首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Poly(hydroxybutyric acid) (PHB) was produced by a selectant of Azotobacter beijerinckii in media containing only organic nitrogen sources such as N substrates. The chosen compounds were casein peptone, yeast extract, casamino acids and urea, each combined with carbon substrates glucose or sucrose. The PHB was synthesized under growth-associated conditions. The concentrations amounted to more than 50% of cell dry mass on casein peptone/glucose as well as urea/glucose medium within 45 h fermentation time. Corresponding to these yields, productivities of about 0.8 g PHB l−1 h−1 were discovered. The highest values increased to 1.06 g PHB l−1 h−1 on casein peptone/glucose medium and 1.1 g PHB l−1 h−1 on yeast extract/glucose medium after a period of 20 h. It was found that oxygen limitation was essential for successful product formation, as demonstrated earlier. These data from basic research may support further investigations into the use of technical proteins from renewable sources as substrates for PHB production by a strain of A. beijerinckii. Received: 3 June 1997 / Received revision: 29 August 1997 / Accepted: 15 September 1997  相似文献   

2.
Production of lactic acid from glucose by immobilized cells of Lactococcus lactis IO-1 was investigated using cells that had been immobilized by either entrapment in beads of alginate or encapsulation in microcapsules of alginate membrane. The fermentation process was optimized in shake flasks using the Taguchi method and then further assessed in a production bioreactor. The bioreactor consisted of a packed bed of immobilized cells and its operation involved recycling of the broth through the bed. Both batch and continuous modes of operation of the reactor were investigated. Microencapsulation proved to be the better method of immobilization. For microencapsulated cells at immobilized cell concentration of 5.3 g l−1, the optimal production medium had the following initial concentrations of nutrients (g l−1): glucose 45, yeast extract 10, beef extract 10, peptone 7.5 and calcium chloride 10 at an initial pH of 6.85. Under these conditions, at 37 °C, the volumetric productivity of lactic acid in shake flasks was 1.8 g l−1 h−1. Use of a packed bed of encapsulated cells with recycle of the broth through the bed, increased the volumetric productivity to 4.5 g l−1 h−1. The packed bed could be used in repeated batch runs to produce lactic acid.  相似文献   

3.
Summary Response surface methodology was employed in optimizing the nutrient levels needed towards the optimal production of phosphatidylinositol-specific phospholipase C enzyme by Bacillus thuringiensis serovar. kurstaki. A 23 factorial central composite experimental design was used. The multiple regression equation, relating the enzyme activity to the nutrient medium, was used to find the optimum values of glucose, peptone and dipotassium hydrogen phosphate. The optimum values of these variables for maximal enzyme production were found to be: glucose, 6.5 g l−1; peptone, 5.38 g l−1 and dipotassium hydrogen phosphate, 6.36 g l−1 with the predicted enzyme activity of 0.96 U ml−1.  相似文献   

4.
Creosote was evaluated as an inexpensive carbon source for growing inocula of a polycyclic aromatic hydrocarbon (PAH)-degrading bacterial community (community five). Creosote was a poor growth substrate when provided as sole carbon source in a basal salts solution (BSM). Alternatively, peptone, yeast extract or glucose in BSM supported high growth rates, but community five could not subsequently degrade pyrene. A combination of creosote and yeast extract in BSM (CYEM) supported growth and maintained the pyrene-degrading capacity of community five. Optimum pyrene-degrading activity occurred when the inocula were grown in creosote and yeast extract concentrations of 2 ml L−1 and 1 g L−1 respectively: concentrations outside these values resulted in either low biomass yields or loss of PAH-degrading activity. CYEM-grown community five inocula degraded 250 mg L−1 of pyrene in BSM at a rate comparable to cultures inoculated with community five grown in BSM-pyrene. However, the CYEM-grown community showed a 40% lower rate of PAH degradation in a synthetic PAH mixture compared with pyrene-grown cells and there was an increase in the lag period before the onset of PAH degradation. This appears to reflect a weaker induction of PAH catabolism by CYEM compared to BSM-pyrene. Journal of Industrial Microbiology & Biotechnology (2000) 24, 277–284. Received 24 August 1999/ Accepted in revised form 20 January 2000  相似文献   

5.
The growth and toxin content of the dinoflagellate Alexandrium tamarense ATHK was markedly affected by culture methods. In early growth phase at lower cell density static or mild agitation methods were beneficial to growth, but continuous agitation or aeration, to some extent, had an adverse effect on cell growth. Static culture in 2 L Erlenmeyer flasks had the highest growth rate (0.38 d−1) but smaller cell size compared with other culture conditions. Cells grown under aerated conditions possessed low nitrogen and phosphorus cell yields, namely high N and P cell-quota. At day 18, cells grown in continuous agitated and 1 h aerated culture entered the late stationary phase and their cellular toxin contents were higher (0.67 and 0.54 pg cell−1) compared with cells grown by other culture methods (0.27–0.49 pg cell−1). The highest cell density and cellular toxin content were 17190 cells mL−1 and 1.26 pg cell−1 respectively in an airlift photobioreactor with two-step culture. The results indicate that A. tamarense could be grown successfully in airlift photobioreactor by a two-step culture method, which involved cultivating the cells statically for 4 days and then aerating the medium. This provides an efficient way to enhance cell and toxin yield of A. tamarense.  相似文献   

6.
Lactic acid production was investigated for batch and repeated batch cultures of Enterococcus faecalis RKY1, using wood hydrolyzate and corn steep liquor. When wood hydrolyzate (equivalent to 50 g l−1 glucose) supplemented with 15–60 g l−1 corn steep liquor was used as a raw material for fermentation, up to 48.6 g l−1 of lactic acid was produced with, volumetric productivities ranging between 0.8 and 1.4 g l−1 h−1. When a medium containing wood hydrolyzate and 15 g l−1 corn steep liquor was supplemented with 1.5 g l−1 yeast extract, we observed 1.9-fold and 1.6-fold increases in lactic acid productivity and cell growth, respectively. In this case, the nitrogen source cost for producing 1 kg lactic acid can be reduced to 23% of that for fermentation from wood hydrolyzate using 15 g l−1 yeast extract as a single nitrogen source. In addition, lactic acid productivity could be maximized by conducting a cell-recycle repeated batch culture of E. faecalis RKY1. The maximum productivity for this process was determined to be 4.0 g l−1 h−1.  相似文献   

7.
Kinetics of kojic acid fermentation by Aspergillus flavus Link 44-1 using various sources of carbon [glucose, xylose, sucrose, starch, maltose, lactose or fructose] and nitrogen [NH4Cl, (NH4)2S2O8, (NH4)2NO3, yeast extract or peptone] were analyzed using models based on logistic and Luedeking–Piret equations. The highest kojic acid production (39.90 g l−1) in submerged batch fermentation was obtained when 100 g l−1 glucose was used as a carbon source. Organic nitrogen sources such as peptone and yeast extract were favorable for kojic acid production as compared to inorganic nitrogen sources. Yeast extract at 5 g l−1 was optimal. The optimal carbon to nitrogen (C/N) ratio for kojic acid fermentation was 93.3. In a resuspended cell system, the rate of glucose conversion to kojic acid by cell-bound enzymes increased with increasing glucose concentration up to 70 g l−1, suggesting that the reaction followed the Michaelis–Menten enzyme kinetic model. The value of K m and V max for the reaction was 18.47 g l−1 glucose and 0.154 g l−1 h−1, respectively. Journal of Industrial Microbiology & Biotechnology (2000) 25, 20–24. Received 13 October 1999/ Accepted in revised form 02 April 2000  相似文献   

8.
The microbial population of geothermally heated sediments in a shallow bay of Vulcano Island (Italy) was characterized with respect to metabolic activities and the putatively catalyzing hyperthermophiles. Site-specific anoxic culturing media, most of which were amended with combinations of electron donors (glucose or carboxylic acids) and acceptors (sulfate), were used for selective enrichment of metabolically defined subpopulations. The mostly archaeal chemoautotrophs produced formate at rates of 3.25 and 0.46 fmol cell−1 day−1 with and without sulfate, respectively. The glucose fermenting heterotrophs produced acetate (18 fmol cell−1 day−1) and lactate (2.6 fmol cell−1 day−1) and were identified as predominantly Thermus sp. and coccoid archaea. These archaeal cells also metabolized lactate (5.6 fmol cell−1 day−1), but neither formate nor acetate. The heterotrophic culture enriched on formate/acetate/propionate/sulfate utilized mainly formate (27 fmol cell−1 day−1) and lactate (89–195 fmol cell−1 day−1), and consumed sulfate (38–68 fmol cell−1 day−1). These formate or lactate consuming sulfate reducers were dominated by Archaeoglobales (7% in situ) and unidentified Archaea. The in situ benthic community comprised 15% Crenarchaeota, a significant group only in the autotrophic cultures, and 3% Thermus sp., the putatively predominant group involved in fermentative metabolism. The role of Thermoccales (4% in situ) remained undisclosed in our experiments. This first comprehensive data set established plausible links between several groups of hyperthermophiles in shallow marine hydrothermal systems, their metabolic function within the benthic microbial community, and biogeochemical turnover rates.  相似文献   

9.
One of the shortcomings in studies of bivalve grazing has been the difficulty of culturing and making available sufficient quantities of algae. This was overcome using a 2501 capacity vat incubator with immersion core illumination (VIICI) in connection with experiments involving the diatom Nitzschia pungens f. multiseries, which produces domoic acid, the cause of amnesic shellfish poisoning. Nitzschia cultures grown in this incubator yielded maximum cell concentrations of 158–166 × 106 cells 1−1, a peak intracellular domoic acid level of 2.0 pg cell−1 and a maximum division rate of 0.3 d −1. The VIICI design is ideally suited for laboratory mass culture of phytoplankton, and has potential for wide application in phycotoxin, toxicological and environmental research, as well as for aquaculture.  相似文献   

10.
Syringin production and related secondary metabolism enzyme activities in suspension cultures of Saussurea medusa treated with different elicitors (yeast extract, chitosan and Ag+) were investigated. All elicitors enhanced syringin production, and the optimal feeding protocol was the combined addition of 1.5% (v/v) yeast extract, 0.2 g l−1 chitosan and 75 μM Ag+ at the 15th day of the cell culture. The highest syringin production reached 741.9 mg l−1, which was 3.6−fold that of the control. The glucose−6-phosphate dehydrogenase (EC 1.1.1.49), phenylalanine ammonia lyase (EC 4.3.1.5) and peroxidase (EC 1.11.1.7) activities increased significantly after elicitor treatment. The maximum enzyme activities were obtained when the treatment time was 6 h.  相似文献   

11.
A newly isolated sucrose-tolerant, lactic acid bacterium, Lactobacillus sp. strain FCP2, was grown on sugar-cane juice (125 g sucrose l−1, 8 g glucose l−1 and 6 g fructose l−1) for 5 days and produced 104 g lactic acid l−1 with 90% yield. A higher yield (96%) and productivity (2.8 g l−1 h−1) were obtained when strain FCP2 was cultured on 3% w/v (25 g sucrose l−1, 2 g glucose l−1 and 1 g fructose l−1) sugar-cane juice for 10 h. Various cheap nitrogen sources such as silk worm larvae, beer yeast autolysate and shrimp wastes were also used as a substitute to yeast extract.  相似文献   

12.
Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h−1, while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h−1. The adapted strain could ferment 20 g l−1 of xylose to ethanol with a yield of 0.37 g g−1 and production rate of 0.026 g l−1 h−1. Raising the fermentation temperature from 30°C to 35°C resulted in a substantial increase in the ethanol yield (0.43 g g−1) and production rate (0.07 g l−1 h−1) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g−1.  相似文献   

13.
Secretion of the expressed heterologous proteins can reduce the stress to the host cells and is beneficial to their recovery and purification. In this study, fed-batch cultures ofEscherichia coliYK537 (pAET-8) were conducted in a 5-L fermentor for the secretory production of human epidermal growth factor (hEGF) whose expression, was under the control of alkaline phosphatase promoter. The effects of feeding of glucose and complex nitrogen sources on hEGF production were investigated. When the fed-batch culture was conducted in a chemically defined medium, the cell density was 9.68 g/L and the secreted hEGF was 44.7 mg/L in a period of 60 h. When a complex medium was used and glucose was added in pH-stat mode, the secreted hEGF was improved to 345 mg/L. When the culture was fed with glucose at a constant specific rate of 0.25 gg−1h−1, hEGF reached 514 mg/L. The effects of adding a solution containing yeast extract and tryptone were further studied. Different rate of the nitrogen source feeding resulted in different levels of phosphate and acetic acid formation, thus affected hEGF expression. At the optimal feeding rate, hEGF production achieved 686 mg/L.  相似文献   

14.
A potential industrial substrate (liquefied corn starch; LCS) has been employed for successful acetone butanol ethanol (ABE) production. Fermentation of LCS (60 g l−1) in a batch process resulted in the production of 18.4 g l−1 ABE, comparable to glucose: yeast extract based medium (control experiment, 18.6 g l−1 ABE). A batch fermentation of LCS integrated with product recovery resulted in 92% utilization of sugars present in the feed. When ABE was recovered by gas stripping (to relieve inhibition) from the fed-batch reactor fed with saccharified liquefied cornstarch (SLCS), 81.3 g l−1 ABE was produced compared to 18.6 g l−1 (control). In this integrated system, 225.8 g l−1 SLCS sugar (487 % of control) was consumed. In the absence of product removal, it is not possible for C. beijerinckii BA101 to utilize more than 46 g l−1 glucose. A combination of fermentation of this novel substrate (LCS) to butanol together with product recovery by gas stripping may economically benefit this fermentation. Mention of trade names of commercial products in this article/publication is solely for the purpose of providing scientific information and does not imply recommendation or endorsement by the United States Department of Agriculture.  相似文献   

15.
A balanced supplementation method was applied to develop a serum and protein- free medium supporting hybridoma cell batch culture. The aim was to improve systematically the initial formulation of the medium to prevent limitations due to unbalanced concentrations of vitamins and amino acids. In a first step, supplementation of the basal formulation with 13 amino acids, led to an increase of the specific IgA production rate from 0.60 to 1.07 pg cell−1 h−1. The specific growth rate remained unchanged, but the supplementation enabled maintenance of high cell viability during the stationary phase of batch cultures for some 70 h. Since IgA production was not growth- related, this resulted in an approximately4-fold increase in the final IgA concentration, from 26.6 to 100.2 mgl−1. In a second step, the liposoluble vitamins E and K3 were added to the medium formulation. Although this induced a slightly higher maximal cell concentration, it was followed by a sharp decline phase with the specific IgA production rate falling to 0.47 pg cell−1 h−1. However, by applying a second cycle of balanced supplementation with amino acids this decline phase could be reduced and a high cell viability maintained for over 300 h of culture. In this vitamin- and amino acid- supplemented medium, the specific IgA production rate reached a value of 1.10 pg cell−1h−1 with a final IgA concentration of 129.8 mgl−1. The latter represents an increase of approximately5-fold compared to the non- supplemented basal medium. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
In this research, ethanol production from carob pod extract (extract) using Zymomonas mobilis with medium optimized by Plackett–Burman (P–B) and response surface methodologies (RSM) was studied. Z. mobilis was recognized as useful for ethanol production from carob pod extract. The effects of initial concentrations of sugar, peptone, and yeast extract as well as agitation rate (rpm), pH, and culture time in nonhydrolyzed carob pod extract were investigated. Significantly affecting variables (P = 0.05) in the model obtained from RSM studies were: weights of bacterial inoculum, initial sugar, peptone, and yeast extract. Acid hydrolysis was useful to complete conversion of sugars to glucose and fructose. Nonhydrolyzed extract showed higher ethanol yield and residual sugar compared with hydrolyzed extract. Ethanol produced (g g−1 initial sugar, as the response) was not significantly different (P = 0.05) when Z. mobilis performance was compared in hydrolyzed and nonhydrolyzed extract. The maximum ethanol of 0.34 ± 0.02 g g−1 initial sugar was obtained at 30°C, initial pH 5.2, and 80 rpm, using concentrations (g per 50 mL culture media) of: inoculum bacterial dry weight, 0.017; initial sugar, 5.78; peptone, 0.43; yeast extract, 0.43; and culture time of 36 h.  相似文献   

17.
Cell cultures of Cayratia trifolia (Vitaceae), a tropical lianas, were maintained in Murashige and Skoog’s medium containing 0.25 mg l−1 NAA, 0.2 mg l−1 kinetin and casein hydrolysate 250 mg l−1. Cell suspension cultures of C. trifolia accumulate stilbenes (piceid, resveratrol, viniferin, ampelopsin), which on elicitation by any of 500 μM salicylic acid, 100 μM methyl jasmonate, 500 μM ethrel and 500 mg l−1 yeast extract, added on the 7th day, were enhanced by 3- to 6-fold (5–11 mg l−1) by the 15th day.  相似文献   

18.
An alkalophilic Streptomyces sp. RCK-SC, which produced a thermostable alkaline pectinase, was isolated from soil samples. Pectinase production at 45 °C in shaking conditions (200 rev min−1) was optimal (76,000 IU l−1) when a combination of glucose (0.25% w/v) and citrus pectin (0.25% w/v) was added along with urea (0.25% w/v) in the basal medium devoid of yeast extract and peptone. All the tested amino acids and vitamins greatly induced pectinase production and increased the specific productivity of pectinase up to 550%. In an immobilized cell system containing polyurethane foam (PUF), the pectinase production was enhanced by 32% (101,000 IU l−1) compared to shake flask cultures. In solid-state cultivation (SSC) conditions, using wheat bran as solid substrate, pectinase yield of 4857 IU g−1 dry substrate was obtained at substrate-to-moisture ratio of 1:5 after 72 h of incubation. The partially purified pectinase was optimally active at 60 °C and retained 80% of its activity at 50 °C after 2 h of incubation. The half life of pectinase was 3 h at 70 °C. Pectinase was stable at alkaline pH ranging from 6.0 to 9.0 for more than 8 h at room temperature retaining more than 50% of its activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The green microalga Chlorella zofingiensis can produce the ketocarotenoid astaxanthin under heterotrophic culture conditions. Here we report the growth-associated biosynthesis of astaxanthin in this biotechnologically important alga. With glucose as sole carbon and energy source, C. zofinginesis grew fast in the dark with rapid exhaustion of nitrogen and carbon sources from media, leading to a high specific growth rate (0.034 h−1). Cultures started at a cell concentration of about 3.4 × 109 cells l−1 reached, after 6 days, standing biomass values of 1.6 × 1011 cells or 8.5 g dry weight l−1. Surprisingly, the biosynthesis of astaxanthin was found to start at early exponential phase, independent of cessation of cell division. A general trend was observed that the culture conditions benefiting cell growth also benefited astaxanthin accumulation, indicating that astaxanthin was a growth-associated product in this alga. The maximum cell dry biomass and astaxanthin yield were 11.75 g l−1 and 11.14 mg l−1 (about 1 mg g−1), simultaneously obtained in the fed-batch culture with a combined glucose–nitrate mixture addition, which were the highest ever reported in dark-heterotrophic algal cultures. The possible reasons why dark-heterotrophic C. zofingiensis could produce astaxanthin during the course of cell growth were discussed.  相似文献   

20.
Protoplasts were isolated from cell suspensions derived from cotyledon and hypocotyl Gentiana kurroo (Royle). Cell walls were digested with an enzyme cocktail containing cellulase, macerozyme, driselase, hemicellulase and pectolyase in CPW solution. Protoplast viability ranged from 88 to 96%. Three techniques of culture and six media were evaluated in terms of their efficiency in producing viable cultures and regenerating whole plants. With liquid culture, cell division occurred in only a low number of the protoplasts isolated, and no plant regeneration was successful. Cell division occurred within 2 or 3 days in case of agarose solidified media. After 10 days of culture, the number of dividing cells was the highest with modified MS medium in which NH4NO3 was replaced with 3.0 g l−1 glutamine. The best results were obtained with agarose bead cultures: plating efficiency was 68.7% and 58.1% for protoplasts isolated from cotyledon and hypocotyl derived suspensions, respectively. The results were achieved with using medium containing 0.5 mg l−1 2,4-D + 1.0 mg l−1 kinetin or 2.0 mg l−1 BAP + 1.0 mg l−1 dicamba + 0.1 mg l−1 NAA + 80 mg l−1 adenine sulfate. Protocalluses transferred on the following composition of plant growth regulators: 0.5 mg l−1 2,4-D + 1.0 mg l−1 kinetin or 1.0 mg l−1 kinetin + 0.5 mg l−1 GA3 + 80.0 mg l−1 adenine sulfate developed in embryogenic cultures. However, the best embryo production occurred with the first one. Later embryos were transferred to half-strength MS mineral salts to promote plants formation. Flow cytometry studies revealed increased amounts of DNA in about one third of the regenerants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号