins with 3.2 units activity mg protein–1. Growth at temperature below 31 °C and deletion of signal peptide increased the processing of precursor acylase to active enzyme in the recombinant E. coli cells.  相似文献   

13.
14.

Background  

The chromosome of Streptomyces has been shown to be unstable, frequently undergoing gross chromosomal rearrangements. However, the mechanisms underlying this phenomenon remain unclear, with previous studies focused on two chromosomal ends as targets for rearrangements. Here we investigated chromosomal instability of Streptomyces avermitilis, an important producer of avermectins, and characterized four gross chromosomal rearrangement events, including a major deletion in the central region. The present findings provide a valuable contribution to the mechanistic study of genetic instability in Streptomyces.  相似文献   

15.
Summary A heterologous phosphotriesterase (parathion hydrolase) containing the native Flavobacterium species signal sequence was previously shown to be secreted by Streptomyces lividans. Western blot analysis of the recombinant phosphotriesterase produced by S. lividans demonstrated only the mature form extracellular but both processed and unprocessed forms in cell-associated samples. To investigate the efficiency of secretion in Streptomyces, a construction was made that substituted a native Streptomyces -galactosidase signal sequence for the Flavobacterium signal sequence. This resulted in a higher proportion of hydrolase in the extracellular fluid and a lower proportion of parathion hydrolase remaining cell-associated. These results suggest that use of a native Streptomyces signal sequence may result in more efficient secretion of heterologous proteins.Correspondence to: M. K. Speedie  相似文献   

16.
Summary The cluster of streptomycin (SM) production genes in Streptomyces griseus was further analysed by determining the nucleotide sequence of genes strFGHIK. The products of the strF and/or strG genes may be involved in the formation of N-methyl-l-glucosamine, and that of the strH gene in the first glycosylation step condensing streptidine-6-phosphate and dihydrostreptose. The putative Strl protein showed strong similarity to the amino-terminal NAD(P)-binding sites of many dehydrogenases, especially of the glyceraldehyde-3-phosphate dehydrogenases. The product of the strK gene strongly resembles the alkaline phosphatase of Escherichia coli. It was shown that S. griseus excretes an enzyme that specifically cleaves both SM-6-phosphate and — more slowly — SM-3-phosphate during the production phase for SM. The identity of this enzyme with the StrK protein was demonstrated by expression of the strK gene in Streptomyces lividans 66. Further evidence for an involvement of these genes in SM biosynthesis came from the fact that genes homologous to them were found in the equivalent gene cluster of the hydroxy-SM producer Streptomyces glaucescens; these, however, were in part differently organized. The ca. 5 kb DNA segment downstream of strI in S. griseus which contains the strK gene was found to be located in inverse orientation between the homologues of the aphD and strR genes in S. glaucescens.  相似文献   

17.
The taxonomic positions of soil isolates known as Streptomyces groups A, B and C were clarified. Comparative 16S rDNA sequence studies indicated that representatives of all three taxa formed distinct phyletic lines within the Streptomyces tree though the group A strains were shown to be related to Streptomyces griseus and associated validly described species. The taxonomic integrity of all three groups was highlighted by DNA:DNA relatedness and ribotype data though the group A strains encompassed a higher degree of genetic variation than the group B and C strains. In light of these and earlier phenotypic data it is proposed that Streptomyces groups A, B and C be given species status as Streptomyces sanglieri sp. nov., Streptomyces aureus sp. nov. and Streptomyces laceyi sp. nov., respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
-Lactam acylases such as penicillin G acylases, penicillin V acylases and glutaryl 7-aminocephalosporanic acid acylases are used in the manufacture of 6-aminopenicillanic acid, 7-aminodesacetoxycephalosporanic acid and 7-aminocephalosporanic acid (7-ACA). Genetically-engineered strains producing 1050 U/g, 3200 U/g and 7000 to 10,000 U/I of penicillin G acylase, penicillin V acylase and glutaryl-7-ACA acylase, respectively, have been developed. The penicillin G acylase studied to date and the glutaryl-7-ACA acylase from Pseudomonas sp. share some common features: the active enzyme molecules are composed of two dissimilar subunits that are generated from respective precursor polypeptide; the proteolytic processing is a post-translational modification which is regulated by temperature; and the Ser residue at the N-terminus of the -sub-unit (Ser290; penicillin G acylase numbering) is implicated as the active site residue. Protein engineering, to generate penicillin G acylase molecules and their precursors with altered sequences, and the structure-function correlation of the engineered molecules are discussed.The authors are with Research and Development, Hindustan Antibiotics Ltd, Pimpri, Pune 411 018, India;  相似文献   

19.
Glutamate oxidase activity was studied in 1254Streptomyces strains isolated from the zonal soils of various regions of Russia and other countries. Seven strains proved to be producers of extracellular L-glutamate oxidase. The most active producer strain was identified, and the conditions of enzyme biosynthesis were optimized. A multistep mutagenesis-selection procedure allowed a genetically stable strain,Streptomyces sp. Z-11-6, to be obtained, whose glutamate oxidase activity was 40 times higher than that of the original natural isolate.  相似文献   

20.
The effect of the aerial mycelium-inducing compound, pamamycin-607, on antibiotic production by several Streptomyces spp. was examined. Exposure to 6.6 μM pamamycin-607 stimulated by 2.7 fold the puromycin production by Streptomyces alboniger NBRC 12738, in which pamamycin-607 had first been isolated, and restored aerial mycelium formation. Pamamycin-607 also stimulated the respective production of streptomycin by S. griseus NBRC 12875 and that of cinerubins A and B by S. tauricus JCM 4837 by approximately 1.5, 1.7 and 1.9 fold. The antibiotic produced by Streptomyces sp. 91-a was identified as virginiamycin M1, and its synthesis was enhanced 2.6 fold by pamamycin-607. These results demonstrate that pamamycin-607 not only restored or stimulated aerial mycelium formation, but also stimulated secondary metabolite production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号