首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article deals with cell physiological aspects of the plasma membrane electrogenic proton (H+) pump and emphasizes the contribution of the giant algal cells of the Characeae in elucidating the mechanism of the pump. First, a history of the development of intracellular perfusion techniques in characean internodal cells is described, including preparation of tonoplast-free cells. Then, an outline of the hypothesis of the electrogenic H+ pump proposed by Kitasato is introduced, who prophesied the existence of an electric potential generated by an active H+ efflux. Subsequently, a history of finding ATP as the direct energy source of the electrogenic ion pump is presented. Quantitative agreement between the pump current and the ATP-dependent H+ efflux supports the notion that the ion carried by the electrogenic ion pump is H+. The role of the H+ pump in regulation of the cytosolic pH is discussed. Mechanisms of light-induced potential change through photosynthesis-controlled activation of the H+ pump are discussed in terms of changes in the levels of adenine nucleotides and in modulation of the Km value for the ATP of H+-ATPase. Recent progress in the molecular mechanism of the blue-light-induced activation of the H+-ATPase in guard cells is presented. However, there are cases where H+-ATPase activity is inhibited by blue light, indicating the flexibility of the control mechanisms of H+-ATPase activity. Finally, modulation of H+-pumping or H+-ATPase activities in response to environmental factors, such as anoxia, membrane excitation, osmotic and salt stresses, nutrient deficiencies and aluminum toxicity are described. Discussions are presented on the regulation of the electrogenic H+ pump.  相似文献   

2.
Summary In developing seeds ofVicia faba, transfer cells line the inner surface of the seed coat and the juxtaposed epidermal surface of the cotyledons. Circumstantial evidence, derived from anatomical and physiological studies, indicates that these cells are the likely sites of sucrose efflux to, and influx from, the seed apoplasm, respectively. In this study, expression of an H+/sucrose symporter-gene was found to be localised to the epidermal-transfer cell complexes of the cotyledons. The sucrose binding protein (SBP) gene was expressed in these cells as well as in the thin-walled parenchyma transfer cells of the seed coat. SBP was immunolocalised exclusively to the plasma membranes located in the wall ingrowth regions of the transfer cells. In addition, a plasma membrane H+-ATPase was most abundant in the wall ingrowth regions with decreasing levels of expression at increasing distance from the transfer cell layers. The observed co-localisation of high densities of a plasma membrane H+-ATPase and sucrose transport proteins to the wall ingrowths of the seed coat and cotyledon transfer cells provides strong evidence that these regions are the principal sites of facilitated membrane transport of sucrose to and from the seed apoplasm.Abbreviations BCIP 5-bromo-4-chloro-3-indolyl phosphate - DIG digoxigenin - H+-ATPase plasma membrane H+-translocating adenosine triphosphatase - Ig immunoglobulin - LeSUT1 tomato H+/sucrose symporter - SBP sucrose binding protein  相似文献   

3.
Employing a simple one-step sucrose gradient fractionation method, gastric mucosal membrane of Syrian hamster was prepared and demonstrated to be specifically enriched in H+,K+-ATPase activity. The preparation is practically devoid of other ATP hydrolyzing activity and contains high K+-stimulated ATPase, activity of at least 4–5 fold compared to basal ATPase activity. The H+,K+-ATPase showed hydroxylamine-sensitive phosphorylation and K+-dependent dephosphorylation of the phospho-enzyme, characteristic inhibition by vanadate, omeprazole and SCH 28080, and nigericin-reversible K+-dependent H+-transport — properties characteristic of gastric proton pump One notable difference with H+,K+-ATPase of other species has been the observation of valinomycin-independent H+ transport in such membrane vesicles. It is proposed that such H+,K+-ATPase-rich hamster gastric mucosal membrane preparation might provide a unique model to study physiological aspects of H+,K+-ATPase-function in relation to HCl secretion.  相似文献   

4.
Carbohydrate accumulation in young, fully expanded leaves ofCitrus sinensis L. Osbeck is affected by the presence of thefruitlet on the shoot. Previous work gave evidence that gibberellinsmay be involved in this 'fruit effect'. In the present workwe have studied the effect of gibberellic acid (GA3) on 14C-sucroseuptake by leaf discs and whether its action could be due toa modulation of the plasma membrane ATPase, which maintainsthe H+ gradient that drives H+/sucrose co-transport. The effect of GA3 on 14C-sucrose uptake depended on the osmolarityof the assay medium. At 300 mOsm a reduction in the uptake ratewas observed. The inhibitory effect of the hormone disappearedafter preincubating the leaf discs with para-chloromercuri-phenylsulphonicacid (PCMPS), a sulphydril binding inhibitor. ATPase activityof isolated plasma membrane vesicles was inhibited by IAA treatments,while GA3 or ABA did not affect this enzyme, even after a 3h preincubation period. However, in the absence of a surfactantin the assay medium, GA3, together with turgor pressure, modulatedplasma membrane ATPase activity, possibly through modificationsof membrane permeability. The hormone effect on 14 C-sucroseuptake may involve action on the sucrose carrier.Copyright 1994,1999 Academic Press Abscisic acid, Citrus sinensis, gibberellic acid, indoleacetic acid, orange, osmotic pressure, plasma membrane ATPase, 14C-sucrose uptake  相似文献   

5.
Chanson A  Taiz L 《Plant physiology》1985,78(2):232-240
Corn (Zea mays L. cv Trojan T929) coleoptile membranes were fractionated on sucrose density gradients, and ATP-dependent proton pumping activity was localized by the techniques of [14C]methylamine uptake and quinacrine fluorescence quenching. Two peaks of proton pumping activity were detected: a light peak (1.07 grams/cubic centimeter) corresponding to the previously characterized tonoplast-type H+-ATPase, and a second peak (1.13 grams/cubic centimeter) which coincided with the Golgi markers, latent UDPase, and glucan synthase I. The second peak was lighter than that of the plasma membrane marker, uridine diphosphoglucose-sterol glucosyltransferase (1.16 grams/cubic centimeter) and was not inhibited by vanadate, an inhibitor of the plasma membrane ATPase. The activity was also better correlated with the Golgi cisternae marker, glucan synthase I, than with latent UDPase, a secretory vesicle marker, but a secretory vesicle location cannot be ruled out. The tonoplast-type and Golgi proton pumps were similar in several respects, including a pH optimum at 7.2, stimulation by chloride, inhibition by diethylstilbestrol and N,N′-dicyclohexylcarbodiimide (DCCD), insensitivity to oligomycin and azide, and nucleotide specificity for Mg2+-ATP. However, the Golgi H+ pump was much less sensitive to nitrate and iodide, and more sensitive to the anion channel blockers, 4-acetamido-4′-isothiocyano-2,2′-stilbene sulfonic acid (SITS) and 4,4′-diisothiocyano-2,2′-stilbene disulfonic acid (DIDS) than the tonoplast-type H+-pump. The Golgi pump, but not the tonoplast-type pump, was stimulated by valinomycin in the presence of KCl. It is concluded that the Golgi of corn coleoptiles contains a KCl-stimulated H+-ATPase which can acidify the interior of Golgi cisternae and associated vesicles.  相似文献   

6.
Summary A Na/Ca exchange system has been described in the plasma membrane of several tissues and seems to regulate the concentration of calcium in cytosol. Replacement of extracellular Na by sucrose increases calcium uptake into and decreases calcium efflux from the cell, leading to an increase in cytosolic calcium. The effect of an increase in cytosolic calcium mediated by the Na/Ca exchange system on H+ and Na transport in the turtle and toad bladder was investigated by replacing serosal Na isosmotically by sucrose or choline. Replacement of serosal by sucrose was associated with a significant inhibition of H+ secretion or Na transport which was reversible by addition of NaCl. Replacement of mucosal Na by sucrose failed to alter H+ secretion. Removal of serosal Na was associated with a significant increase in45Ca uptake which could be blocked by pretreatment with lanthanum chloride. Pretreatment with lanthanum chloride blunted the inhibitory effect of replacement of serosal Na by sucrose on H+ and Na transport, thus suggesting that the increase in calcium uptake and the inhibition of transport are causally related. Under anaerobic conditions the rate of H+ or Na transport are linked to the rate of lactate production. The inhibition of Na or H+ transport by removal of serosal Na was accompanied by a proportional decrease in lactate production, thus suggesting that an increase in cytosolic calcium does not inhibit transport by uncoupling glycolysis from transport. Replacement of serosal Na by sucrose did not alter the force of the H+ or Na pump but led to an increase in resistance of the active pathway of H+ and Na transport. The inhibition of Na transport by replacement of serosal Na with sucrose could be reversed by addition of amphotericin B, an agent which increases luminal permeability to Na, thus suggesting that decreased Na entry across the apical membrane is the mechanism responsible for the inhibition of Na transport. The results of the present studies strongly suggest that an increase in cytosolic calcium through the serosal Na/Ca exchange system inhibits H+ and Na transport in the turtle and toad bladder probably by increasing the resistance of the luminal membrane.  相似文献   

7.
Cytochemical techniques employing lead-precipitation of enzymically released inorganic phosphate have been widely used in attempts to localize the plasma membrane proton pump (H+-ATPase) in electron micrographs. Using Avena sativa root tissue we have performed a side-by-side comparison of ATPase activity observed in electron micrographs with that observed in in vitro assays using ATPases found in the soluble and plasma membrane fractions of homogenates. Cytochemical analysis of oat roots, which had been fixed in glutaraldehyde in order to preserve subcellular structures, identifies an ATPase located at or near the plasma membrane. However, the substrate specificity and inhibitor sensitivity of the in situ localized ATPase appear identical to those of an in vitro ATPase activity found in the soluble fraction, and are completely unlike those of the plasma membrane proton pump. Further studies demonstrated that the plasma membrane H+-ATPase is particularly sensitive to inactivation by the fixatives glutaraldehyde and formaldehyde and by lead. In contrast, the predominant soluble ATPase activity in oat root homogenates is less sensitive to fixation and is completely insensitive to lead. Based on these results, we propose a set of criteria for evaluating whether a cytochemically localized ATPase activity is, in fact, due to the plasma membrane proton pump.  相似文献   

8.
Summary Dunaliella acidophila is an unicellular green alga which grows optimally at pH 0–1 while maintaining neutral internal pH. A plasma membrane preparation of this algae has been purified on sucrose density gradients. The preparation exhibits vanadatesensitive ATPase activity of 2 mol Pi/mg protein/min, an activity 15 to 30-fold higher than that in the related neutrophilic speciesD. salina. The following properties suggest that the ATPase is an electrogenic plasma membrane H+ pump. (i) ATP induces proton uptake and generates a positive-inside membrane potential as demonstrated with optical probes. (ii) ATP hydrolysis and proton uptake are inhibited by vanadate, diethylstilbestrol, dicyclohexylcarbodiimide and erythrosine but not by molybdate, azide or nitrate. (iii) ATP hydrolysis and proton uptake are stimulated by fussicoccin in a pH-dependent manner as found for plants plasma membrane H+-ATPase. Unusual properties of this enzyme are: (i) theK m for ATP is around 60 M, considerably lower than in other plasma membrane H+-ATPases, and (ii) the ATPase activity and proton uptake are stimulated three to fourfold by K+ and to a smaller extent by other monovalent cations. These results suggest thatD. acidophila possesses a vanadate-sensitive H+-ATPase with unusual features enabling it to maintain the large transmembrane pH gradient.  相似文献   

9.
Vanessa M. Hutchings 《Planta》1978,138(3):237-241
In Ricinus cotyledons, evidence for proton extrusion came from observation of direct acidification of the medium in the presence of potassium salts. Increasing K+ influx with increasing pH suggested a link between K+ influx and H+ efflux by an H+ pump. The kinetics of K+ influx and H+ efflux were consistent with a 1:1 stoichiometry K+:H+, which may indicate either electrical coupling or carrier mediated exchange. The results were consistent with an H+ pump setting up an electrochemical potential gradient which provides the driving force for an H+-sucrose cotransport and the movement of K+. With reference to this, a model for phloem loading is suggested.  相似文献   

10.
The relationship between the physiological characteristics and changes in the activities of H+ pumps of the plasma membrane and tonoplast of characean cells is discussed. The large size of the characean internodal cells allows us to perform various experimental operations. The intracellular perfusion technique developed by Tazawaet al. (1976) is a powerful tool for analyzing the characteristics and control mechanisms of the H+ pumps (Tazawa and Shimmen 1987, Tazawaet al. 1987, Shimmenet al. 1994) Respiration-dependent changes in the activity of the plasma membrane H+ pump are explained by changes in the supply of energy substrate. Photosynthesis-dependent changes in activities of both the plasma membrane and the tonoplast H+ pumps are explained in terms of changes in the level of inorganic phosphate in the cytoplasm. Cytoplasmic and vacuolar pHs are suggested to be controlling factors forin vivo activities of the H+ pumps. Furthermore, the membrane potential and various ions are considered to bein vivo factors that regulate the activities of the H+ pumps. Recipient of the Botanical Society Award of Young Scientists, 1993.  相似文献   

11.
Human NHA2, a newly discovered cation proton antiporter, is implicated in essential hypertension by gene linkage analysis. We show that NHA2 mediates phloretin-sensitive Na+-Li+ counter-transport (SLC) activity, an established marker for hypertension. In contrast to bacteria and fungi where H+ gradients drive uptake of metabolites, secondary transport at the plasma membrane of mammalian cells is coupled to the Na+ electrochemical gradient. Our findings challenge this paradigm by showing coupling of NHA2 and V-type H+-ATPase at the plasma membrane of kidney-derived MDCK cells, resulting in a virtual Na+ efflux pump. Thus, NHA2 functionally recapitulates an ancient shared evolutionary origin with bacterial NhaA. Although plasma membrane H+ gradients have been observed in some specialized mammalian cells, the ubiquitous tissue distribution of NHA2 suggests that H+-coupled transport is more widespread. The coexistence of Na+ and H+-driven chemiosmotic circuits has implications for salt and pH regulation in the kidney.  相似文献   

12.
The effect of TPA (12-O-tetradecanoylphorbol-13-acetate) upon ionic exchanges was investigated in eggs of the sea urchin Arbacia lixula. Ouabain-sensitive 86Rb uptake and amiloride-sensitive 24Na influx were dramatically stimulated after TPA addition, indicating an enhancement of total ionic permeabilities. Stimulation by TPA of both Na+/H+ and Na+/K+ exchanges was canceled by amiloride, suggesting that activation of protein kinase C elicits, via Na+/H+ activity, stimulation of the sodium pump. However, TPA did not stimulate sodium pump activity and Na+/H+ exchange at the same rate as fertilization, probably because of an absence of calcium-dependent events. Further fertilization of TPA-pretreated eggs triggered an enhancement of sodium pump activity when the TPA treatment duration did not exceed 10 min. It is suggested that TPA activates preexisting transporting mechanisms in plasma membranes of unfertilized eggs (Na+ pump, Na+/H+ exchange) without eliciting corresponding regulatory mechanisms (Na+ stat, pH stat).  相似文献   

13.
The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state.  相似文献   

14.
A large number of plant Ca2+/H+ exchangers have been identified in endomembranes, but far fewer have been studied for Ca2+/H+ exchange in plasma membrane so far. To investigate the Ca2+/H+ exchange in plasma membrane here, inside-out plasma membrane vesicles were isolated from Arabidopsis thaliana leaves using aqueous two-phase partitioning method. Ca2+/H+ exchange in plasma membrane vesicles was measured by Ca2+-dependent dissipation of a pre-established pH gradient. The results showed that transport mediated by the Ca2+/H+ exchange was optimal at pH 7.0, and displayed transport specificity for Ca2+ with saturation kinetics at K m = 47 μM. Sulfate and vanadate inhibited pH gradient across vesicles and decreased the Ca2+-dependent transport of H+ out of vesicles significantly. When the electrical potential across plasma membrane was dissipated with valinomycin and potassium, the rate of Ca2+/H+ exchange increased comparing to control without valinomycin effect, suggesting that the Ca2+/H+ exchange generated a membrane potential (interior negative), i.e. that the stoichiometric ratio for the exchange is greater than 2H+:Ca2+. Eosin Y, a Ca2+-ATPase inhibitor, drastically inhibited Ca2+/H+ exchange in plasma membrane as it does for the purified Ca2+-ATPase in proteoliposomes, indicating that measured Ca2+/H+ exchange activity is mainly due to a plasma membrane Ca2+ pump. These suggest that calcium (Ca2+) is transported out of Arabidopsis cells mainly through a Ca2+-ATPase-mediated Ca2+/H+ exchange system that is driven by the proton-motive force from the plasma membrane H+-ATPase.  相似文献   

15.
16.
Summary An attempt has been made to simulate the light-induced oscillations of the membrane potential of Potamogeton lucens leaf cells in relation to the apoplastic pH changes. Previously it was demonstrated that the membrane potential of these cells can be described in terms of proton movements only. It is hypothesized that the membrane potential is determined by an electrogenic H+-ATPase with a variable H+/ATP stoichiometry. The stoichiometry shifts from a value of two in the dark to a value of one in the light. Moreover, this H+ pump shows the characteristics of either a pump or a passive H+ conductance: the mode of operation of the H+ translocator is considered to be regulated by the external pH. The pump conductance is assumed to be dominant at low or neutral pH, while the passive H+ conductance becomes more significant at alkaline pH. The pH dependence of the transport characteristic is expressed by protonation reactions in the plasma membrane. The proposed model can account for most features of the light-induced oscillations but not for the absolute level of the membrane potential.This research was supported by the Foundation of Biophysics, part of the Dutch Organization for Scientific Research (NWO) ECOTRANS publication No. 34.  相似文献   

17.
Seasonal changes in vanadate sensitive plasma membrane H+-ATPase activity of bilberry (Vaccinium myrtillus L.) and Scots pine (Pinus sylvestris L.) were studied in a period from February to August in northern Finland. The plasma membrane isolation was performed by sucrose gradient centrifugation, and the H+-ATPase activity was assayed by spectrophotometrical determination of released inorganic phosphate. The studied species showed seasonal changes from high winter to low spring activity, indicating probable physiological changes between hardened and dehardened tissue. ATPase activity of bilberry peaked up at the beginning of the growth period, obviously due to active phloem loading of photosynthates.  相似文献   

18.
Phosphorylation is a widely used, reversible means of regulating enzymatic activity. Among the important phosphorylation targets are the Na+,K+- and H+,K+-ATPases that pump ions against their chemical gradients to uphold ionic concentration differences over the plasma membrane. The two pumps are very homologous, and at least one of the phosphorylation sites is conserved, namely a cAMP activated protein kinase (PKA) site, which is important for regulating pumping activity, either by changing the cellular distribution of the ATPases or by directly altering the kinetic properties as supported by electrophysiological results presented here. We further review the other proposed pump phosphorylations.  相似文献   

19.

Background

In contrast to man the majority of higher plants use sucrose as mobile carbohydrate. Accordingly proton-driven sucrose transporters are crucial for cell-to-cell and long-distance distribution within the plant body. Generally very negative plant membrane potentials and the ability to accumulate sucrose quantities of more than 1 M document that plants must have evolved transporters with unique structural and functional features.

Methodology/Principal Findings

To unravel the functional properties of one specific high capacity plasma membrane sucrose transporter in detail, we expressed the sucrose/H+ co-transporter from maize ZmSUT1 in Xenopus oocytes. Application of sucrose in an acidic pH environment elicited inward proton currents. Interestingly the sucrose-dependent H+ transport was associated with a decrease in membrane capacitance (Cm). In addition to sucrose Cm was modulated by the membrane potential and external protons. In order to explore the molecular mechanism underlying these Cm changes, presteady-state currents (Ipre) of ZmSUT1 transport were analyzed. Decay of Ipre could be best fitted by double exponentials. When plotted against the voltage the charge Q, associated to Ipre, was dependent on sucrose and protons. The mathematical derivative of the charge Q versus voltage was well in line with the observed Cm changes. Based on these parameters a turnover rate of 500 molecules sucrose/s was calculated. In contrast to gating currents of voltage dependent-potassium channels the analysis of ZmSUT1-derived presteady-state currents in the absence of sucrose (I = Q/τ) was sufficient to predict ZmSUT1 transport-associated currents.

Conclusions

Taken together our results indicate that in the absence of sucrose, ‘trapped’ protons move back and forth between an outer and an inner site within the transmembrane domains of ZmSUT1. This movement of protons in the electric field of the membrane gives rise to the presteady-state currents and in turn to Cm changes. Upon application of external sucrose, protons can pass the membrane turning presteady-state into transport currents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号