首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined freshly collected samples of the colonial planktonic cyanobacterium Trichodesmium thiebautii to determine the pathways of recently fixed N within and among trichomes. High concentrations of glutamate and glutamine were found in colonies. Glutamate and glutamine uptake rates and concentrations in cells were low in the early morning and increased in the late morning to reach maxima near midday; then uptake and concentration again fell to low values. This pattern followed that previously observed for T. thiebautii nitrogenase activity. Our results suggest that recently fixed nitrogen is incorporated into glutamine in the N2-fixing trichomes and may be passed as glutamate to non-N2-fixing trichomes. The high transport rates and concentrations of glutamate may explain the previously observed absence of appreciable uptake of NH4+, NO3-, or urea by Trichodesmium spp. Immunolocalization, Western blots (immunoblots), and enzymatic assays indicated that glutamine synthetase (GS) was present in all cells during both day and night. GS appeared to be primarily contained in cells of T. thiebautii rather than in associated bacteria or cyanobacteria. Double immunolabeling showed that cells with nitrogenase (Fe protein) contained levels of the GS protein that were twofold higher than those in cells with little or no nitrogenase. GS activity and the uptake of glutamine and glutamate dramatically decreased in the presence of the GS inhibitor methionine sulfoximine. Since no glutamate dehydrogenase activity was detected in this species, GS appears to be the primary enzyme responsible for NH3 incorporation.  相似文献   

2.
We examined diel trends in internal pools and net efflux of free amino acids in colonies of the nonheterocystous, diazotrophic cyanobacterium Trichodesmium thiebautii, freshly collected from waters of the Caribbean and the Bahamas. The kinetics of glutamate uptake by whole colonies were also examined. While intracolonial pools of most free amino acids were relatively constant through the day, pools of glutamate and glutamine varied over the diel cycle, with maxima during the early afternoon. This paralleled the daily cycle of nitrogenase activity. We also observed a large net release of these two amino acids from intact colonies. Glutamate release was typically 100 pmol of N colony-1 h-1. This is about one-fourth the concurrent rate of N2 fixation during the day. However, while nitrogenase activity only occurs during the day, net release of glutamate and glutamine persisted into the night and may therefore account for a greater loss of recently fixed N on a daily basis. This release may be an important route of new N input into tropical, oligotrophic waters. Whole colonies also displayed saturation kinetics with respect to glutamate uptake. The Ks for whole colonies varied from 1.6 to 3.2 μM, or about 100-fold greater than typical ambient concentrations. Thus, uptake systems appear to be adapted to the higher concentrations of glutamate found within the intracellular spaces of the colonies. This suggests that glutamate may be a vehicle for N exchange among trichomes in the colony.  相似文献   

3.
NH+4 excretion was undetectable in N2-fixing cultures of Rhodospirillum rubrum (S-1) and nitrogenase activity in these cultures was repressed by the addition of 10 mM NH+4 to the medium. The glutamate analog, L-methionine-DL-sulfoximine (MSX), derepressed N2 fixation even in the presence of 10 mM extracellular NH+4. When 10 mg MSX/ml was added to cultures just prior to nitrogenase induction they developed nitrogenase activity (20% of the control activities) and excreted most of their fixed N2 as NH+4. Nitrogenase activities and NH+4 production from fixed N2 were increased considerably when a combined nitrogen source, NH+4 (greater than 40 mumoles NH+4/mg cell protein in 6 days) or L-glutamate (greater than 60 mumoles NH+4/ mg cell protein in 6 days) was added to the cultures together with MSX. Biochemical analysis revealed that R. rubrum produced glutamine synthetase and glutamate synthase (NADP-dependent) but no detectable NADP-dependent glutamate dehydrogenase. The specific activity of glutamine synthetase was observed to be maximal when nitrogenase activity was also maximal. Nitrogenase and glutamine synthetase activities were repressed by NH+4 as well as by glutamate. The results demonstrate that utilization of solar energy to photoproduce large quantities of NH+4 from N2 is possible with photosynthetic bacteria by interfering with their regulatory control of N2 fixation.  相似文献   

4.
Frankia spp. are filamentous actinomycetes that fix N2 in culture and in actinorhizal root nodules. In combined nitrogen-depleted aerobic environments, nitrogenase is restricted to thick-walled spherical structures, Frankia vesicles, that are formed on short stalks along the vegetative hyphae. The activities of the NH4(+)-assimilating enzymes (glutamine synthetase [GS], glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase) were determined in cells grown on NH4+ and N2 and in vesicles and hyphae from N2-fixing cultures separated on sucrose gradients. The two frankial GSs, GSI and GSII, were present in vesicles at levels similar to those detected in vegetative hyphae from N2-fixing cultures as shown by enzyme assay and two-dimensional polyacrylamide gel electrophoresis. Glutamate synthase, glutamate dehydrogenase, and alanine dehydrogenase activities were restricted to the vegetative hyphae. Vesicles apparently lack a complete pathway for assimilating ammonia beyond the glutamine stage.  相似文献   

5.
6.
The addition of exogenous L-methionine-DL-sulphoximine (MSO) to N2-fixing cultures of the blue-green alga Anabaena cylindrica results in over half of the newly fixed NH3 being released into the medium. MSO also inhibits glutamine synthetase (GS) activity, has negligible effect on alanine dehydrogenase activity, and glutamate dehydrogenase activity under N2-fixing conditions is negligible. In the presence of MSO, intracellular pools of glutamate and glutamine decrease, those of aspartate and alanine + glycine show little change, and the NH3 pool increases. MSO alleviates the inhibitory effect of exogenous NH4+ on nitrogenase synthesis and heterocyst production. The results suggest that in N2-fixing cultures of A. cylindrica the primary NH3 assimilating pathway involves GS, and probably glutamate synthase (GOGAT), and that the repressor of nitrogenase synthesis and heterocyst production is not NH4+ but is GS, GOGAT, or a product of their reactions.  相似文献   

7.
Inhibition of nitrogenase activity by NH+4 in Rhodospirillum rubrum.   总被引:20,自引:15,他引:5       下载免费PDF全文
Nitrogenase activities and the patterns of in vivo inhibition of nitrogenase by NH+4 were compared in Rhodospirillum rubrum grown under several conditions of nitrogen availability. In cells grown on N2 or glutamate plus N2, nitrogenase activity was relatively low and was totally inhibited by added NH+4 in 15 to 20 min. In contrast, cells grown on glutamate alone displayed higher nitrogenase activity, and NH+4 had very little effect. Cells grown on limiting amounts of NH+4 had lower nitrogenase activity, but NH+4 produced little inhibitory effect. Uptake of NH+4 could be demonstrated under all of these conditions, and this uptake was blocked by DL-methionine-dl-sulfoximine. The data indicated that cells not recently exposed to NH+4 had no mechanism for rapidly turning off nitrogenase activity in response to sudden additions of NH+4. In contrast, cells grown in the presence of N2, which form NH+4 internally, inhibited nitrogenase activity relatively quickly in response to added NH+4.  相似文献   

8.
The effect of oxygen, ammonium ion, and amino acids on nitrogenase activity in the root-associated N2-fixing bacterium Herbaspirillum seropedicae was investigated in comparison with Azospirillum spp. and Rhodospirillum rubrum. H. seropedicae is microaerophilic, and its optimal dissolved oxygen level is from 0.04 to 0.2 kPa for dinitrogen fixation but higher when it is supplied with fixed nitrogen. No nitrogenase activity was detected when the dissolved O2 level corresponded to 4.0 kPa. Ammonium, a product of the nitrogenase reaction, reversibly inhibited nitrogenase activity when added to derepressed cell cultures. However, the inhibition of nitrogenase activity was only partial even with concentrations of ammonium chloride as high as 20 mM. Amides such as glutamine and asparagine partially inhibited nitrogenase activity, but glutamate did not. Nitrogenase in crude extracts prepared from ammonium-inhibited cells showed activity as high as in extracts from N2-fixing cells. The pattern of the dinitrogenase and the dinitrogenase reductase revealed by the immunoblotting technique did not change upon ammonium chloride treatment of cells in vivo. No homologous sequences were detected with the draT-draG probe from Azospirillum lipoferum. There is no clear evidence that ADP-ribosylation of the dinitrogenase reductase is involved in the ammonium inhibition of H. seropedicae. The uncoupler carbonyl cyanide m-chlorophenylhydrazone decreased the intracellular ATP concentration and inhibited the nitrogenase activity of whole cells. The ATP pool was not significantly disturbed when cultures were treated with ammonium in vivo. Possible mechanisms for inhibition by ammonium of whole-cell nitrogenase activity in H. seropedicae are discussed.  相似文献   

9.
Methylammonium/ammonium ion, glutamine, glutamate, arginine and proline uptake, and their assimilation as nitrogen sources, was studied in Nostoc muscorum and its glutamine synthetase-deficient mutant. Glutamine served as nitrogen source independent of glutamine synthetase activity. Glutamate was not metabolised as a nitrogen source but still inhibited nitrogenase activity and diazotrophic growth. Glutamine synthetase activity was essential for the assimilation of N2, ammonia, arginine and proline as nitrogen sources but not for the control of their transport, heterocyst formation, and production of ammonia or aminoacid dependent repressor signal for N2-fixing heterocysts. These results also suggest that glutamine synthetase serves as the sole route of ammonia assimilation and glutamine synthesis, and ammonia per se as the repressor signal for N2-fixing heterocysts and methylammonium (ammonium) transport.  相似文献   

10.
Both the changes in the activities of nitrogenase, glutamine synthetase and glutamate dehydrogenase and in the extracellular and intracellular NH4+ concentrations were investigated during the transition from an NH4+ free medium to one containing NH4+ ions for a continuous culture of Azotobacter vinelandii. If added in amounts causing 80-100% repression of nitrogenase, ammonium acetate, lactate and phosphate are absorbed completely, whereas chloride, sulfate and citrate are only taken up to about 80%. After about 1-2 hrs the NH4+ remaining in the medium is absorbed too, indicating the induction or activation of a new NH4+ transport system. One of the new permeases allows the uptake of citrate in the presence of sucrose. Addition of inorganic NH4+ level leads to a reversible rise in the glutamine synthetase activity which is not prevented by chloramphenicol, and to a reversible decrease in nitrogenase activity. During these measurements glutamate dehydrogenase activity remains close to zero. The intracellular NH4+ level of about 0.6 mM does not change when extracellular NH4+ is taken up and repression of nitrogenase starts.  相似文献   

11.
Selenomonas ruminantium was found to possess two pathways for NH4+ assimilation that resulted in net glutamate synthesis. One pathway fixed NH4+ through the action of an NADPH-linked glutamate dehydrogenase (GDH). Maximal GDH activity required KCl (about 0.48 M), but a variety of monovalent salts could replace KCl. Complete substrate saturation of the enzyme by NH4+ did not occur, and apparent Km values of 6.7 and 23 mM were estimated. Also, an NADH-linked GDH activity was observed but was not stimulated by KCl. Cells grown in media containing non-growth-rate-limiting concentrations of NH4+ had the highest levels of GDH activity. The second pathway fixed NH4+ into the amide of glutamine by an ATP-dependent glutamine synthetase (GS). The GS did not display gamma-glutamyl transferase activity, and no evidence for an adenylylation/deadenylylation control mechanism was detected. GS activity was highest in cells grown under nitrogen limitation. Net glutamate synthesis from glutamine was effected by glutamate synthase activity (GOGAT). The GOGAT activity was reductant dependent, and maximal activity occurred with dithionite-reduced methyl viologen as the source of electrons, although NADPH or NADH could partially replace this artificial donor system. Flavin adenine dinucleotide, flavin mononucleotide, or ferredoxin could not replace methyl viologen. GOGAT activity was maximal in cells grown with NH4+ as sole nitrogen source and decreased in media containing Casamino Acids.  相似文献   

12.
Colonial aggregation among nonheterocystous filaments of the planktonic marine cyanobacterium Trichodesmium is known to enhance N(2) fixation, mediated by the O(2)-sensitive enzyme complex nitrogenase. Expression of nitrogenase appears linked to the formation of O(2)-depleted microzones within aggregated bacterium-associated colonies. While this implies a mechanism by which nonheterocystous N(2) fixation can take place in an oxygenated water column, both the location and regulation of the N(2)-fixing apparatus remain unknown. We used an antinitrogenase polyclonal antibody together with postsection immunocolloidal gold staining and transmission electron microscopy to show that (i) virtually all Trichodesmium cells within a colony possessed nitrogenase, (ii) nitrogenase showed no clear intracellular localization, and (iii) certain associated bacteria contained nitrogenase. Our findings emphasize the critical role coloniality plays in regulating nitrogenase expression in nature. We interpret the potential for a large share of Trichodesmium cells to fix N(2) as an opportunistic response to the dynamic nature of the sea state; during quiescent conditions, aggregation and consequent expression of nitrogenase can proceed rapidly.  相似文献   

13.
Mutants of the cyanobacterium Anabaena variabilis that were capable of increased uptake of glutamine, as compared with that in the parental strains, were isolated. Growth of these mutants and their parental strains was measured in media containing N2, ammonia, or glutamine as a source of nitrogen. All strains grew well with any one of these sources of fixed nitrogen. Much of the glutamine taken up by the cells was converted to glutamate. The concentrations of glutamine, glutamate, arginine, ornithine, and citrulline in free amino acid pools in glutamine-grown cells were high compared with the concentrations of these amino acids in ammonia-grown or N2-grown cells. All strains capable of heterocyst differentiation, including a strain which produced nonfunctional heterocysts, grew and formed heterocysts in the presence of glutamine. However, nitrogenase activity was repressed in glutamine-grown cells. Glutamine may not be the molecule directly responsible for repression of the differentiation of heterocysts.  相似文献   

14.
Gut  A.  Blatter  A.  Fahrni  M.  Lehmann  B.E.  Neftel  A.  Staffelbach  T. 《Plant and Soil》1998,198(1):79-88
The metabolic activities of root nodules formed by Rhizobium tropici UM1899 were measured to test for the effects of geographical origin of the host bean (Phaseolus vulgaris L.) plant. Under increasing levels of N (0 to 24 mM of NH4NO3), the optimum condition for nitrogen fixation based on nitrogenase activity and allantoin concentration, was obtained between 2 and 4 mM N. Cultivars, including wild accessions from the two major domestication centers in America (Middle America and Andes), were then grown under aseptic conditions with 2 mM NH4NO3 and the rhizobial inoculant. Plant nodulins [leghaemoglobin (Lb), phosphoenolypyruvate carboxylase (PEPC) and glutamine synthetase (GS)], bacterial nitrogenase (NIF) activities as well as allantoin (ALA) concentration in the xylem sap, were assayed in flowering plants. Lb, PEPC, NIF activities and ALA concentrations were strongly affected by cultivar and by the center of origin. GS activity did not vary significantly with either cultivar or center of origin. LB, NIF and ALA were directly related to plant growth and offer opportunities to select for efficient N2-fixing symbioses. There were slight increases in nodulin activities of the domesticated cultivars, but the overall low variability within this material relative to landraces suggests that diversity for biological nitrogen fixation was reduced by domestication.  相似文献   

15.
Nitrogenase reductase (Fe-protein) was detected in the marine planktonic cyanobacterium Trichodesmium. The molecular weight was about 38 kD, as shown by western blotting using anti -Rhodospirillum rubrum nitrogenase reductase antiserum. The enzyme was confined to a limited number (ca. 10–40%) of randomly distributed trichomes in the Trichodesmium colonies, as shown by immunogold localization and transmission electron microscopy. Associated microorganisms had little or no nitrogenase. Nitrogenase showed a diel cycle in localization: present throughout the cytoplasm of cells in N2-fixing (daytime) colonies but at the periphery of non-N2-fixing (nighttime) colonies. This structural arrangement of N2-fixing trichomes and nitrogenase is novel and different from the previously held paradigm for this and other diazotrophic cyanobacteria.  相似文献   

16.
The specific activities of glutamine synthetase (GS) and glutamate synthase (GOGAT) were 4.2- and 2.2-fold higher, respectively, in cells of Azospirillum brasilense grown with N2 than with 43 mM NH4+ as the source of nitrogen. Conversely, the specific activity of glutamate dehydrogenase (GDH) was 2.7-fold higher in 43 mM NH4+-grown cells than in N2-grown cells. These results indicate that NH4+ could be assimilated and that glutamate could be formed by either the GS-GOGAT or GDH pathway or both, depending on the cellular concentration of NH4+. The routes of in vivo synthesis of glutamate were identified by using 13N as a metabolic tracer. The products of assimilation of 13NH4+ were, in order of decreasing radioactivity, glutamine, glutamate, and alanine. The formation of [13N]glutamine and [13N]glutamate by NH4+-grown cells was inhibited in the additional presence of methionine sulfoximine (an inhibitor of GS) and diazooxonorleucine (an inhibitor of GOGAT). Incorporation of 13N into glutamine, glutamate, and alanine decreased in parallel in the presence of carrier NH4+. These results imply that the GS-GOGAT pathway is the primary route of NH4+ assimilation by A. brasilense grown with excess or limiting nitrogen and that GDH has, at best, a minor role in the synthesis of glutamate.  相似文献   

17.
The maize (Zea mays L.) plants inoculated by N2-fixing bacterium Azospirillum showed increased activity of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) in root cells free extracts over uninoculated control plants. Maximum differences in NADH-GDH activity were observed during the second and third weeks after sowing. The specific activity of GS showed a greater increase at the end of the assay. The percentage of nitrogen in leaves, root and foliage length, total fresh mass and nitrogenase activity were higher in inoculated plants than in the control ones.  相似文献   

18.
The phototrophic purple bacterium Rhodopseudomonas sphaeroides, strain 2R, can assimilate ammonium by means of glutamine synthetase and glutamate synthase. A higher activity of glutamine synthetase is displayed by cells grown in the medium with glutamate or in the atmosphere of molecular nitrogen. The activity of glutamate synthase also rises when cells grow in the atmosphere of N2. However, in contrast to glutamine synthetase, the activity of glutamate synthase does not decrease in the presence of considerable NH4+ amounts. The glutamine synthetase of R. sphaeroides is modified by adenylylation/deadenylylation. In the presence of nitrogenase in R. sphaeroides, the glutamine synthetase is found mainly in the deadenylylation state. Methionine sulfone, an inhibitor of glutamine synthetase, partly restores the activity of nitrogenase in the presence of ammonium, and prevents adenylylation of glutamine synthetase.  相似文献   

19.
A method is described for the isolation of metabolically active heterocysts from Anabaena cylindrica. These isolated heterocysts accounted for up to 34% of the acetylene-reducing activity of whole filaments and had a specific activity of up to 1,560 nmol of C2H4 formed per mg of heterocyst chlorphyll per min. Activity of glutamine synthetase was coupled to activity of nitrogenase in isolated heterocysts as shown by acetylene-inhibitable formation of [13N]NH3 and of amidelabeled [13N]glutamine form [13N]N2. A method is also described for the production of 6-mCi amounts of [13N]NH3. Isolated heterocysts formed [13N]glutamine from [13N]NH3 and glutamate, and [14C]glutamine from NH3 and [14C]glutamate, in the presence of magnesium adenosine 5'-triphosphate. Methionine sulfoximine strongly inhibited these syntheses. Glutamate synthase is, after nitrogenase and glutamine synthetase, the third sequential enzyme involved in the assimilation of N2 by intact filaments. However, the kinetics of solubilization of the activity of glutamate synthase during cavitation of suspensions of A. cylindrica indicated that very little, if any, of the activity of that enzyme was located in heterocysts. Concordantly, isolated heterocysts failed to form substantial amounts of radioactive glutamate from either [13N]glutamine or alph-[14C]ketoglutarate in the presence of other substrates and cofactors of the glutamate synthase reaction. However, they formed [14C]glutamate rapidly from alpha-[14C]ketoglutarate by aminotransferase reactions, with various amino acids as the nitrogen donor. The implication of these findings with regard to the identities of the substances moving between heterocysts and vegetative cells are discussed.  相似文献   

20.
Regulation of molybdate transport by Clostridium pasteurianum.   总被引:6,自引:6,他引:0       下载免费PDF全文
The regulation of the molybdate (MoO42-) transport activity of Clostridium pasteurianum has been studied by observing the effects of NH3, carbamyl phosphate, MoO42-, and chloramphenicol on the ability of cells to take up MoO42-. Compared with cells fixing N2, cells grown in the presence of 1 mM NH3 are greater than 95% repressed for MoO42- transport. Uptake activity begins to increase just before NH exhaustion (under Ar or N2) and continues to increase throughout the lag period as cells shift from NH3-growing to N2-fixing conditions. When cells are shifted from N2-fixing to NH3-growing conditions the transport activity per fixed number of cells decreases by increase of bells in absence of transport synthesis. Carbamyl phosphate (greater than or equal to 15 mM) but not NH3 inhibits 58% of the in vitro uptake activity. When 1 mM carbamyl phosphate is added just before the exhaustion of NH3, the transport activity, measured 2 h later, is 100% repressed. Cells grown in the presence of high MoO42- (1mM) are 80% repressed for MoO42- transport. Synthesis of the MoO42- transport system is also completely stopped when chloramphenicol (300 mug/ml) is added just before the exhaustion oNH 3 from the medium. These findings demonstrate that the ability of cells to transport MoO42- is dependent upon new protein synthesis and can be repressed by high levels of substrate. The regulation of MoO42- uptake by NH3 or carbamyl phosphate closely parallels the regulation of nitrogenase activity. Activity of neither nitrogenase component (Fe protein or MoFe protein) was detected even 3 h after the exhaustion of the NH3 if either MoO42- was absent or if WO42- was present in place of MoO42-. The duration of the diauxic lag increases with decreasing concentration of MoO42- in the medium. If no MoO42- is present the lag continues indefinitely. If MoO42- is added late in the lag period, growth under N2-fixing conditions resumes but only after a normal induction period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号