首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions that impair protein folding in the Gram-negative bacterial envelope cause stress. The destabilizing effects of stress in this compartment are recognized and countered by a number of signal transduction mechanisms. Data presented here reveal another facet of the complex bacterial stress response, release of outer membrane vesicles. Native vesicles are composed of outer membrane and periplasmic material, and they are released from the bacterial surface without loss of membrane integrity. Here we demonstrate that the quantity of vesicle release correlates directly with the level of protein accumulation in the cell envelope. Accumulation of material occurs under stress, and is exacerbated upon impairment of the normal housekeeping and stress-responsive mechanisms of the cell. Mutations that cause increased vesiculation enhance bacterial survival upon challenge with stressing agents or accumulation of toxic misfolded proteins. Preferential packaging of a misfolded protein mimic into vesicles for removal indicates that the vesiculation process can act to selectively eliminate unwanted material. Our results demonstrate that production of bacterial outer membrane vesicles is a fully independent, general envelope stress response. In addition to identifying a novel mechanism for alleviating stress, this work provides physiological relevance for vesicle production as a protective mechanism.  相似文献   

2.
The ClyA protein is a pore-forming cytotoxin expressed by Escherichia coli and some other enterobacteria. It confers cytotoxic activity toward mammalian cells, but it has remained unknown how ClyA is surface exposed and exported from bacterial cells. Outer-membrane vesicles (OMVs) released from the bacteria were shown to contain ClyA protein. ClyA formed oligomeric pore assemblies in the OMVs, and the cytotoxic activity toward mammalian cells was considerably higher than that of ClyA protein purified from the bacterial periplasm. The redox status of ClyA correlated with its ability to form the oligomeric pore assemblies. In bacterial cells with a defective periplasmic disulphide oxidoreductase system, the ClyA protein was phenotypically expressed in a constitutive manner. The results define a vesicle-mediated transport mechanism in bacteria, and our findings show that the localization of proteins to OMVs directly may contribute to the activation and delivery of pathogenic effector proteins.  相似文献   

3.
In contrast to the well established multiple cellular roles of membrane vesicles in eukaryotic cell biology, outer membrane vesicles (OMV) produced via blebbing of prokaryotic membranes have frequently been regarded as cell debris or microscopy artifacts. Increasingly, however, bacterial membrane vesicles are thought to play a role in microbial virulence, although it remains to be determined whether OMV result from a directed process or from passive disintegration of the outer membrane. Here we establish that the human oral pathogen Porphyromonas gingivalis has a mechanism to selectively sort proteins into OMV, resulting in the preferential packaging of virulence factors into OMV and the exclusion of abundant outer membrane proteins from the protein cargo. Furthermore, we show a critical role for lipopolysaccharide in directing this sorting mechanism. The existence of a process to package specific virulence factors into OMV may significantly alter our current understanding of host-pathogen interactions.  相似文献   

4.
Although the observation that Gram-negative bacteria produce outer membrane vesicles (MVs) was made over 40 years ago, their biological roles have become a focus of study only within the past 10 years. Recent progress in this area has revealed that bacterial MVs are utilized for several processes including delivery of toxins to eukaryotic cells, protein and DNA transfer between bacterial cells, and trafficking of cell-cell signals. Some of these roles appear to be generalized among the Gram-negative bacteria while others are restricted to specific bacterial species/strains. Here we review the known roles of MVs, propose other roles for MVs in mediating interspecies and inter-kingdom communication, and discuss the mechanism of MV formation.  相似文献   

5.
The mechanism by which a protein integrates posttranslationally into a membrane can involve the composition of the membrane itself, domains within the inserting polypeptide, and a number of associating proteins. Some integral membrane proteins do not accumulate to normal levels when certain pigments are deficient, and this has been interpreted to mean that such proteins may be rapidly degraded when not in a correct complex. Alternatively, pigments could facilitate the movement of some proteins from an aqueous to a lipid environment. To determine whether chlorophyll is absolutely required for the membrane integration of the light-harvesting chlorophyll-binding protein (LHCP) of chloroplast thylakoid membranes, we have expressed LHCP in Escherichia coli that lacks photosynthetic pigments. LHCP is targeted to the bacterial inner membrane by the addition of a bacterial signal peptide and cannot be extracted from these membranes by NaOH, NaBr, or Na2HCO3 but is extracted by 0.2% Triton X-100. Treatment of isolated right-side-out and inside-out bacterial inner membrane vesicles with trypsin reveals that only the amino terminus of LHCP is exposed on the cytoplasmic face, and the remaining portion of the protein is inaccessible. Treatment of the inside-out vesicles with trypsin followed by alkaline extraction shows that LHCP is intrinsic to the membrane and is not anchored solely by the bacterial signal peptide. Chlorophyll, therefore, is not required for LHCP to integrate into a membrane, but in the absence of these pigments this process is observed to be inefficient.  相似文献   

6.
易洁  刘青  孔庆科 《微生物学报》2016,56(6):911-921
外膜囊泡(OMVs,Outer membrane vesicles)是一种在革兰氏阴性菌甚至某些革兰氏阳性菌中普遍存在的包含生物学活性物质的囊泡状结构,其大小在20–250 nm之间。其组成成分包括脂多糖、外膜蛋白、磷脂、DNA以及在形成过程中被外膜包裹的周质成分等。由于外膜囊泡不能复制且含有大量的细菌抗原,并能有效激活免疫系统,所以被认为是极具潜力的疫苗候选。虽然外膜囊泡从发现至今有50多年的历史,但针对其作为疫苗的潜力探究最近几年才开始,中国关于这方面的文献报道还很少。本文从外膜囊泡诱导免疫应答的机制以及其作为疫苗的研究进展两个方面概述了外膜囊泡可以作为一种新颖的防控疾病的疫苗策略,为今后外膜囊泡疫苗的深入研究提供参考。  相似文献   

7.
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein, we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation system in bacteria and chloroplasts, unconventional protein secretion and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse, and present evidence that vesicle budding and collapse may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.  相似文献   

8.
细菌外膜囊泡(outer membrane vesicles,OMVs)是在细菌生长过程中分泌出的一种直径为20~300 nm的膜性小泡。由磷脂、脂多糖、蛋白质、RNA或DNA等组成。OMVs包含大量细菌抗原,通过启动信号转导通路增强细胞因子和共刺激分子的表达,促进抗原呈递,有效激活免疫系统。OMVs中的毒力因子可以传递给宿主细胞,刺激细菌-宿主细胞之间的相互作用,具有内在的抗肿瘤活性。另外OMVs有利于进行工程设计,还可作为高效的药物运载体,实现免疫治疗和化疗-光疗的结合,从而提高药物的抗癌能力。OMVs在肿瘤免疫、肿瘤工程疫苗和载药等方面具有良好前景,被认为是抗肿瘤治疗的新型手段。从OMVs的结构组分、产生机制和抗肿瘤机制等方面概述了OMVs在肿瘤治疗中的研究进展,为将来OMVs的深入研究和临床应用提供参考。  相似文献   

9.
Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC) maintain an extracellular lifestyle and use a type III secretion system to translocate effector proteins into the host cytosol. These effectors manipulate host pathways to favor bacterial replication and survival. NleA is an EHEC/EPEC- and related species-specific translocated effector protein that is essential for bacterial virulence. However, the mechanism by which NleA impacts virulence remains undetermined. Here we demonstrate that NleA compromises the Sec23/24 complex, a component of the mammalian COPII protein coat that shapes intracellular protein transport vesicles, by directly binding Sec24. Expression of an NleA-GFP fusion protein reduces the efficiency of cellular secretion by 50%, and secretion is inhibited in EPEC-infected cells. Direct biochemical experiments show that NleA inhibits COPII-dependent protein export from the endoplasmic reticulum. Collectively, these findings indicate that disruption of COPII function in host cells contributes to the virulence of EPEC and EHEC.  相似文献   

10.
The Helicobacter pylori infection of gastric mucosa is one of the most common infectious diseases and is associated with a variety of clinical outcomes, including peptic ulcer disease and gastric cancer. Helicobacter pylori-induced damage to gastric mucosal cells is controlled by bacterial virulence factors, which include VacA and CagA. Outer membrane vesicles are constantly shed by the bacteria and can provide an additional mechanism for pathogenicity by releasing non-secretable factors which can then interact with epithelial cells. The present report shows that external membrane vesicles are able to induce apoptosis not mediated by mitochondrial pathway in gastric (AGS) epithelial cells, as demonstrated by the lack of cytochrome c release with an activation of caspase 8 and 3. Apoptosis induced by these vesicles does not require a classic VacA+ phenotype, as a negative strain with a truncated and therefore non-secretable form of this protein can also induce cell death. These results should be taken into account in future studies of H. pylori pathogenicity in strains apparently VacA-.  相似文献   

11.
外膜囊泡(outer membrane vesicles,OMV)是在细菌生命活动中不断从细菌细胞表面脱离而形成的功能性囊泡,其内部含有蛋白质、脂质和核酸等成分,具有多种特殊的生物学功能,在细菌-细菌和细菌-宿主相互作用中起着关键作用.虽然大多数OMV的研究都是关于动物病原菌,但最近OMV在植物-细菌相作领域的作用已逐...  相似文献   

12.
The intracellular bacterial pathogen Legionella pneumophila subverts host membrane transport pathways to promote fusion of vesicles exiting the endoplasmic reticulum (ER) with the pathogen-containing vacuole. During infection there is noncanonical pairing of the SNARE protein Sec22b on ER-derived vesicles with plasma membrane (PM)-localized syntaxin proteins on the vacuole. We show that the L.?pneumophila Rab1-targeting effector DrrA is sufficient to stimulate this noncanonical SNARE association and promote membrane fusion. DrrA activation of the Rab1 GTPase on PM-derived organelles stimulated the tethering of ER-derived vesicles with the PM-derived organelle, resulting in vesicle fusion through the pairing of Sec22b with the PM syntaxin proteins. Thus, the effector protein DrrA stimulates a host membrane transport pathway that enables ER-derived vesicles to remodel a PM-derived organelle, suggesting that Rab1 activation at the PM is sufficient to promote the recruitment and fusion of ER-derived vesicles.  相似文献   

13.
Gram-negative bacteria produce outer membrane vesicles (OMVs) and contain bacterial cargo including nucleic acids and proteins. The proteome of OMVs can be altered by various factors including bacterial growth stage, growth conditions, and environmental factors. However, it is currently unknown if the mechanism of OMV biogenesis can determine their proteome. In this study, we examined whether the mechanisms of OMV biogenesis influenced the production and protein composition of Pseudomonas aeruginosa OMVs. OMVs were isolated from three P. aeruginosa strains that produced OMVs either by budding alone, by explosive cell lysis, or by both budding and explosive cell lysis. We identified that the mechanism of OMV biogenesis dictated OMV quantity. Furthermore, a global proteomic analysis comparing the proteome of OMVs to their parent bacteria showed significant differences in the identification of proteins in bacteria and OMVs. Finally, we determined that the mechanism of OMV biogenesis influenced the protein composition of OMVs, as OMVs released by distinct mechanisms of biogenesis differed significantly from one another in their proteome and functional enrichment analysis. Overall, our findings reveal that the mechanism of OMV biogenesis is a main factor that determines the OMV proteome which may affect their subsequent biological functions.  相似文献   

14.
Lee EY  Bang JY  Park GW  Choi DS  Kang JS  Kim HJ  Park KS  Lee JO  Kim YK  Kwon KH  Kim KP  Gho YS 《Proteomics》2007,7(17):3143-3153
Gram-negative bacteria constitutively secrete native outer membrane vesicles (OMVs) into the extracellular milieu. Although recent progress in this area has revealed that OMVs are essential for bacterial survival and pathogenesis, the mechanism of vesicle formation and the biological roles of OMVs have not been clearly defined. Using a proteomics approach, we identified 141 protein components of Escherichia coli-derived native OMVs with high confidence; two separate analyses yielded identifications of 104 and 117 proteins, respectively, with 80 proteins overlapping between the two trials. In the group of identified proteins, the outer membrane proteins were highly enriched, whereas inner membrane proteins were lacking, suggesting that a specific sorting mechanism for vesicular proteins exists. We also identified proteins involved in vesicle formation, the removal of toxic compounds and attacking phage, and the elimination of competing organisms, as well as those involved in facilitating the transfer of genetic material and protein to other bacteria, targeting host cells, and modulating host immune responses. This study provides a global view of native bacterial OMVs. This information will help us not only to elucidate the biogenesis and functions of OMV from nonpathogenic and pathogenic bacteria but also to develop vaccines and antibiotics effective against pathogenic strains.  相似文献   

15.
Monoclonal antibodies 4B1 and 5F7 bind to distinct, nonoverlapping epitopes in the lac carrier protein. By use of immunofluorescence microscopy and radiolabeled monoclonal antibodies and Fab fragments, it is shown that both 4B1 and 5F7 bind to spheroplasts and to right-side-out vesicles, but only to a small extent to inside-out vesicles. Clearly, therefore, the lac carrier protein has an asymmetric orientation within the cytoplasmic membrane of Escherichia coli, and both epitopes are located on the periplasmic surface. In right-side-out vesicles, radiolabeled 4B1 binds with a stoichiometry of 1 mol of antibody per 2 mol of lac carrier protein, while radiolabeled 4B1 Fab fragments bind 1:1. Importantly, the intact antibody and its Fab fragments bind to proteoliposomes reconstituted with purified lac carrier protein with a stoichiometry very similar to that observed in right-side-out membrane vesicles. Thus, it seems highly likely that the orientation of the lac carrier protein in the reconstituted system is similar to that in the bacterial cytoplasmic membrane, at least with respect to 4B1 epitope.  相似文献   

16.
目的:建立稳定表达的PHluorin标记的线虫种系,为囊泡在线虫ALA神经元上分泌机制的研究提供模型。方法:采用了国际先进的线虫转基因技术,将构建的Pida-1IDA-1:PHluorin质粒通过显微注射到线虫的母代,通过筛选后得到稳定表达的种系。结果:通过DIC显微镜整体检测和全内反射荧光成像技术(Tirfm)细胞检测,蛋白表达的位置正确,通过高倍数体式显微镜确定稳定种系中阳性率高达99%。结论:建立了一个稳定表达的荧光标记线虫种系,为进一步在线虫上研究囊泡分泌提供了很好的模型。  相似文献   

17.
Defensins are naturally occurring antimicrobial peptides that disrupt bacterial membranes and prevent bacterial invasion of the host. Emerging studies indicate that certain defensins also block virus infection; however, the mechanism(s) involved are poorly understood. We demonstrate that human alpha-defensins inhibit adenovirus infection at low micromolar concentrations, and this requires direct association of the defensin with the virus. Moreover, defensins inhibit virus disassembly at the vertex region, thereby restricting the release of an internal capsid protein, pVI, which is required for endosomal membrane penetration during cell entry. As a consequence, defensins hamper the release of adenovirus particles from endocytic vesicles, resulting in virion accumulation in early endosomes and lysosomes. Thus, defensins possess remarkably distinct modes of activity against bacteria and viruses, and their function may provide insights for the development of new antiviral strategies.  相似文献   

18.
The lysosomotropic amine primaquine has previously been shown to inhibit both secretory and recycling processes of cells in culture. We have used a cell-free assay that reconstitutes glycoprotein transport through the Golgi apparatus to investigate the mechanism of action of primaquine. In this assay, primaquine inhibits protein transport at a half-maximal concentration of 50 microM, similar to the concentration previously reported to disrupt protein secretion in cultured cells. Kinetic analysis of primaquine inhibition indicates that its point of action is at an early step in the vesicular transport mechanism. Primaquine does not inhibit the fusion of vesicles already attached to their target membranes. Primaquine irreversibly inactivates the membranes that form transport vesicles (donor), but not the membranes that are the destination of those vesicles (acceptor). Morphological data indicate that primaquine inhibits the budding of vesicles from the donor membranes. Once formed, the vesicles are refractile to primaquine action, and their attachment to and fusion with acceptor membranes proceeds unimpeded. In addition to illuminating the mechanism of action of primaquine, this study suggests that the selective action of this agent will make it a useful tool in the study of the formation of transport vesicles.  相似文献   

19.
Increasing amounts of tau protein were expressed in non-neuronal cells. When intracellular amounts reached a threshold level, tau protein was released to the extracellular culture medium in association with membrane vesicles. Hence, we propose that tau might be secreted through membrane vesicles as a cellular mechanism to eliminate the excess of tau protein, thereby avoiding its toxicity.  相似文献   

20.
Escherichia coli and other Gram-negative bacteria produce outer membrane vesicles during normal growth. Vesicles may contribute to bacterial pathogenicity by serving as vehicles for toxins to encounter host cells. Enterotoxigenic E. coli (ETEC) vesicles were isolated from culture supernatants and purified on velocity gradients, thereby removing any soluble proteins and contaminants from the crude preparation. Vesicle protein profiles were similar but not identical to outer membranes and differed between strains. Most vesicle proteins were resistant to dissociation, suggesting they were integral or internal. Thin layer chromatography revealed that major outer membrane lipid components are present in vesicles. Cytoplasmic membranes and cytosol were absent in vesicles; however, alkaline phosphatase and AcrA, periplasmic residents, were localized to vesicles. In addition, physiologically active heat-labile enterotoxin (LT) was associated with ETEC vesicles. LT activity correlated directly with the gradient peak of vesicles, suggesting specific association, but could be removed from vesicles under dissociating conditions. Further analysis revealed that LT is enriched in vesicles and is located both inside and on the exterior of vesicles. The distinct protein composition of ETEC vesicles and their ability to carry toxin may contribute to the pathogenicity of ETEC strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号