首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
A cDNA clone encoding amorpha-4,11-diene synthase from Artemisia annua was subcloned into a bacterial expression vector in frame with a His6-tag. Recombinant amorpha-4,11-diene synthase was produced in Escherichia coli and purified to apparent homogeneity. The enzyme showed pH optimum at pH 6.5, and a minimum at pH 7.5. Substantial activity was observed in the presence of Mg2+, Mn2+ or Co2+ as cofactor. The enzyme exhibits a low activity in the presence of Ni2+ and essentially no activity with Cu2+ or Zn2+. The sesquiterpenoids produced from farnesyl diphosphate in the presence of Mg2+ were analyzed by GC-MS. In addition to amorpha-4,11-diene, 15 sesquiterpenoids were produced. Only small quantitative differences in product pattern were observed at pH 6.5, 7.5, or 9.5. Amorpha-4,11-diene synthase showed significant increased product selectivity in the presence of Mn2+ or Co2+. Km for farnesyl diphosphate was 3.3, 8.0, and 0.7 microM in the presence of Mg2+, Mn2+ or Co2+, respectively. The corresponding kcat-values were 6.8, 15.0, and 1.3 x 10(-3) s(-1), respectively. Km and kcat for geranyl diphosphate were 16.9 microM and 7.0 x 10(-4) s(-1), respectively, at pH 6.5, in the presence of Mn2+.  相似文献   

5.
Artemisia annua, an indigenous plant to Korea, contains an antimalarial sesquiterpene, artemisinin. The first committed step of artemisinin biosynthesis is the cyclization of farnesyl diphosphate by a sesquiterpene synthase to produce an amorphane-type ring system. The aims of this research were to molecularly clone and express amorpha-4,11-diene synthase for metabolic engineering. PCR amplification of genomic DNA with a pair of primers, designed from the conserved regions of sesquiterpene synthases of several plants, produced a 184-bp DNA fragment. This fragment was used in Northern blot analysis as a probe, showing approximately 2.2 kb of a single band. Its sequence information was used to produce 2106 bp of a full-length cDNA sequence including 1641 bp of open reading frame for 546 amino acids (kcs12) through a rapid amplification of cDNA ends (RACE). The deduced amino acid sequence displayed 36% identity with 5-epi-aristolochene synthase of Nicotiana tabacum. A soluble fraction of Escherichia coli harboring kcs12 catalyzed the cyclization of farnesyl diphosphate to produce a sesquiterpene, which was identified through GC-MS analysis as amorpha-4,11-diene.  相似文献   

6.
7.
The endoperoxide sesquiterpene lactone artemisinin and its derivatives are a promising new group of drugs against malaria. Artemisinin is a constituent of the annual herb Artemisia annua L. So far only the later steps in artemisinin biosynthesis--from artemisinic acid--have been elucidated and the expected olefinic sesquiterpene intermediate has never been demonstrated. In pentane extracts of A. annua leaves we detected a sesquiterpene with the mass spectrum of amorpha-4,11-diene. Synthesis of amorpha-4,11-diene from artemisinic acid confirmed the identity. In addition we identified several sesquiterpene synthases of which one of the major activities catalysed the formation of amorpha-4,11-diene from farnesyl diphosphate. This enzyme was partially purified and shows the typical characteristics of sesquiterpene synthases, such as a broad pH optimum around 6.5-7.0, a molecular mass of 56 kDa, and a K(m) of 0.6 microM. The structure and configuration of amorpha-4,11-diene, its low content in A. annua and the high activity of amorpha-4,11-diene synthase all support that amorpha-4,11-diene is the likely olefinic sesquiterpene intermediate in the biosynthesis of artemisinin.  相似文献   

8.
将经RACE方法克隆到的青蒿倍半萜合酶cDNA(AF304444) 开放阅读框插入到原核表达载体pET30a(+)的NcoⅠ和BamHⅠ酶切位点之间,构建N端和C端均携带有HIS6表达标签的重组表达载体pET30SESQ。将pET30SESQ转入大肠杆菌BL21(DE3), IPTG(Isopropyl-beta-D-thiogalactoside)诱导蛋白表达,表达产物经镍琼脂糖柱纯化。纯化蛋白加入酶促反应体系(FPP),GC-MS分析酶促反应体系的正己烷萃取物,结果显示此重组酶可以催化FPP向法呢醇的转化。  相似文献   

9.
The gene encoding for amorpha-4,11-diene synthase from Artemisia annua was transformed into yeast Saccharomyces cerevisiae in two fundamentally different ways. First, the gene was subcloned into the galactose-inducible, high-copy number yeast expression vector pYeDP60 and used to transform the Saccharomyces cerevisiae strain CEN·PK113-5D. Secondly, amorpha-4,11-diene synthase gene, regulated by the same promoter, was introduced into the yeast genome by homologous recombination. In protein extracts from galactose-induced yeast cells, a higher activity was observed for yeast expressing the enzyme from the plasmid. The genome-transformed yeast grows at the same rate as wild-type yeast while plasmid-carrying yeast grows somewhat slower than the wild-type yeast. The plasmid and genome-transformed yeasts produced 600 and 100 μg/l of the artemisinin precursor amorpha-4,11-diene, respectively, during 16-days’ batch cultivation. Revisions requested 14 November 2005; Revisions received 17 January 2006  相似文献   

10.
Recombinant amorpha-4,11-diene synthase from Artemisia annua, expressed in Escherichia coli, was incubated with the deuterium-labeled farnesyl diphosphates, (1R)-[1-(2)H]FPP, (1S)-[1-(2)H]FPP, and [1,1-(2)H2]FPP. GC-MS analysis of amorpha-4,11-diene formed from the deuterated FPPs shows that the deuterium atoms are retained in the product. Furthermore, analysis of the MS-spectra obtained with the differently labeled substrate indicates that the H-1si-proton of FPP is transferred during the cyclization reaction to carbon 10 of amorphadiene while the H-1re-proton of FPP is retained on C-6 of the product. Proton NMR and COSY experiments proved that the original H-1si-proton of FPP is located at C-10 of amorpha-4,11-diene as a result of a 1,3-hydride shift following initial 1,6-ring closure. The results obtained support the previously suggested mechanism for the cyclization of farnesyl diphosphate by amorph-4,11-diene synthase involving isomerization of FPP to (R)-nerolidyl diphosphate (NPP), ionization of NPP, and C-1,C-6-ring closure to generate a bisabolyl cation, followed by a 1,3-hydride shift, 1,10-ring closure to generate the amorphane skeleton, and deprotonation at either C-12 or C-13 to afford the final product (1S,6R,7R,10R)-amorpha-4,11-diene.  相似文献   

11.
In plants, sesquiterpenes of different structural types are biosynthesized from the isoprenoid intermediate farnesyl diphosphate. The initial reaction of the biosynthesis is catalyzed by sesquiterpene cyclases (synthases). In Artemisia annua L. (annual wormwood), a number of such sesquiterpene cyclases are active. We have isolated a cDNA clone encoding one of these, amorpha-4,11-diene synthase, a putative key enzyme of artemisinin biosynthesis. This clone contains a 1641-bp open reading frame coding for 546 amino acids (63.9 kDa), a 12-bp 5'-untranslated end, and a 427-bp 3'-untranslated sequence. The deduced amino acid sequence is 32 to 51% identical with the sequence of other known sesquiterpene cyclases from angiosperms. When expressed in Escherichia coli, the recombinant enzyme catalyzed the formation of both olefinic (97.5%) and oxygenated (2.5%) sesquiterpenes from farnesyl diphosphate. GC-MS analysis identified the olefins as (E)-beta-farnesene (0.8%), amorpha-4,11diene (91.2%), amorpha-4,7(11)-diene (3.7%), gamma-humulene (1.0%), beta-sesquiphellandrene (0.5%), and an unknown olefin (0.2%) and the oxygenated sesquiterpenes as amorpha-4-en-11-ol (0.2%) (tentatively), amorpha-4-en-7-ol (2.1%), and alpha-bisabolol (0.3%) (tentatively). Using geranyl diphosphate as substrate, amorpha-4,11-diene synthase did not produce any monoterpenes. The recombinant enzyme has a broad pH optimum between 7.5 and 9.0 and the Km values for farnesyl diphosphate, Mg2+, and Mn2+ are 0.9, 70, and 13 microM, respectively, at pH 7.5. A putative reaction mechanism for amorpha-4,11-diene synthase is suggested.  相似文献   

12.
In vitro synthesis of chemicals and pharmaceuticals using enzymes is of considerable interest as these biocatalysts facilitate a wide variety of reactions under mild conditions with excellent regio-, chemo- and stereoselectivities. A significant challenge in a multi-enzymatic reaction is the need to optimize the various steps involved simultaneously so as to obtain high-yield of a product. In this study, statistical experimental design was used to guide the optimization of a total synthesis of amorpha-4,11-diene (AD) using multienzymes in the mevalonate pathway. A combinatorial approach guided by Taguchi orthogonal array design identified the local optimum enzymatic activity ratio for Erg12:Erg8:Erg19:Idi:IspA to be 100∶100∶1∶25∶5, with a constant concentration of amorpha-4,11-diene synthase (Ads, 100 mg/L). The model also identified an unexpected inhibitory effect of farnesyl pyrophosphate synthase (IspA), where the activity was negatively correlated with AD yield. This was due to the precipitation of farnesyl pyrophosphate (FPP), the product of IspA. Response surface methodology was then used to optimize IspA and Ads activities simultaneously so as to minimize the accumulation of FPP and the result showed that Ads to be a critical factor. By increasing the concentration of Ads, a complete conversion (∼100%) of mevalonic acid (MVA) to AD was achieved. Monovalent ions and pH were effective means of enhancing the specific Ads activity and specific AD yield significantly. The results from this study represent the first in vitro reconstitution of the mevalonate pathway for the production of an isoprenoid and the approaches developed herein may be used to produce other isopentenyl pyrophosphate (IPP)/dimethylallyl pyrophosphate (DMAPP) based products.  相似文献   

13.
一个新高产青蒿倍半萜合酶基因的克隆、表达和分析   总被引:2,自引:0,他引:2  
用RACE方法从青蒿(Artemisia annua L.)高产株系001中克隆了一个新的1886bp的全长倍半萜合酶cDNA。克隆的倍半萜合酶氨基酸序列与烟草马兜铃烯合酶,莨菪岩兰螺旋二烯合酶,棉花杜松烯合酶的一致性分别为39%,38%和41%;与青蒿柏木脑合酶,紫穗槐二烯合酶和一个推测的倍半萜合酶克隆cASC125的一致性为50%,48%和59%。cDNA编码区序列被克隆进原核表达载体pET-30a,并在大肠杆菌(Escherichia coli)BL21(DE3)中诱导表达,但过量表达的蛋白主要是以不溶性蛋白形式存在。Northern blotting分析表明此基因在茎,叶,花中表达,在根中没有表达。  相似文献   

14.
Artemisinin is a novel effective antimalarial drug extracted from the medicinal plant Artemisia annua L. Owing to the tight market and low yield of artemisinin, there is great interest in enhancing the production of artemisinin. In the present study, farnesyi diphosphate synthase (FPS) was overexpressed in high-yield A. annua to Increase the artemisinin content. The FPS activity in transgenic A. ennue was twoto threefold greater than that In non-transgenic A. annua. The highest artemisinin content in transgenic A. annua was approximately 0.9% (dry weight), which was 34.4% higher than that in non-transgenic A. annua. The results demonstrate the regulatory role of FPS in artemisinin biosynthesis.  相似文献   

15.
用RACE方法从青蒿(Artemisia annua L.)高产株系001中克隆了一个新的1 886 bp的全长倍半萜合酶cDNA.克隆的倍半萜合酶氨基酸序列与烟草马兜铃烯合酶、莨菪岩兰螺旋二烯合酶、棉花杜松烯合酶的一致性分别为39%、38%和41%;与青蒿柏木脑合酶、紫穗槐二烯合酶和一个推测的倍半萜合酶克隆cASC125的一致性为50%、48%和59%.cDNA编码区序列被克隆进原核表达载体pET-30a,并在大肠杆菌(Escherichia coli)BL21(DE3)中诱导表达,但过量表达的蛋白主要是以不溶性蛋白形式存在.Northern blotting分析表明此基因在茎、叶和花中表达,在根中没有表达.  相似文献   

16.
Dedifferentiated and differentiated tissue cultures ofArtemisia annua L. for artemisinin production were carried out. The calluses were initiated on MS medium supplemented with sucrose (30 g l-1), myoinositol (100 mg l-1) and RT vitamins. The auxins used were naphtaleneacetic acid (NAA), indoleacetic acid (IAA), indolebutyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-d). These were added to the basal medium either singly or in combination. The best results were obtained with 2.4-d (4.5 M : 0.02 d-1) and NAA (5.4 M : 0.06 d-1). Cell suspensions were established on the same media without agar. Suspension cultures showed different morphological characteristics according to the plant growth regulator supplied. Organized cultures were initiated from callus obtained on 2,4-d (4.5 M) and from bud cultures. Medium containing 6-benzylaminepurine (BA) (8.9 M)+NAA (0.54 M); Zeatin (45.62 M)+NAA (5.37 M) or BA (8.9 M) stimulated both organogenesis in callus (frequency of induction =50%) and semi-organized tissue in shoot buds. BA (13.32 M)+NAA (1.08 M) or BA (13.32 M) only stimulated multiple shoot cultures (frequency of induction =80%). Regarding artemisinin content, while the values obtained were 1.13 and 0.78 mg gDW-1 in primary callus, artemisinin was not detected in cell suspension and only traces of it were found in multiple shoot cultures.  相似文献   

17.
Metabolic engineering of artemisinin biosynthesis in Artemisia annua L.   总被引:1,自引:0,他引:1  
Liu B  Wang H  Du Z  Li G  Ye H 《Plant cell reports》2011,30(5):689-694
Artemisinin, a sesquiterpene lactone isolated from the Chinese medicinal plant Artemisia annua L., is an effective antimalarial agent, especially for multi-drug resistant and cerebral malaria. To date, A. annua is still the only commercial source of artemisinin. The low concentration of artemisinin in A. annua, ranging from 0.01 to 0.8% of the plant dry weight, makes artemisinin relatively expensive and difficult to meet the demand of over 100 million courses of artemisinin-based combinational therapies per year. Since the chemical synthesis of artemisinin is not commercially feasible at present, another promising approach to reduce the price of artemisinin-based antimalarial drugs is metabolic engineering of the plant to obtain a higher content of artemisinin in transgenic plants. In the past decade, we have established an Agrobacterium-mediated transformation system of A. annua, and have successfully transferred a number of genes related to artemisinin biosynthesis into the plant. The various aspects of these efforts are discussed in this review.  相似文献   

18.
青蒿鲨烯合酶基因的克隆、结构分析与大肠杆菌表达   总被引:1,自引:0,他引:1  
用RT-PCR方法从青蒿(Artemisia annua L.)中克隆了一个1539bp全长鲨烯合酶cDNA。青蒿鲨烯合酶氨基酸序列与拟南芥、烟草、人类、酵母鲨烯合酶的一致性分别为70%、77%、44%和39%。青蒿鲨烯合酶基因组DNA结构很复杂,包括14个外显子和13个内含子。全长的或C末端截短的鲨烯合酶cDNA被克隆进原核表达载体pET30a并在大肠杆菌(Escherichia coli)BL21(DE3)中诱导表达。但在含有全长的鲨烯合酶cDNA的大肠杆菌中并没有观察到预期大小的鲨烯合酶表达,而C末端截短疏水区30个氨基酸的鲨烯合酶可在大肠杆菌中过量表达。  相似文献   

19.
Cryopreservation of callus tissue of Artimisia annua L. was optimized. Two lines of calli were precultured on MS medium with 5% (v/v) dimethyl sulfoxide, and protected by a cryoprotectant containing 15% (v/v) ethylene glycol, 15% (v/v) dimethyl sulfoxide, 30% (v/v) glycerol and 13.6% (w/v) sucrose. The highest survival rate of callus A201 reached 87% after it was pretreated at 25°C, cryopreserved by liquid nitrogen, recovered in water bath at 25°C and reloaded at 25°C with 34% (w/v) sucrose solution, and that of callus A202 reached 78% after it was treated as callus A201, except pretreated at 35°C, recovered at 35°C and reloaded with 47.8% (w/v) sucrose solution.  相似文献   

20.
栽培青蒿中总黄酮提取工艺   总被引:2,自引:0,他引:2  
利用超声波辅助技术,获得最大限度提取青蒿中总黄酮的新工艺。用正交设计理论,结合分光光度法,优化超声波辅助醇提法提取青蒿总黄酮工艺中的关键技术参数。最佳提取.工艺为:超声波频率59kHz,乙醇体积分数60%,提取时间40min,料液比1:40。超声波辅助提取法能够实现青篙中总黄酮的高效提取,产率达1.497%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号