首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical potential difference for each dissociationstate of malic acid across the tonoplast of leaf cells was examinedin two CAM plants, Graptopetalum paraguayense and Kalanchoëdaigremontiana. The concentration of malic acid in each dissociationstate was estimated from an analysis of pH and concentrationsof ionic species that included calcium, malate and isocitrate.The vacuoles contained 30–40 mM isocitrate and 50–70mM calcium in G. paraguayense, and 20–30 mM isocitrateand 70–100 mM calcium in K. daigremontiana. For the calculationof the pattern of dissociation of malic acid, the formationof chelates of calcium with malate and isocitrate, which havedifferent stability constants depending on the dissociationof the acids, were also taken into consideration. The vacuolarconcentrations of the divalently dissociated form of malic acid(mal2– were 4–7 mM and 1-3 mM in G. paraguayenseand in K. daigremontiana, respectively. To obtain informationabout the cytoplasmic concentration of malate, the apparentinhibition constant for malate of phosphoenolpyruvate carboxylasewas measured. It was about 330 µM in the dark period and60 µM in the light period. Considering an inside-positivemembrane potential, we conclude that mal2– can be takenup passively into the vacuole during the dark period and canbe released passively from the vacuole during the light period.Two types of channel (the "SV-type" channel and a novel "MU-type"channel) which we found recently in G. paraguayense [Iwasakiet al. (1992) Plant Physiol. 98: 1494] are probably involvedin the uptake and the release of malate in the diurnal CAM rhythm.The existence of a large pH-buffering capacity due to isocitricacid in the vacuole allows the accumulation of a large amountof malic acid during the diurnal CAM rhythm. (Received February 12, 1992; Accepted July 10, 1992)  相似文献   

2.
This paper reports autecological field-studies in Singaporeon Drymoglossum piloselloides (L.) Presl., an epiphytic fernof the humid tropics which is capable of performing Crassulaceanacid metabolism (CAM). As indicated by the gas exchange patternsand by the occurrence of a diurnal malic acid rhythm, the plantalso features CAM in situ at its natural sites. Both in well-wateredand in naturally droughted plants external CO2 was taken upsolely during the night. Water stress decreased nocturnal CO2uptake,but left the synthesis and storage of malic acid unaffected.This indicates that CO2 recycling of respiratory CO2 by CAMis ecophysiologically important at the high night temperaturestypical of the tropical habitats of the fern. The plants showeda diel fluctuation of cell-sap osmotic pressure which paralleledthat of malic acid, while the fluctuation of the xylem tensionfollowed the curve of transpiration more closely than it followedthat of the malic acid content. CAM in D. piloselloides wasclearly not limited by natural access to mineral ions and nitrogen.It is concluded that the ecophysiological advantage of CAM forD. piloselloides lies in a better water use efficiency as comparedwith C3 ferns and in the salvaging of carbon by CO2 recycling. Key words: CAM, epiphytic ferns, gas exchange, water relations  相似文献   

3.
Abstract The paper reports the results of the comprehensive study of crassulacean acid metabolism in two epiphytic tropical ferns, Drymoglossum piloselloides and Pyrrosia longifolia. The plants were investigated under different light, temperature and water status. It was found that both species are obligate CAM plants. The diurnal acidity rhythm is due to the fluctuation in malic acid concentration, which accounts for the change in titratable acidity. Besides malic acid, shikimate and oxalate are found to be present, but not contributing to the CAM acid rhythm. The diurnal rhythm of malic acid content results in a corresponding rhythm in leaf water relations. Both ΦΦ and Φtotal, were lowest at the end of the night, i.e. when the level of malic acid was highest. The effects of temperature on CO2 exchange were inverse to those observed in other CAM plants. In both ferns studied, dark CO2 fixation increased when the night temperature was increased. Increase in day temperature reduced CO2 uptake during phase IV and during the following night. The observed responses of the ferns to temperature changes suggest that the in situ environmental conditions are optimal for their CAM performance. In weak light, the plants showed net CO2 output during the midday deacidification period. Increases in light intensity reduced such CO2 output. Under drought conditions, the CO2 exchange in the ferns was reduced to zero within 5–6 d, indicating that the ferns studied are more susceptible to water deficiency than other CAM plants. This could be due to a higher cuticular conductance for water. The results are discussed, in particular, in relation to CAM performance of epiphytes growing in the wet tropics.  相似文献   

4.
The internal acidity levels of four common North American isoetids, or rosette-form aquatic macrophytes, were monitored under field conditions to determine the presence of crassulacean acid metabolism (CAM). The leaves of Littorella uniflora var. americana (Fern.) Gl. and Isoetes macrospora Durieu were found to have a diurnal fluctuation in titratable acidity characteristic of CAM plants, 124 and 142 μeq g?1 fresh wt., respectively. No variations were detected in the acidity of stems and leaves of Myriophyllum tenellum Bigel. and Lobelia dortmanna L. Litorella and Isoetes were then grown in the laboratory where the diurnal acid rhythm was shown to be due to the accumulation and disappearance of malic acid.Based on the magnitude of the diurnal acid rhythm and existing information on the productivity of these plants, it appears that the carbon assimilated via crassulacean acid metabolism may contribute substantially to their net annual productivity. This appears to be a case for which CAM has been selected directly as a response to carbon stress.  相似文献   

5.
6.
Abstract Crassulacean acid metabolism (CAM) was studied in mixotrophic callus tissue cultures of Kalanchoë blossfeldiana hybr. Montezuma and compared with plants propagated from the calli. The ultrastructural properties of the green callus cells are similar to mesophyll cells of CAM plants except that occasionally abnormal mitochondria were observed. There was permanent net CO2 output by the calli in light and darkness, which was lower in darkness than in light. The calli exhibited a diurnal rhythm of malic acid, with accumulation during the night and depletion during the day. 14C previously incorporated by dark CO2 fixation into malate was transferred upon subsequent illumination into end products of photosynthesis. All these data indicate that CAM operates in the calli tissue. The results revealed that the capacity for CAM is obviously lower in the calli compared with plantlets developing from the calli, or with ‘adult’ plants. The data suggest also that CAM in the calli was not limited by the activities of CAM enzymes.  相似文献   

7.
Mitochondria are important in the function and control of Crassulacean acid metabolism (CAM) during organic acid accumulation at night and acid decarboxylation in the day. In plants of the malic enzyme-(ME) type and the phosphoenolpyruvate carboxykinase- (PEPCK) type, mitochondria may exert their role in the control of the diurnal rhythm of malic and citric acids to a differential degree. In plants of both CAM types, the oxidative capacity of mitochondria, as well as the activity of CAM-linked mitochondrial enzymes, and of the alternative and the rotenone-resistant pathways of substrate oxidation were compared. Furthermore, a C? succulent was included, as well as both C? and CAM forms of Mesembryanthemum crystallinum during a salt-induced C?-to-CAM shift. Mitochondria of PEPCK-type CAM plants exhibited a lower activity of malate oxidation, ratio of malate to succinate oxidation, and activity of mitochondrial NAD-ME. With the exception of Kalancho? daigremontiana, leaf mitochondria of all other CAM species were highly sensitive to cyanide (80-100%), irrespective of the oxidant used. This indicates that the alternative oxidase is not of general importance in CAM. By contrast, rotenone-insensitive substrate oxidation was very high (50-90%) in all CAM species. This is the first comparison of the rotenone-insensitive pathway of respiration in plants with different CAM-types. The results of this study confirm that mitochondria are involved in the control of CAM to different degrees in the two CAM types, and they highlight the multiple roles of mitochondria in CAM.  相似文献   

8.
Gas exchange and organic acid accumulation of the C3-CAM intermediateClusia minor L. were investigated in response to various day/nighttemperatures and two light regimes (low and high PAR). For bothlight levels equal day/night temperatures between 20°C and30°C caused a typical C3 gas exchange pattern with all CO2uptake occurring during daylight hours. A day/ night temperatureof 15°C caused a negative CO2 balance over a 24 h periodfor low-PAR-grown plants while high-PAR-grown plants showeda CAM gas exchange pattern with most CO2 uptake taking placeduring the dark period. However, there was always a considerablenight-time accumulation of malic acid which increased when thenight-time temperature was lowered and had its maximum (54 mmolm–2) at day/night temperature of 30/15°C. A significantamount of malic acid accumulation (23 mmol m–2) in low-PAR-grownplants was observed only at 30/15°C. Recycling of respiratoryCO2 in terms of malic acid accumulation reached between 2·0and 21·5 mmol m–2 for high-PAR-grown plants whilethere was no significant recycling for low-PAR-grown plants.Both low and high-PAR-grown plants showed considerable night-timeaccumulation of citric acid. Indeed under several temperatureregimes low-PAR-grown plants showed day/night changes in citricacid levels whereas malic acid levels remained approximatelyconstant or slightly decreased. It is hypothesized that lowand high-PAR-grown plants have different requirements for citrate.In high-PAR-grown plants, the breakdown of citrate preventsphotoinhibition by increasing internal CO2 levels, whereas inlow-PAR-grown plants the night-time accumulation of citric acidmay function as an energy and carbon saving mechanism. Key words: C. minor, C3, CAM, citric acid, light intensity  相似文献   

9.
Plants of the CAM species Kalanchodaigremontiana grown at elevatedtemperatures (34/25C day/night) did not show endogenous netCO2-exchange rhythm at 34C whereas at 30–32C the rhythmwas present. In contrast, the endogenous rhythm never occursabove 30C in plants grown at 25/15C day/night. Key words: Crassulacean acid metabolism (CAM), endogenous rhythm, Kalancho daigremontiana, temperature adaptation, tonoplast  相似文献   

10.
Abstract Photoperiodism, known to control the level of CAM in different types of CAM plants (e.g. Kalanchoe blossfeldiana, Bryophyllum daigremontianum), would act as a reliable timer for seasonal coherent adaptation. Two different endogenous rhythms (malic enzyme activity, PEP carboxylase capacity) appear to be separately coupled to dawn and dusk, respectively, thus achieving time-compartmentation of CAM; this feature suggests involvement of an ‘internal coincidence’ type of clock mechanism. Persistence in continuous darkness of the rhythm of malic enzyme activity (measured by label incorporation into pyruvate or by CO2 output) establishes its endogenous character and shows that light is not necessary for malate decarboxylation. The role of the dawn signal would be to entrain the CAM system, i.e. to phase the endogenous rhythm of malic enzyme activity correctly to local time. The possibility of an effect of the phase of the PEP carboxylase rhythm on the phase of the decarboxylation rhythm is ruled out by the presence of the intermediary malate storage step. Phase responses to red and to far-red show that phytochrome is involved in rephasing the rhythm of malic enzyme activity. The relative position of dusk affords a ‘measurement’ of the season by the CAM system entrained by dawn. According to the dusk-dawn interval, the level of PEP carboxylase capacity (amount of active enzyme) is modified, resulting in changes of CAM level (high activity under short days).  相似文献   

11.
Summary CO2 exchange, the diurnal variations in the levels of malic, citric and isocitric acid, and the labelling pattern after 14CO2 fixation were measured in Sedum acre and Sedum mite growing in situ. As predicted from laboratory experiments, drought changed the gas exchange pattern from a C3 type to a crassulacean acid metabolism (CAM) type. This shift correlated with the development of a diurnal rhythm in the malic acid content. The results of 14CO2 pulse-chase experiments suggest that in well-watered plants a CAM pattern of carbon flow already exists; hence water stress might enhance latent CAM rather than induce it. The in situ CAM performance by the Sedum species appeared to be highly susceptible to modulation by season and external factors, particularly light and temperature.CAM did not substantially contribute to total carbon gain in S. acre and S. mite. During most of their lifecycles the plants grow under conditions that favour CO2 uptake by the C3 pathway rather than by CAM. Hence, despite a capability to feature CAM, the 13C values found in S. acre and S. mite are those of C3 plants.Abbreviations CAM Crassulacean Acid Metabolism - PEP-C Phosphoenolpyruvate-Carboxylase - DW Dry weight Dedicated to Prof. Dr. Dr. h.c. M. Evenari on the occasion of his 75th birthday and to Dr. K.F. Springer  相似文献   

12.
M. Kluge 《Oecologia》1977,29(1):77-83
Summary Sedum acre L. collected from its natural stands south of Darmstadt (Germany) showed 13C values typical for C3 plants. This suggests that in situ at the natural stand CO2 was fixed mainly via the C3 mode of photosynthesis rather than via the CAM mode. However, experimental water stress shifts the CO2 exchange pattern from the C3 type to CAM type. Simultaneously, a diurnal rhythm of malic acid oscillation, typical for CAM, and increase of PEP-carboxylase and malic enzyme activities developed. Hence, Sedum acre is obviously to be classified as a facultative CAM plant. Because of the temperature characteristics of CO2 exchange in Sedum acre, in situ CO2 should be harvested from the atmosphere mainly during the seasons where water stress situations capable of inducing CAM are unlikely to occur.  相似文献   

13.
Sedum telephium is a C3/CAM intermediate plant in which expressionof CAM is caused by water deficit. The timing of the C3-CAMswitch and its relationship with water status and phosphoenolpyruvate(PEP) carboxylase activity have been investigated. Water deficitwas provided by application of polyethylene glycol (PEG) solutionsso that roots were exposed to water potentials from 0 to –2.0 MPa below that of the nutrient solution. The response ofthe plants was measured during the first dark period after PEGaddition and 7 d later. Malic acid accumulation was triggeredduring the first dark period at root water potentials of –0.3MPa or less. This corresponded with very small decreases inleaf water potential and relative water content. The capacityof PEP carboxylase was not altered at any water potential duringthe first dark period. After 7 d the capacity of PEP carboxylaseprogressively increased as water potential declined to –0.4MPa. At this, and more negative, water potentials it was 5-foldhigher than in well-watered leaves. Malic acid fluctuationsincreased with decreasing PEG water potential below a thresholdof –0.1 MPa. Malic acid levels at the end of the lightperiod were progressively lower as water potential decreased.NAD- and NADP-malic enzyme activity were not affected by lowwater potential. Leaves detached from well-watered plants in the middle of thelight period and kept hydrated did not accumulate malic acidduring the following dark period. Allowing the leaves to lose10% of their water content induced malic acid accumulation duringthe same time. Conversely, leaves detached from long-term droughtedplants (which had malate fluctuations and a PEP carboxylasecapacity 5-fold higher than well-watered plants) accumulatedmalate during the night if maintained at the same low hydrationstate (82%RWC), whereas malic acid accumulation was promptlyreduced if they were rehydrated. Malic acid accumulation couldtherefore be rapidly altered by changing the hydration stateof the leaves. The short-term rehydration treatments did notalter PEP carboxylase capacity. However, alteration of leafhydration affected the apparent Km (PEP) of PEP carboxylaseextracted 1 h before the end of the dark period. The Km wasincreased by rehydration and decreased by dehydration. Sensitivityto feedback inhibition by malate was not affected by hydrationstate and was high for PEP carboxylase from well-watered leavesand lower for PEP carboxylase from long-term droughted leaves. Taken together, the responses of intact plants and detachedleaves show that malic acid accumulation can be triggered veryrapidly by small water deficits in the leaves. The extent ofnight-time malic acid accumulation is independent of PEP carboxylasecapacity. However, a change in the hydration state of the leavescan rapidly alter the affinity of PEP carboxylase for PEP. Theregulation of malic acid accumulation in relation to the drought-inducedtriggering of CAM is discussed. Key words: Crassulacean acid metabolism, water stress, Sedum telephium, phosphoenolpyruvate carboxylase (PEP carboxylase), malic enzyme  相似文献   

14.
Diurnal patterns of CO2 exchange and fluctuations of tissuemalic acid concentrations were investigated in three speciesof Commelinaceae: Callisia fragrans and Tripogandra multiflorafrom Jamaica, and Tradescantia brevifolia from southern Texas.Very low levels of CAM gas exchange were induced by droughtstress in C. fragrans and T. multiflora. In addition, past indicationsof CAM-cycling in the two Jamaican species were confirmed indrought-stressed plants; however, only C. fragrans exhibitedCAM-cycling under well-watered conditions. CAM-cycling underdrought stress was also found in T. brevifolia. This constitutesthe first report of CAM (sensu lato) in the genus Tradescantia.The importance of low-level CAM in these three species is discussedas a potential adaptation to drought.Copyright 1994, 1999 AcademicPress Callisia fragrans, Tradescantia brevifolia, Tripogandra multiflora, Commelinaceae, CO2 exchange, Crassulacean acid metabolism, CAM-cycling, CAM-idling, drought stress, malic acid fluctuations  相似文献   

15.
The carbon balance of shade-grown Ananas comosus was investigatedwith regard to nitrogen supply and responses to high PAR. Netdark CO2 uptake was reduced from 61.2 to 38.5 mmol CO2 m–2in N limited (–N) plants grown under low PAR (60 µmolm–2 s–1) and apparent photon yield declined from0.066 to 0.034 (mol 02.mol–1 photon), although photosyntheticcapacities (measured under 5% CO2) were similar. Following transferfor 7 d to high PAR (600. µmol m–2 s–1), netCO2 uptake at night increased by 14% in +N plants, and daytimephotosynthetic capacity was higher, with a maximum value of7.8 µmol m–2 s–1. The magnitude of dark CO2 fixation during CAM was measured asdawn—dusk variations in leaf-sap titratable acidity (H+)and as the proportion of malic and citric acids. The contributionfrom re-fixation of respiratory CO2 recycling (measured as thedifference between net CO2 uptake and malic acid accumulation)varied with growth conditions, although it was generally lower(30%) than reported for other bromeliads. Assuming a stoichiometryof 2H+: malate and 3H+: citrate, there was a good agreementbetween titratable protons and enzymatically determined organicacids. The accumulation of citric acid was related to nitrogensupply and PAR regime, increasing from 7.0 mol m–3 (+Nplants) to 18 mol m–3 (–N plants) when plants weretransferred to high PAR; malate: citrate ratios decreased from13.1 to 2.5 under these conditions. Under the low PAR regime, leaf-sap osmotic pressure increasedat night in proportion to malic acid accumulation. However,following the transfer to high PAR for 7 d, there was a muchgreater depletion of soluble sugars at night which correspondedto a decrease in leaf-sap osmotic pressure. Although a rolefor citric acid in CAM has not been properly defined, it appearsthat the accepted stoichiometry for CAM in terms of gas exchange,titratable acidity, malic acid and osmotic pressure may nothold for plants which accumulate citric acid. Key words: Ananas comosus, CAM, citric acid accumulation, carbon recycling  相似文献   

16.
The induction of CAM in Pedilanthus tithymaloides (Euphorbiaceae) under water-limited conditions was evaluated by following diurnal oscillations of CO2 fixation, titratable acidity and malic acid content in the leaf extracts. CAM induction was assessed by measuring the activities of phosphoenolpyruvate carboxylase (PEPC), NADH-malate dehydrogenase (MDH) and phosphoenolpyruvate caroxykinase (PEPCK) in the leaves as well. Drought resulted in large increases in the nocturnal acid accumulation and rates of CO2 uptake in the leaves of P. tithymaloides. The drought-induced CAM activity tended to be reversible after re-watering. Nevertheless, under well-watered conditions, plants of P. tithymaloides showed day time CO2 uptake patterns with less pronounced diurnal oscillations of organic acids. Our data indicate that although P. tithymaloides is a CAM plant, environmental variables like drought induce photosynthetic flexibility in this species. This type of plasticity in CAM and metabolic versatility in P. tithymaloides should be an adaptation for prolonged survival under natural adverse edaphic and microclimate situations.  相似文献   

17.
Five tropical epiphytes were examined for evidence of CrassulaceanAcid Metabolism (CAM), namely the orchids Eria velutina Lindl.,Dendrobium tortile Lindl. and Dendrobium crumenatum Sw., andthe ferns Pyrrosia adnascens (Forst.) Ching and Pyrrosia angustata(Sw.) Ching, family Polypodiaceae. Diurnal variations in leaftitratable acidity, diffusive conductance and water potentialwere measured at various levels of water stress. The three orchidsshowed typical CAM behaviour, namely large diurnal fluctuationsin leaf acidity, day-time closure and night opening of stomataand a very slow decline in water potential under stress. Theferns showed some evidence of CAM, but this was not as well-developedas had been reported for two other tropical epiphytic membersof the same family. Key words: Crassulacean acid metabolism, Tropical epiphytes, Water stress  相似文献   

18.
Summary In crassulacean acid metabolism (CAM) large amounts of malic acid are redistributed between vacuole and cytoplasm in the course of night-to-day transitions. The corresponding changes of the cytoplasmic pH (pHcyt) were monitored in mesophyll protoplasts from the CAM plantKalanchoe daigremontiana Hamet et Perrier by ratiometric fluorimetry with the fluorescent dye 2′,7′-bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein as a pHcyt indicator. At the beginning of the light phase, pHcyt was slightly alkaline (about 7.5). It dropped during midday by about 0.3 pH units before recovering again in the late-day-to-early-dark phase. In the physiological context the variation in pHcyt may be a component of CAM regulation. Due to its pH sensitivity, phosphoenolpyruvate carboxylase appears as a likely target enzyme. From monitoring ΔpHcyt in response to loading the cytoplasm with the weak acid salt K-acetate a cytoplasmic H+-buffer capacity in the order of 65 mM H+ per pH unit was estimated at a pHcyt of about 7.5. With this value, an acid load of the cytoplasm by about 10 mM malic acid can be estimated as the cause of the observed drop in pHcyt. A diurnal oscillation in pHcyt and a quantitatively similar cytoplasmic malic acid is predicted from an established mathematical model which allows simulation of the CAM dynamics. The similarity of model predictions and experimental data supports the view put forward in this model that a phase transition of the tonoplast is an essential functional element in CAM dynamics.  相似文献   

19.
The shift from C3 to CAM was investigated as a function of both leaf and plant age in well-watered and salt-stressed (300 mM NaCl solution) plants of Mesembryanthemum crystallinum. Initiation of a night-time accumulation of malic acid, the decisive criterion of CAM, was followed in plants that were continuously stressed at different points in their life cycle. The deinducibility of CAM was examined after the release from stress by extensively rinsing the potting soil with de-mineralized water. Our results show that in M. crystallinum CAM is under strict developmental control, since CAM appeared only when a certain stage of development of the whole plant was reached. CAM was not present in any plant before this threshold, which was the same in salt-stressed as well as in well-watered plants. The metabolic shift coincided with the change from the seedling to the juvenile growth phase, and not with that from vegetative to reproductive growth, represented by the start of branching. The latter is timed to the end of extension growth. In well-watered plants, after this decisive point in development, a weak nighttime accumulation of malic acid could be measured (? 0.05 mol kgDW?1) in the oldest, mature leaves but not in young, developing ones. This “CAM capacity” gradually increased up to 0.2 mol kgDE?1 with further plant ageing. Leaf senescence, characterized by wilting and yellowing, diminished the CAM activity. In mature leaves salt stress drastically enhanced the magnitude of diurnal fluctuation in malic acid content. Removal of salt stress did not deinduce CAM activity, but diminished the amplitude of malic acid oscillations to some extent in those plants which had been stressed from early in their life cycle. In these plants, salt stress delayed plant development and growth thus retarding the life cycle. Well-watered plants, for example, branched about three weeks earlier than those that had been stressed continuously from one week after germination. After removal of stress a quasi-preserved earlier developmental stage in relation to the control plants determined the weaker CAM expression.  相似文献   

20.
A hybrid Phalaenopsis plant was grown hydroponically on a nutrientsolution of Hyponex in the greenhouse. Typical daily patternsof CO2 fixation, production of malic acid and citric acid andpH of the leaf and root were determined. The rate of primaryfixation of CO2 in the leaf increased markedly in the evening,remained high until well into the afternoon, then decreasedsharply. The pattern of production of organic acids resultedfrom the fact that the rate of uptake of CO2 gas was highestat night and fell during the day. A high correlation betweenpH value and level of malic acid in the leaves was observed,and an exponential relationship appeared to exist between theseparameters. These rhythmic sequences were not observed in theroot. The results suggest that metabolism in the leaf had characteristicsof CAM (Crassulacean Acid Metabolism), while the root did not. (Received May 6, 1988; Accepted October 25, 1988)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号