首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The excessive concentrations of toxic heavy metals in mine tailings and their very low N content make soil reclamation strategies by phytostabilization difficult. Our objective was to test if the symbiotic association between the legume Anthyllis vulneraria subsp. carpatica and the bacteria Mesorhizobium metallidurans originating from highly polluted mine tailings is able to increase N concentration in soils with contrasting Zn, Pb and Cd contents. Plants of A. vulneraria subsp. carpatica from a mine site and of a non-metallicolous subsp. praeopera from non-polluted soil were inoculated with a metallicolous or a non-metallicolous compatible Mesorhizobium spp. and grown on low and high heavy metal-contaminated soils. In contaminated soil, many nodules were observed when the metallicolous A. vulneraria was inoculated with its rhizobium species M. metallidurans, whereas the non-metallicolous A. vulneraria died after a few weeks regardless of the rhizobium inoculant. Eighty percent of the total nitrogen was derived from biological nitrogen fixation through the association between metallicolous A. vulneraria and the rhizobium grown on metal-enriched soil. The ability of the metallicolous A. vulneraria to develop a high nitrogen fixing potential opens new possibilities for promoting a low-maintenance plant cover and for stabilizing the vegetation in high heavy metal-contaminated soils.  相似文献   

2.
Prescribed spring burning often contributes to a predominance of C4 grasses and low forb abundance and is impractical at many sites, especially near development. We tested raking after mowing as an alternative to prescribed burning in a reconstructed Minnesota prairie. We also tested mowing without raking as a possible means of maintaining prairie communities. Frequency, flowering stem abundance, and cover were measured for all plant species and native functional groups (C4 grasses, C3 graminoids, forbs, legumes, and annual or biennial forbs). Mowing alone did not differ from the control in its effect on any functional groups of plants. Round‐headed bush clover (Lespedeza capitata), a legume, and Black‐eyed Susan (Rudbeckia hirta), a biennial, increased in frequency with treatments that removed biomass (i.e., fire or raking), but they did not have significantly more flowering stems. Thus, new plants established well from seed, whereas the vitality of mature plants did not change. Raking had similar effects to burning on most functional groups, although flowering stems of C4 grasses were significantly more abundant after fire than after raking. Burning reduced some C3 forbs and grasses and favored the dominance of C4 grasses. Therefore, raking after mowing in the spring provides an alternative to prescribed burning that has many of the same positive aspects as fire but does not promote aggressive C4 grasses to the same extent.  相似文献   

3.
The invasion of European perennial grasses represents a new threat to the native coastal prairie of northern California. Many coastal prairie sites also experience anthropogenic nitrogen (N) deposition or increased N availability as a result of invasion by N-fixing shrubs. We tested the hypothesis that greater seedling competitive ability and greater responsiveness to high N availability of exotic perennial grasses facilitates their invasion in coastal prairie. We evaluated pairwise competitive responses and effects, and the occurrence of asymmetrical competition, among three common native perennial grasses (Agrostis oregonensis, Festuca rubra, and Nassella pulchra) and three exotic perennial grasses (Holcus lanatus, Phalaris aquatica, and Festuca arundinacea), at two levels of soil N. We also compared the root and shoot biomass and response to fertilization of singly-grown plants, so we could evaluate how performance in competition related to innate plant traits. Competitive effects and responses were negatively correlated and in general varied continuously across native and exotic species. Two exceptions were the exotic species Holcus, which had large effects on neighbors and small responses to them, and competed asymmetrically with all other species in the experiment, and the native grass Nassella, which had strong responses to but little effect on neighbors, and was out-competed by all but one other species in the experiment. High allocation to roots and high early relative growth rate appear to explain Holcus’s competitive dominance, but its shoot biomass when grown alone was not significantly greater than those of the species it out-competed. Competitive dynamics were unaffected by fertilization. Therefore, we conclude that seedling competitive ability alone does not explain the increasing dominance of exotic perennial grasses in California coastal prairie. Furthermore, since native and exotic species responded individualistically, grouping species as ‘natives’ and ‘exotics’ obscured underlying variation within the two categories. Finally, elevated soil N does not appear to influence competition among the native and exotic perennial grasses studied, so reducing soil N pools may not be a critical step for the restoration of California coastal prairie.  相似文献   

4.

Aims

This work examines Zn accumulation in four Anthyllis vulneraria subspecies supplemented with mineral nitrogen or grown in the presence of their symbiotic bacteria.

Methods

Anthyllis vulneraria subspecies were grown hydroponically in the presence of high levels of ZnSO4. The plants were either grown in symbiosis with one of two non-metallicolous or metallicolous Mesorhizobium inoculants or in the presence of KNO3.

Results

When exposed to 1,000 μM Zn, shoot and root biomass of three out of our four Anthyllis subspecies cultivated with NO3 dropped significantly by about 24–28 %; carpatica, the fourth subspecies, was not affected. Subspecies carpatica Zn tolerance was confirmed when in symbiosis with the metallicolous strain. In the presence of 1,000 μM Zn, the different Anthyllis subspecies concentrated more Zn in their roots than in their shoots and only subsp. carpatica accumulated a significant amount of Zn in its shoots. The most remarkable feature was the drastic decrease in Zn concentration in both roots (up to 2.5–3 fold) and shoots (2.6-fold) of subsp. carpatica exposed to 1,000 μM Zn and nodulated whatever the Mesorhizobium strain used, compared to the N-grown plants.

Conclusions

Our results bring new perspectives as regards phytostabilization, with the potential use of a rhizobium-inoculated leguminous subspecies displaying unusual Zn tolerance.  相似文献   

5.
Artificial turves composed of 7 chalk grassland species (Festuca ovina L.; Briza media L.; Bromopsis erecta (Hudson) Fourr.; Plantago media L.; Sanguisorba minor Scop.; Anthyllis vulneraria L. and Lotus corniculatus L.) were grown from seed and exposed to two seasons of elevated (600 μmol mol–1) and ambient (340 μmol mol–1) CO2 concentrations in free air CO2 enrichment (ETH-FACE, Zurich). The turves were clipped regularly to a height of 5 cm and assessed for above ground biomass production and relative abundance based on accumulated clipped dry biomass as well as by point quadrat recording. Below ground biomass production was assessed with root in-growth bags during the second season of growth. Increases in total biomass (> 30%) were noted in elevated CO2, but the differences did not become significant until the second season of growth. Individual species’ biomass varied in response to elevated CO2, with significant increases in biomass in elevated CO2 turves for both legume species, and no significant CO2 effect on S. minor or P. media. An initial positive CO2 effect on biomass of combined grass species was reversed by the end of the experiment with less biomass and a significantly smaller proportion of total biomass present in elevated CO2, which was attributed primarily to changes in proportion of F. ovina. Species relative abundance was significantly affected by elevated CO2 in the final 4 of the 6 clip events, with the legume species increasing in proportion at the expense of the other species, particularly the grasses. Root length and dry weight were both significantly increased in elevated CO2 (77% and 89%, respectively), and these increases were greater than increases in shoot biomass (36%) from the same period. Species responses to elevated CO2, within the model community, were not consistent with predictions made from data on individual species, leading to the conclusion that responses to elevated CO2, at the community level, and species within the community level, are the result of direct physiological effects and indirect competitive effects. These conclusions are discussed with respect to the ecological responses of natural communities, and the chalk grassland community in particular, to elevated CO2.  相似文献   

6.
In restored grasslands of southern Europe, perennial plants remain highly underrepresented compared with the reference ecosystems. We tested various treatments to reintroduce common perennial plant species (Brachypodium retusum, Poaceae, and Thymus vulgaris, Lamiaceae), which are usually not or poorly reintroduced via soil and hay transfer. Treatments included microenvironmental manipulations (rock cover and plant interactions) and two grazing intensities. Target perennial species were transplanted in 2002 in the reference grassland ecosystem (intact grassland area used as a control) and in two abandoned fields. Survival was assessed in June 2003 and June 2004. Target species shoot and root biomass were measured in June 2004. Grazing greatly reduced the survival and biomass of both target species and its effects were reinforced by summer drought: plants that did not establish well enough during the autumn and spring did not survive summer. The restored rock cover had a mild positive effect, particularly on B. retusum. There were no negative or positive plant neighbor interactions in the steppe, while there was competition in both abandoned fields. Competition was particularly intense in the abandoned melon field, composed of a dense sward of annual grasses (Bromus sp.). In order to reintroduce perennial species to dry grasslands, the ideal combination of treatments is to exclude or reduce grazing during the first year to allow seedlings to establish and to recreate adequate microenvironmental conditions. Reducing competition from arable weeds may help but is not essential in such dry grasslands.  相似文献   

7.
Two experiments were conducted to investigate the effects of organic and inorganic amendments on metal stabilization and the potential of three forage grasses, i.e., Pennisetum americanum × Pennisetum, Euchlaena mexicana, and Sorghum dochna, for phytostabilization of acidic heavy metal-contaminated soils. The three grasses died 5 days after transplanting into the contaminated soils. Organic fertilizer (pig slurry and plant ash) only or combined with lime, NPK fertilizer, and sewage sludge resulted in adequate grass growth in the contaminated soils through a significant increase in the soil pH, N, P, K, and organic matter contents, and a decrease in the metal concentrations. The shoot biomass of P. americanum×P. purpureum and S. dochna was 1.92 and 2.00 times higher than that of E. Mexicana. The solubility of Cd, Pb, and Zn strongly depends on organic matter, while the solubility of Cu strongly depends on both soil organic matter and pH. The concentrations of Cd, Pb, and Zn in plant shoots growing in soil with a mixed amendment were significantly lower than plants growing in soil amended with an organic fertilizer only, whereas the Cu concentrations in plant shoots exhibited the opposite trend. The results indicated that 5% organic fertilizer only or combined with 5% sewage sludge were appropriate amendments and S. dochna and P. americanum × Pennisetum are suitable plants for phytostabilization of acidic heavy metal-polluted soils.  相似文献   

8.
One of the most important areas in ecology is to elucidate the factors that drive succession in ecosystems. The purpose of our study was to assess the effects of legume species (Medicago sativa, Melilotus suaveolens and Astragalus adsurgens) introduction to abandoned arable land on vegetation development in the Loess Plateau, China. Results from our study showed that addition of legume species strongly affected the composition of recently abandoned-field vegetation. Legume species were effective at reducing the number and dominance of natural colonizers (mainly weeds from the seed bank). The introduction of legume species into newly abandoned fields maintained high total cover and above-ground biomass and could improve soil organic carbon and total nitrogen. However, the effects of the treatments were species-specific. Melilotus suaveolens turned out to be severely suppressive to natural colonizers (weed species). Also, Melilotus suaveolens-adding maintained the highest cover and above-ground biomass and was helpful to improve later succession species, e.g. Stipa breviflora and Astragalus polycladus, to invade and establish. Medicago sativa-adding was superior in enhancing the soil organic carbon and total nitrogen. The present results suggested that addition of legume species with greater cover and biomass strongly suppressed the dominance of the weedy species in early succession and the course of old-field succession may be accelerated by introduction of legume species at least temporarily. However, the experimental period was too short to assess to what extent succession may be affected in the longer term.  相似文献   

9.
Native perennial grasses were once common in California prairies that are now dominated by annual grasses introduced from Europe. Competition from exotics may be a principal impediment to reestablishment of native perennial grasses. Introduced annual grasses, such as Vulpia myuros (zorro fescue), are often included with native perennial species in revegetation seed mixtures used in California. To examine the potential suppressive effect of this graminoid, we evaluated the growth and performance of a mixture of California native perennial grasses and resident weeds when grown with varying densities of V. myuros. The annual fescue exhibited a strongly plastic growth response to plant density, producing similar amounts of above‐ground biomass at all seeding densities. Perennial grass seedling survival and above‐ ground biomass decreased and individuals became thinner (i.e., reduced weight‐to‐height ratio) with increasing V. myuros seeding density. V. myuros also significantly suppressed above‐ground biomass and densities of weeds and had a more negative effect on weed densities than on native perennial grass densities. Biomass of native grasses and weeds was not differentially affected by increasing densities of V. myuros. Overall, because V. myuros significantly reduced the survival and performance of the mixture of native perennial grasses and this effect increased with increasing V. myuros density, we conclude that including this exotic annual in native seed mixtures is counterproductive to restoration efforts.  相似文献   

10.
Semi-natural grassland communities are of great interest in conservation because of their high species richness. These communities are being threatened by both land abandonment and nitrogen eutrophication, and their continued existence will depend upon correct management. However, there is a distinct lack of studies of the ecological mechanisms that regulate species diversity and productivity in Mediterranean grasslands. We have conducted a 3-year field experiment in a species-poor grassland in central Italy to investigate the effects of nitrogen fertilization coupled with removal of plant litter and artificial cutting on species diversity and community productivity. Vegetation cutting reduced living biomass but increased species diversity. In fact, cutting had positive effects on the cover of almost all of the annual and biennial species, while it had a negative effect on the dominant perennial grasses Brachypodium rupestre and Dactylis glomerata. Litter removal had similar effects to cutting, although it was far less effective in increasing species diversity. In contrast, nitrogen enrichment strongly increased the living biomass while maintaining very low species diversity. Our results have indicated that semi-natural Mediterranean grasslands need specific management regimes for maintenance and restoration of species diversity. In the management of these grasslands, attention should be paid to the potential threat from nitrogen enrichment, especially when coupled with land abandonment.  相似文献   

11.
Abstract. We tested the hypothesis that seedling establishment, the critical stage in the invasion of grassland by shrubs, is limited by competition with perennial grasses in seasonally wet/dry savannas. We placed seeds of two invasive exotic shrubs – Cryptostegia grandiflora, a woody vine, and Acacia nilotica, an arborescent legume – into pots with a wide range of existing above- and below-ground herbaceous biomass provided by either a tussock or a stoloniferous perennial grass. We also imposed different levels of watering frequency (5, 10 and 21 d), nutrient addition (+ and -) and grass clipping intensity (no clipping, clipped to 5 cm and clipped to 25 cm). There was no effect of any treatment on shrub seedling emergence or survival and all of the seedlings that emerged survived the 90-d growing period. Herbaceous competition also failed to have an effect on biomass accumulation in shrub seedlings. More frequent watering significantly increased above- and below-ground biomass accumulation for both shrub species and nutrient addition significantly increased Cryptostegia biomass accumulation. Based on these results, we question the proposition that reduction in competition by herbs via livestock grazing has been a significant factor in determining the rate or pattern of exotic shrub increase in the seasonally wet/dry tropics. We also question the suitability of the two-layer soil moisture hypothesis as a basis for management practices to control the ingress of woody species into grasslands and open savannas.  相似文献   

12.
Populations of the rare annual forb Amsinckia grandiflora may be declining because of competitive suppression by exotic annual grasses, and may perform better in a matrix of native perennial bunchgrasses. We conducted a field competition experiment in which Amsinckia seedlings were transplanted into forty 0.64‐m2 experimental plots of exotic annual grassland or restored perennial grassland. The perennial grassland plots were restored using mature 3 cm‐diameter plants of the native perennial bunchgrass Poa secunda planted in three densities. The exotic annual grassland plots were established in four densities through manual removal of existing plants. Both grass types reduced soil water potential with increasing biomass, but this reduction was not significantly different between grass types. Both grass types significantly reduced the production of Amsinckia inflorescences. At low and intermediate densities (dry biomass per unit area of 20–80 g/m2), the exotic annual grasses reduced Amsinckia inflorescence number to a greater extent than did Poa, although at high densities (>90 g/m2) both grass types reduced the number of Amsinckia inflorescences to the same extent. The response of Amsinckia inflorescence number to Poa biomass was linear, whereas the same response to the annual grass biomass is logarithmic, and appeared to be related to graminoid cover. This may be because of the different growth forms exhibited by the two grass types. Results of this research suggest that restored native perennial grasslands at intermediate densities have a high habitat value for the potential establishment of the native annual A. grandiflora.  相似文献   

13.
Abstract Introduced perennial grasses are one of the greatest constraints to prairie restoration. Herbicides suppress but do not eliminate introduced grasses, so we explored the interaction of herbicide with two additional controls: heavy clipping (to simulate grazing) and competition from native species. A 50‐year‐old stand of the introduced perennial grass Agropyron cristatum (crested wheatgrass) in the northern Great Plains was seeded with native grasses and treated with herbicide annually for 7 years in a factorial experiment. Clipping was applied as a subplot treatment in the final 3 years. Both herbicide and clipping significantly reduced the cover of A. cristatum, but clipping produced an immediate and consistent decrease, whereas herbicide control varied among years. The cover of A. cristatum decreased significantly with increasing cover of a seeded native grass, Bouteloua gracilis (blue grama), suggesting that both top‐down (i.e., grazing) and bottom‐up (i.e., resource competition) strategies can contribute to A. cristatum control. No treatment had any effect on the seed bank of A. cristatum. Even in the most effective control treatments, A. cristatum persisted at low amounts (approximately 5% cover) throughout the experiment. The cover of B. gracilis increased significantly with seed addition and herbicide, and, after 7 years, was similar to that in undisturbed prairie. The total cover of native species increased significantly with clipping and herbicide, and species richness was significantly higher in plots receiving herbicide. Clipping season had no effect on any variable. In summary, no method extirpated A. cristatum, but clipping reduced its cover by 90% and doubled the cover of native species. Extirpation might not be a realistic goal, but relatively simple management allowed coexistence of native species.  相似文献   

14.
Abstract. The first 10 yr of old-field successional dynamics on the Argentine Inland Pampa were studied on a series of adjacent plots established consecutively between 1978 and 1989. We examined differences in species abundance patterns among plots in order to detect the spatial and temporal variability of succession. Perennial grasses steadily increased in cover and replaced the dominant annual species after 5 yr. Pioneer dicots persisted in older seral stages with 20 — 23 species/plot. Overall, exotic species (mostly the grasses Lolium multiflorum and Cynodon dactylon) contributed much to the plant cover in these communities. Native grasses comprised 45 % of total cover at years 7 — 10 of succession, but occurred with less than 7 species/plot. Substantial variation was found in the successional pathway, which reflected the particular sequence from annual forbs to short-lived and perennial grasses in the various plots. The course of succession was apparently influenced by a 2-yr period of unusually high rainfall. Deyeuxia viridiflavescens, a native perennial grass virtually absent before the wet period, spread over the study area and dominated seral communities for 3 yr, irrespective of plot age. Climatic conditions thus affected the successional turnover of life forms by increasing the rate of colonization by perennial grasses. We further point out the constraints imposed on secondary succession by the life histories of ‘available’ species.  相似文献   

15.
To date, no study has explicitly addressed effects of variation in species diversity of root‐feeding herbivores on host plant biomass. Root‐feeding nematodes typically occur in multi‐species communities. In a three‐year field experiment, we investigated how variation in species diversity of root‐feeding nematodes affected nematode dynamics and response of the dune grass Ammophila arenaria to root‐feeder activity. This plant species needs regular burial by fresh beach sand to remain vigorous, suggesting that A. arenaria benefits from a temporary escape from root‐feeding soil organisms and that root‐feeders are involved in plant degeneration in stabilized dunes. We created series of ceased and continued sand burial and added the endoparasitic nematodes Meloidogyne maritima, Heterodera arenaria and Pratylenchus penetrans alone or in combination to A. arenaria. We included treatments with and without the whole soil community, measured plant biomass and quantified numbers of nematodes. Addition of H. arenaria and P. penetrans decreased numbers of M. maritima juveniles and delayed the first appearance in time of both juveniles and females, while numbers of males only decreased when plants had been buried. Burial with sand and addition of the other two endoparasites affected numbers of H. arenaria juveniles, while numbers of P. penetrans were low and not affected. Shoot biomass of A. arenaria was lower when M. maritima had been added alone than when the three species had been added together. Addition of root zone soil decreased biomass of all plant parts. Burial with sand decreased aboveground shoot biomass, whereas it increased belowground shoot and root biomass. Our results point at idiosyncratic effects of nematode diversity on A. arenaria biomass. Heterodera arenaria and P. penetrans protected their host by reducing numbers and delaying activity of M. maritima to a later stage in the growth season, when root‐feeding activity was less harmful for plant biomass development.  相似文献   

16.
This study investigated the effect of elevated CO2 on the post‐fire resprouting response of a grassland system of perennial grass species of Cumberland Plain Woodland. Plants were grown in mixtures in natural soil in mesocosms, each containing three exotic grasses (Nassella neesiana, Chloris gayana, Eragrostis curvula) and three native grasses (Themeda australis, Microlaena stipoides, Chloris ventricosa) under elevated (700 ppm) and ambient (385 ppm) CO2 conditions. Resprouting response after fire at the community‐ and species‐level was assessed. There was no difference in community‐level biomass between CO2 treatments; however, exotic species made up a larger proportion of the community biomass under all treatments. There were species‐level responses to elevated CO2 but no significant interactions found between CO2 and burning or plant status. Two exotic grasses (N. neesiana and E. curvula, a C3 and a C4 species respectively), and one native grass (M. stipoides, a C3 species) significantly increased in biomass, and a native C4 grass (C. ventricosa) significantly decreased in biomass under elevated CO2. These results suggest that although overall productivity of this community may not change with increases in CO2 and fire frequency, the community composition may alter due to differential species responses.  相似文献   

17.
Rising sea levels threaten coastal safety by increasing the risk of flooding. Coastal dunes provide a natural form of coastal protection. Understanding drivers that constrain early development of dunes is necessary to assess whether dune development may keep pace with sea‐level rise. In this study, we explored to what extent salt stress experienced by dune building plant species constrains their spatial distribution at the Dutch sandy coast. We conducted a field transplantation experiment and a glasshouse experiment with two dune building grasses Ammophila arenaria and Elytrigia juncea. In the field, we measured salinity and monitored growth of transplanted grasses in four vegetation zones: (I) nonvegetated beach, (II) E. juncea occurring, (III) both species co‐occurring, and (IV) A. arenaria dominant. In the glasshouse, we subjected the two species to six soil salinity treatments, with and without salt spray. We monitored biomass, photosynthesis, leaf sodium, and nutrient concentrations over a growing season. The vegetation zones were weakly associated with summer soil salinity; zone I and II were significantly more saline than zones III and IV. Ammophila arenaria performed equally (zone II) or better (zones III, IV) than E. juncea, suggesting soil salinity did not limit species performance. Both species showed severe winter mortality. In the glasshouse, A. arenaria biomass decreased linearly with soil salinity, presumably as a result of osmotic stress. Elytrigia juncea showed a nonlinear response to soil salinity with an optimum at 0.75% soil salinity. Our findings suggest that soil salinity stress either takes place in winter, or that development of vegetated dunes is less sensitive to soil salinity than hitherto expected.  相似文献   

18.
Competition and resource availability influence invasions into native perennial grasslands by non-native annual grasses such as Bromus tectorum. In two greenhouse experiments we examined the influence of competition, water availability, and elevated nitrogen (N) and phosphorus (P) availability on growth and reproduction of the invasive annual grass B. tectorum and two native perennial grasses (Elymus elymoides, Pascopyrum smithii). Bromus tectorum aboveground biomass and seed production were significantly reduced when grown with one or more established native perennial grasses. Conversely, average seed weight and germination were significantly lower in the B. tectorum monoculture than in competition native perennial grasses. Intraspecific competition reduced per-plant production of both established native grasses, whereas interspecific competition from B. tectorum increased production. Established native perennial grasses were highly competitive against B. tectorum, regardless of water, N, or P availability. Bromus tectorum reproductive potential (viable seed production) was not significantly influenced by any experimental manipulation, except for competition with P. smithii. In all cases, B. tectorum per-plant production of viable seeds exceeded parental replacement. Our results show that established plants of Elymus elymoides and Pascopyrum smithii compete successfully against B. tectorum over a wide range of soil resource availability.  相似文献   

19.
In a greenhouse experiment, we examined the effectiveness of four native cover crops for controlling four exotic, invasive species and increasing success of four western North American grassland species. Planting the annual cover crops, annual ragweed (Ambrosia artemisiifolia) and common sunflower (Helianthus annuus), reduced the biomass of the exotic species cheatgrass (Bromus tectorum), Japanese brome (Bromus japonicus), Canada thistle (Cirsium arvense), and whitetop (Cardaria draba). The annual cover crops also reduced the desired species biomass in competition with the perennial exotics, but either increased or did not affect the desired species biomass in competition with the annual exotics. Planting the perennial cover crops, Canada goldenrod (Solidago canadensis) and littleleaf pussytoes (Antennaria microphylla), rarely inhibited exotic species, but did increase the desired species biomass. Field experiments are needed to test the cover crops under more ecologically relevant conditions, but our results suggested that the annual cover crops may be effective for controlling invasive annuals and for facilitating native perennials.  相似文献   

20.
Restoration of metalliferous mine soils requires using plant species tolerant to high metal concentrations and adapted to nutrient‐poor soil. Legumes can increase plant productivity through N2‐fixation, but they are often scarce in metalliferous sites. We examined survival, growth, and tolerance of four populations of a legume, Anthyllis vulneraria, from two metalliferous (MET) Zn‐Pb mine sites, Avinières (AV) ([Zn‐EDTA] = 26,000 mg/kg) and Eylie (EY) ([Zn‐EDTA] = 4,632 mg/kg), and two non‐metalliferous (NMET) sites located in the south of France with the aim to select the most appropriate populations for restoration of mined soils. In a common garden experiment, plants from each population were reciprocally grown in soil from the provenance of each population. The two NMET populations exhibited high mortality and low growth rates in soil from the mined sites. The AV MET exhibited a high growth rate in metalliferous soils, but showed high mortality in non‐metalliferous soils. The growth of the EY MET was very low in the AV‐contaminated soil, but was the highest of all populations in moderately and non‐metalliferous soils. Plants from the AV MET population showed a high growth and survival in metalliferous soil and would be appropriate in the restoration of metal‐contaminated sites (>30,000 mg Zn kg?1). The EY MET population would be adapted to the restoration of moderate metal‐contaminated soils (<30,000 mg Zn kg?1). Taking into account the broad distribution of A. vulneraria, these two populations could be suitable for the restoration of derelict mine sites in mediterranean and temperate regions of Europe and North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号