首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carnitine palmitoyltransferase-I (CPT-I) plays a crucial role in regulating cardiac fatty acid oxidation which provides the primary source of energy for cardiac muscle contraction. CPT-I catalyzes the transfer of long chain fatty acids into mitochondria and is recognized as the primary rate controlling step in fatty acid oxidation. Molecular cloning techniques have demonstrated that two CPT-I isoforms exist as genes encoding the 'muscle' and 'liver' enzymes. Regulation of fatty acid oxidation rates depends on both short-term regulation of enzyme activity and long-term regulation of enzyme synthesis. Most early investigations into metabolic control of fatty acid oxidation at the CPT-I step concentrated on the hepatic enzyme which can be inhibited by malonyl-CoA and can undergo dramatic amplification or reduction of its sensitivity to inhibition by malonyl-CoA. The muscle CPT-I is inherently more sensitive to malonyl-CoA inhibition but has not been found to undergo any alteration of its sensitivity. Short-term control of activity of muscle CPT-I is apparently regulated by malonyl-CoA concentration in response to fuel supply (glucose, lactate, pyruvate and ketone bodies). The liver isoform is the only CPT-I enzyme present in the mitochondria of liver, kidney, brain and most other tissues while muscle CPT-I is the sole isoform expressed in skeletal muscle as well as white and brown adipocytes. The heart is unique in that it contains both muscle and liver isoforms. Liver CPT-I is highly expressed in the fetal heart, but at birth its activity begins to decline whereas the muscle isoform, which is very low at birth, becomes the predominant enzyme during postnatal development. In this paper, the differential regulation of the two CPT-I isoforms at the protein and the gene level will be discussed.  相似文献   

2.
Little is known about the sources of acetyl-CoA used for the synthesis of malonyl-CoA, a key regulator of mitochondrial fatty acid oxidation in the heart. In perfused rat hearts, we previously showed that malonyl-CoA is labeled from both carbohydrates and fatty acids. This study was aimed at assessing the mechanisms of incorporation of fatty acid carbons into malonyl-CoA. Rat hearts were perfused with glucose, lactate, pyruvate, and a fatty acid (palmitate, oleate or docosanoate). In each experiment, substrates were (13)C-labeled to yield singly or/and doubly labeled acetyl-CoA. The mass isotopomer distribution of malonyl-CoA was compared with that of the acetyl moiety of citrate, which reflects mitochondrial acetyl-CoA. In the presence of labeled glucose or lactate/pyruvate, the (13)C labeling of malonyl-CoA was up to 2-fold lower than that of mitochondrial acetyl-CoA. However, in the presence of a fatty acid labeled in its first acetyl moiety, the (13)C labeling of malonyl-CoA was up to 10-fold higher than that of mitochondrial acetyl-CoA. The labeling of malonyl-CoA and of the acetyl moiety of citrate is compatible with peroxisomal beta-oxidation forming C(12) and C(14) acyl-CoAs and contributing >50% of the fatty acid-derived acetyl groups that end up in malonyl-CoA. This fraction increases with the fatty acid chain length. By supplying acetyl-CoA for malonyl-CoA synthesis, peroxisomal beta-oxidation may participate in the control of mitochondrial fatty acid oxidation in the heart. In addition, this pathway may supply some acyl groups used in protein acylation, which is increasingly recognized as an important regulatory mechanism for many biochemical processes.  相似文献   

3.
The cellular level of malonyl-CoA, an intermediate in fatty acid biosynthesis, depends on its rate of synthesis catalyzed by acetyl-CoA carboxylase relative to its rate of utilization and degradation catalyzed by fatty acid synthase and malonyl-CoA decarboxylase, respectively. Recent evidence suggests that hypothalamic malonyl-CoA functions in the regulation of feeding behavior by altering the expression of key orexigenic and anorexigenic neuropeptides. Here we report that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a 5'-AMP kinase activator, rapidly lowers malonyl-CoA both in GT1-7 hypothalamic neurons and in the hypothalami of mice. These effects correlate closely with the phosphorylation of acetyl-CoA carboxylase, an established target of AMP kinase. Intracerebroventricular (i.c.v.) administration of AICAR rapidly lowers hypothalamic [malonyl-CoA] and increases food intake. Expression of an adenoviral cytosolic malonyl-CoA decarboxylase vector (Ad-cMCD) in hypothalamic GT1-7 cells decreases malonyl-CoA. When delivered by bilateral stereotaxic injection into the ventral hypothalamus (encompassing the arcuate nucleus) of mice, Ad-cMCD increases food intake and body weight. Ad-MCD delivered into the ventral hypothalamus also reverses the rapid suppression of food intake caused by i.c.v.-administered C75, a fatty acid synthase inhibitor that increases hypothalamic [malonyl-CoA]. Taken together these findings implicate malonyl-CoA in the hypothalamic regulation of feeding behavior.  相似文献   

4.
In germinating oilseeds peroxisomal fatty acid beta-oxidation is responsible for the mobilization of storage lipids. This pathway also occurs in other tissues where it has a variety of additional physiological functions. The central enzymatic steps of peroxisomal beta-oxidation are performed by acyl-CoA oxidase (ACOX), the multifunctional protein (MFP) and 3-ketoacyl-CoA thiolase (thiolase). In order to investigate the function and regulation of beta-oxidation in plants it is first necessary to identify and characterize genes encoding the relevant enzymes in a single model species. Recently we and others have reported on the cloning and characterization of genes encoding four ACOXs and a thiolase from the oilseed Arabidopsis thaliana. Here we identify a gene encoding an Arabidopsis MFP (AtMFP2) that is induced transiently during germination. The pattern of AtMFP2 expression closely reflects changes in the activities of 2-trans-enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase. Similar patterns of expression have previously been reported for ACOX and thiolase genes. We conclude that genes encoding the three main proteins responsible for beta-oxidation are co-ordinately expressed during oilseed germination and may share a common mechanism of regulation.  相似文献   

5.
The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism.  相似文献   

6.
Hypothalamic malonyl-CoA and CPT1c in the treatment of obesity   总被引:1,自引:0,他引:1  
Metabolic integration of nutrient sensing in the central nervous system has been shown to be an important regulator of adiposity by affecting food intake and peripheral energy expenditure. Modulation of de novo fatty acid synthetic flux by cytokines and nutrient availability plays an important role in this process. Inhibition of hypothalamic fatty acid synthase by pharmacologic or genetic means leads to an increased malonyl-CoA level and suppression of food intake and adiposity. Conversely, the ectopic expression of malonyl-CoA decarboxylase in the hypothalamus is sufficient to promote feeding and adiposity. Based on these and other findings, metabolic intermediates in fatty acid biogenesis, including malonyl-CoA and long-chain acyl-CoAs, have been implicated as signaling mediators in the central control of body weight. Malonyl-CoA has been hypothesized to mediate its effects in part through an allosteric interaction with an atypical and brain-specific carnitine palmitoyltransferase-1 (CPT1c). CPT1c is expressed in neurons and binds malonyl-CoA, however, it does not perform the same biochemical function as the prototypical CPT1 enzymes. Mouse knockout models of CPT1c exhibit suppressed food intake and smaller body weight, but are highly susceptible to weight gain when fed a high-fat diet. Thus, the brain can directly sense and respond to changes in nutrient availability and composition to affect body weight and adiposity.  相似文献   

7.
8.
We postulate that metabolic conditions that develop systemically during exercise (high blood lactate and high nonesterified fatty acids) are favorable for energy homeostasis of the heart during contractile stimulation. We used working rat hearts perfused at physiological workload and levels of the major energy substrates and compared the metabolic and contractile responses to an acute low-to-high work transition under resting versus exercising systemic metabolic conditions (low vs. high lactate and nonesterified fatty acids in the perfusate). Glycogen preservation, resulting from better maintenance of high-energy phosphates, was a consequence of improved energy homeostasis with high fat and lactate. We explained the result by tighter coupling between workload and total beta-oxidation. Total fatty acid oxidation with high fat and lactate reflected increased availability of exogenous and endogenous fats for respiration, as evidenced by increased long-chain fatty acyl-CoA esters (LCFA-CoAs) and by an increased contribution of triglycerides to total beta-oxidation. Triglyceride turnover (synthesis and degradation) also appeared to increase. Elevated LCFA-CoAs caused high total beta-oxidation despite increased malonyl-CoA. The resulting bottleneck at mitochondrial uptake of LCFA-CoAs stimulated triglyceride synthesis. Our results suggest the following. First, both malonyl-CoA and LCFA-CoAs determine total fatty acid oxidation in heart. Second, concomitant stimulation of peripheral glycolysis and lipolysis should improve cardiac energy homeostasis during exercise. We speculate that high lactate contributes to the salutary effect by bypassing the glycolytic block imposed by fatty acids, acting as an anaplerotic substrate necessary for high tricarbocylic acid cycle flux from fatty acid-derived acetyl-CoA.  相似文献   

9.
The role of hypothalamic malonyl-CoA in energy homeostasis   总被引:1,自引:0,他引:1  
Energy balance is monitored by hypothalamic neurons that respond to peripheral hormonal and afferent neural signals that sense energy status. Recent physiologic, pharmacologic, and genetic evidence has implicated malonyl-CoA, an intermediate in fatty acid synthesis, as a regulatory component of this energy-sensing system. The level of malonyl-CoA in the hypothalamus is dynamically regulated by fasting and feeding, which alter subsequent feeding behavior. Fatty acid synthase (FAS) inhibitors, administered systemically or intracerebroventricularly to lean or obese mice, increase hypothalamic malonyl-CoA leading to the suppression of food intake. Conversely, lowering malonyl-CoA with an acetyl-CoA carboxylase (ACC) inhibitor or by the ectopic expression of malonyl-CoA decarboxylase in the hypothalamus increases food intake and reverses inhibition by FAS inhibitors. Physiologically, the level of hypothalamic malonyl-CoA appears to be determined through phosphorylation/dephosphorylation of ACC by AMP kinase in response to changes in the AMP/ATP ratio, an indicator of energy status. Recent evidence suggests that the brain-specific carnitine:palmitoyl-CoA transferase-1 (CPT1c) may be a regulated target of malonyl-CoA that relays the "malonyl-CoA signal" in hypothalamic neurons that express the orexigenic and anorexigenic neuropeptides that regulate food intake and peripheral energy expenditure. Together these findings support a role for malonyl-CoA as an intermediary in the control of energy homeostasis.  相似文献   

10.
Malonyl-CoA decarboxylase (MCD) catalyzes the proton-consuming conversion of malonyl-CoA to acetyl-CoA and CO(2). Although defects in MCD activity are associated with malonyl-CoA decarboxylase deficiency, a lethal disorder characterized by cardiomyopathy and developmental delay, the metabolic role of this enzyme in mammals is unknown. A computer-based search for novel peroxisomal proteins led to the identification of a candidate gene for human MCD, which encodes a protein with a canonical type-1 peroxisomal targeting signal of serine-lysine-leucine(COOH). We observed that recombinant MCD protein has high intrinsic malonyl-CoA decarboxylase activity and that a malonyl-CoA decarboxylase-deficient patient has a severe mutation in the MCD gene (c.947-948delTT), confirming that this gene encodes human MCD. Subcellular fractionation experiments revealed that MCD resides in both the cytoplasm and peroxisomes. Cytoplasmic MCD is positioned to play a role in the regulation of cytoplasmic malonyl-CoA abundance and, thus, of mitochondrial fatty acid uptake and oxidation. This hypothesis is supported by the fact that malonyl-CoA decarboxylase-deficient patients display a number of phenotypes that are reminiscent of mitochondrial fatty acid oxidation disorders. Additional support for this hypothesis comes from our observation that MCD mRNA is most abundant in cardiac and skeletal muscles, tissues in which cytoplasmic malonyl-CoA is a potent inhibitor of mitochondrial fatty acid oxidation and which derive significant amounts of energy from fatty acid oxidation. As for the role of peroxisomal MCD, we propose that this enzyme may be involved in degrading intraperoxisomal malonyl-CoA, which is generated by the peroxisomal beta-oxidation of odd chain-length dicarboxylic fatty acids.  相似文献   

11.
An intermediate in the fatty acid biosynthetic pathway, malonyl-coenzyme A (CoA), has emerged as a major regulator of energy homeostasis not only in peripheral metabolic tissues but also in regions of the central nervous system that control satiety and energy expenditure. Fluctuations in hypothalamic malonyl-CoA lead to changes in food intake and peripheral energy expenditure in a manner consistent with an anorexigenic signaling intermediate. Hypothalamic malonyl-CoA is regulated by nutritional and endocrine cues including glucose and leptin, respectively. That malonyl-CoA is an essential component in the energy homeostatic signaling system of the hypothalamus is supported by convergence of physiological, pharmacological, and genetic evidence. This review will focus on evidence implicating malonyl-CoA as a central player in the control of body weight and adiposity as well as clues to the molecular mechanism by which carbon flux through the fatty acid biosynthetic pathway is linked to the neural control of energy balance.  相似文献   

12.
A novel brain-expressed protein related to carnitine palmitoyltransferase I   总被引:5,自引:0,他引:5  
Malonyl-CoenzymeA acts as a fuel sensor, being both an intermediate of fatty acid synthesis and an inhibitor of the two known isoforms of carnitine palmitoyltransferase I (CPT I), which control mitochondrial fatty acid oxidation. We describe here a novel CPT1 family member whose mRNA is present predominantly in brain and testis. Chromosomal locations and genome organization are reported for the mouse and human genes. The protein sequence contains all the residues known to be important for both carnitine acyltransferase activity and malonyl-CoA binding in other family members. Yeast expressed protein has no detectable catalytic activity with several different acyl-CoA esters that are good substrates for other carnitine acyltransferases, including the liver isoform of CPT I, which is also expressed in brain; however, it displays high-affinity malonyl-CoA binding. Thus this new CPT I related protein may be specialized for the metabolism of a distinct class of fatty acids involved in brain function.  相似文献   

13.
14.
Hepatocyte nuclear factor 1alpha (HNF1alpha)-null mice have enlarged fatty livers and alterations in the expression of genes encoding enzymes involved in the synthesis, catabolism, and transport of fatty acids. Elevations in the expression of genes encoding fatty acid synthetic enzymes (fatty acid synthase and acyl-CoA carboxylase) and peroxisomal beta-oxidation enzymes (CYP4A3, bifunctional enzyme, and thiolase) were observed in the livers of HNF1alpha-null mice, whereas hepatic mitochondrial beta-oxidation gene (medium and short chain acyl-CoA dehydrogenase) expression levels remain unchanged relative to HNF1alpha-heterozygous controls. An elevation in the levels of fatty acid transporter gene expression was also observed. In contrast, there was a marked reduction of liver fatty acid-binding protein (l-FABP) gene expression in the livers of HNF1alpha-null mice. Isolation and sequence analysis of the 5'-flanking region of the mouse l-FABP gene revealed the presence of two HNF1alpha regulatory elements. The results of transient transfection studies indicate that HNF1alpha is required to trans-activate the expression of the l-FABP promoter. Taken together, these data define a critical role for HNF1alpha in the pathogenesis of a phenotype marked by fatty infiltration of the liver and in the regulation of the l-FABP gene, the expression of which may have a direct impact on the maintenance of fatty acid homeostasis.  相似文献   

15.
16.
17.
The outer mitochondrial membrane enzyme carnitine palmitoyltransferase I (CPTI) catalyzes the initial and regulatory step in the beta-oxidation of fatty acids. The genes for the two isoforms of CPTI-liver (L-CPTI) and muscle (M-CPTI) have been cloned and expressed, and the genes encode for enzymes with very different kinetic properties and sensitivity to malonyl-CoA inhibition. Pig L-CPTI encodes for a 772 amino acid protein that shares 86 and 62% identity, respectively, with rat L- and M-CPTI. When expressed in Pichia pastoris, the pig L-CPTI enzyme shows kinetic characteristics (carnitine, K(m) = 126 microM; palmitoyl-CoA, K(m) = 35 microM) similar to human or rat L-CPTI. However, the pig enzyme, unlike the rat liver enzyme, shows a much higher sensitivity to malonyl-CoA inhibition (IC(50) = 141 nM) that is characteristic of human or rat M-CPTI enzymes. Therefore, pig L-CPTI behaves like a natural chimera of the L- and M-CPTI isotypes, which makes it a useful model to study the structure--function relationships of the CPTI enzymes.  相似文献   

18.
The enzymes NAD-dependent beta-hydroxybutyryl coenzyme A dehydrogenase (BHBD) and 3-hydroxyacetyl coenzyme A (3-hydroxyacyl-CoA) dehydrogenase are part of the central fermentation pathways for butyrate and butanol production in the gram-positive anaerobic bacterium Clostridium acetobutylicum and for the beta oxidation of fatty acids in eucaryotes, respectively. The C. acetobutylicum hbd gene encoding a bacterial BHBD was cloned, expressed, and sequenced in Escherichia coli. The deduced primary amino acid sequence of the C. acetobutylicum BHBD showed 45.9% similarity with the equivalent mitochondrial fatty acid beta-oxidation enzyme and 38.4% similarity with the 3-hydroxyacyl-CoA dehydrogenase part of the bifunctional enoyl-CoA hydratase:3-hydroxyacyl-CoA dehydrogenase from rat peroxisomes. The pig mitochondrial 3-hydroxyacyl-CoA dehydrogenase showed 31.7% similarity with the 3-hydroxyacyl-CoA dehydrogenase part of the bifunctional enzyme from rat peroxisomes. The phylogenetic relationship between these enzymes supports a common evolutionary origin for the fatty acid beta-oxidation pathways of vertebrate mitochondria and peroxisomes and the bacterial fermentation pathway.  相似文献   

19.
20.
Significant advances in our knowledge of fatty acid breakdown in plants have been made since the subject was last comprehensively reviewed in the early 1990s. Many of the genes encoding the enzymes of peroxisomal beta-oxidation of straight chain fatty acids have now been identified. Biochemical genetic approaches in the model plant, Arabidopsis thaliana, have been particularly useful not only in the identification and functional characterisation of genes involved in fatty acid beta-oxidation but also in establishing the role of beta-oxidation at different stages in plant development. Advances in our understanding of branched chain amino acid catabolism have provided convincing evidence that mitochondria play an important role in this process. This work is discussed in the context of the long running debate on the sub-cellular localisation of fatty acid beta-oxidation in plants. A significant aspect of this review is that it provides the opportunity to present a comprehensive analysis of the complete Arabidopsis genome sequence for each of the different gene families that are known to be involved in beta-, alpha-, and omega-oxidation of fatty acids in plants. Inevitably, this increase in information, as well as providing many answers also raises many new intriguing questions, particularly as regards the regulation and physiological role of fatty acid catabolism throughout the higher plant life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号