首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA biosensors are increasingly used in hybridization reactions, mutation detection, genomic sequencing, and identification of pathogens. However, the inability to monitor the recognition signals without resorting to the use of labels or electroactive mediators has led to DNA devices with inadequate sensitivity. Moreover, some electroactive species require high redox potentials that often destroy the DNA complementarity. This article presents the concept of metal-enhanced detection (MED) for the determination of DNA-DNA reactions and presents the application of this concept for mismatch detection. The MED concept relies on the idea that metallic films deposited as a continuous layer or monolayer onto a solid electrode, or even electrostatically held, could greatly enhance the rate of electron transfer by reducing the distance between the donor and acceptor species and could lead to label-free assays during DNA hybridization reactions. The MED concept has been tested for voltammetric detection of gene sequence of Microcystis spp. The resulting biosensor involved the immobilization of a 17-mer DNA probe that is complementary to a specific gene sequence of Microcystis spp. on a gold electrode via avidin-biotin chemistry. Electrochemical reduction and oxidation of DNA-captured Ag(+) ions provided the detection signals for the target gene sequence in solution. A linear response of silver cathodic peak current with concentration of the target oligonucleotide sequence was observed with a detection limit of 7 x 10(-9)M. This label-free approach was successfully applied to detecting two-base-pair mismatches in the gene sequence of Microcystis spp.  相似文献   

2.
R Wagner  P Debbie    M Radman 《Nucleic acids research》1995,23(19):3944-3948
An accurate and highly sensitive mutation detection assay has been developed. The assay is based on the detection of mispaired and unpaired bases by immobilized mismatch binding protein (Escherichia coli MutS). The assay can detect most mismatches and all single base substitution mutations, as well as small addition or deletion mutations. The assay is simple to use and does not require the use of either radioactivity or gel electrophoresis.  相似文献   

3.
We report on a simple approach to enhance solid-phase hybridization-based single base mismatch discrimination at high ionic strength based on the deliberate insertion of a natural DNA base mismatch in the surface-tethered probe. A large drop in hybridization signal of single base mismatched alleles using the designed probe as compared with the conventional probe, from 80% to less than 25% of the signal obtained with the fully complementary, non-mutation-containing sequence, when using colorimetric detection was further improved to 20% when using electrochemical detection, attributable to a difference of spacing of immobilized probes. Finally, the designed probe was used for the electrochemical detection of the DQA1*05:05 allele amplified from real human blood samples.  相似文献   

4.
Shively L  Chang L  LeBon JM  Liu Q  Riggs AD  Singer-Sam J 《BioTechniques》2003,34(3):498-502, 504
We describe here a quantitative real-time PCR assay for the detection of single-base-pair differences that does not require fluorescently labeled gene-specific probes or complicated primer combinations. Following PCR or RT-PCR of a gene segment that may contain allele-specific differences, 100 pg amplified product are used for a real-time PCR with allele-specific primers and SYBR Green. The use of HEPES buffer at a pH of 6.95 together with AmpliTaq DNA polymerase results in a threshold difference between the correct template and the mismatched template of as many as 20 cycles, depending on the mismatch. Correct matches can be detected in an excess of mismatched template at least at the 0.01 level for the six primer-template matches versus mismatches tested: GC vs. A.C, AT vs. G.T, GC vs. C.C, GC vs. G.G, AT vs. C.T, and GC vs. G.A. Because the initial amplification is separate from real-time detection, conditions can be independently optimized for each step, making the assay particularly suitable for the detection of allele-specific expression in single cells.  相似文献   

5.
6.
Phenylketonuria (PKU) is a metabolic disorder that results from a deficiency of hepatic phenylalanine hydroxylase (PAH). Identification of the PKU genotype is useful for predicting clinical PKU phenotype. More than 400 mutations resulting in PAH deficiency have been reported worldwide. We used a genedetecting instrument to identify the nine prevalent Japanese mutations in the PAH gene among 31 PKU patients as a preliminary study. This instrument can automatically detect mutations through the use of allele-specific oligonucleotide (ASO) capture probes, and gave results comparable to those of sequencing studies. Each country has uniquely prevalent and specific mutations causing PKU, and less than 50 types of such mutations are generally present in each country. Early genotyping of PKU makes it possible to identify the phenotype and select the optimal therapy for the disease. For early genotyping, the instrumental method described here shortens the time required for genotyping based on mRNA and/or genomic DNA of PKU parents.  相似文献   

7.
Single nucleotide polymorphisms (SNPs) are increasingly recognized as important diagnostic markers for the detection and differentiation of Bacillus anthracis. The use of SNP markers for identifying B. anthracis DNA in environmental samples containing genetically similar bacteria requires the ability to amplify and detect DNA with single nucleotide specificity. We designed a TaqMan mismatch amplification mutation assay (TaqMAMA) around a SNP in the plcR gene of B. anthracis. The assay permits specific, low-level detection (25 fg DNA) of this B. anthracis-specific SNP, even in the presence of environmental DNA extracts containing a 20,000-fold excess of the alternate allele. We anticipate that the ability to selectively amplify and detect low copy number DNAs with single nucleotide specificity will represent a valuable tool in the arena of biodefense and microbial forensics.  相似文献   

8.
The study of small drug molecules interacting with nucleic acids is an area of intense research that has particular relevance in our understanding of relative mechanism in chemotherapeutic applications and the association between genetics (including sequence variation) and drug response. In this contribution, we demonstrate how the sequence-specific binding of an anticancer drug Dacarbazine (DTIC) to single base (A-G) mismatch could be sensitively detected by combining electrochemical detection with biosensing surface based on gold nanoparticles.  相似文献   

9.
We describe the synthesis, binding, and electrochemical properties of ferrocene-conjugated oligonucleotides (Fc-oligos). The key step for the preparation of Fc-oligos contains the coupling of vinylferrocene to 5-iododeoxyuridine via Heck reaction. The Fc-conjugated deoxyuridine phosphoramidite was used in the Fc-oligonucleotide synthesis. We show that thiol-modified Fc-oligos deposited onto gold electrodes possess potential ability in electrochemical detection of DNA base mismatch.  相似文献   

10.
The first systematic study of flanking sequence effects on mismatch detection by a fluorescent nucleotide is described, using fluoroside Çf. Although a high degree of variance was observed in fluorescence intensity of mismatched duplexes between different flanking sequences, Çf was able to distinguish a mismatch from the fully base-paired duplex in 13 out of 16 sequences, and even identify each mismatch in 10 of those flanking sequences. For the flanking sequences where fluoroside Çf did not unambiguously determine its base-pairing partner, the experimental conditions were varied in an attempt to facilitate mismatch identification. No beneficial effect on the relative fluorescence intensities was achieved by changing the temperature, adding organic co-solvents or potassium iodide. In contrast, mercuric ions selectively quenched the fluorescence intensity of the Çf·T mismatch, effectively resolving the overlap of all emission spectra and thereby facilitating identification of all base-pairing partners in any flanking sequence by Çf. This is the first time mercuric ions have been used to selectively quench the fluorescence of a single mismatch. A noticeable characteristic of Çf is that, unlike most fluorosides, the fluorescence intensity of Çf was not quenched to a discernable degree by a flanking G–C pair.  相似文献   

11.
This paper describes a new method for detecting DNA point mutations using a mismatch binding protein. The interactions of mismatches and mismatch binding proteins are detected by the optical biosensor technology based on surface plasmon resonance (SPR).  相似文献   

12.
Dwivedi  Shubhra  Vardhan  Manu  Tripathi  Sarsij 《Cluster computing》2021,24(3):1881-1900
Cluster Computing - Intrusion detection is one of the most crucial activities for security infrastructures in network environments, and it is widely used to detect, identify and track malicious...  相似文献   

13.
A single square voltage pulse applied to metal electrodes underneath a silicon dioxide film upon which DNA probes are immobilized allows the discrimination of DNA targets with a single base mismatch during hybridization. Pulse duration, magnitude and slew rate of the voltage pulse are all key factors controlling the rates of electric field assisted hybridization. Although pulses with 1 V, lasting less than 1 ms and with a rise/fall times of 4.5 ns led to maximum hybridization of fully complementary strands, lack of stringency did not allow the discrimination of single base mismatches. However, by choosing pulse conditions that are slightly off the optimum, the selectivity for discriminating single base mismatches could be improved up to a factor approximately 5 when the mismatch was in the middle of the strand and up to approximately 1.5 when the mismatch was on the 5'-end and. These results demonstrate that hybridization with the appropriate electric field pulse provides a new, site-specific, approach to the discrimination of single nucleotide polymorphisms in the sub-millisecond time scale, for addressable DNA microarrays.  相似文献   

14.
DNA hybridization and enzymatic digestion for the detection of mutation was investigated on the gold nanoparticles-calf thymus DNA (AuNPs-ctDNA) modified glassy carbon electrode (GCE). The thiol modified probe oligonucleotides (SH-ssDNA) were assembled on the surface of AuNPs-ctDNA modified GCE. The electrochemical response of the electrode was measured by differential pulse voltammetry and cyclic voltammetry. Methylene blue (MB) was used as the electroactive indicator. AuNPs were then dispersed effectively on the GCE surface in the presence of ct-DNA. When hybridization occurred, a decrease in the signal of MB current was observed. The modified electrode was used for the detection of mutations during the enzymatic digestion reaction in DNA. During this reaction, an increase in the signal of MB current was observed. So, the modified SH-ssDNA had a higher electrochemical response on the AuNPs-ctDNA/GCE because of the strong affinity of MB for guanine residues in it. The electrochemical detection of restriction enzyme digestion can provide a simple and practical method for observing single-base mismatches that can help in distinguishing mismatch sequences of DNA from the complementary ones.  相似文献   

15.
Instrumentation for rare-event analysis should be capable of reliably detecting infrequent cells (less than 1:10,000) while both excluding false-positive signals and including true positive cells found in multicell clumps. We have developed a digital image microscopy (DIM) system in which a cytospin of 2 million cells is scanned with an intensified video camera (ISIT) using an IBM PC AT microcomputer-controlled microscope stage. PASCAL software controls the stage and analyzes video input, storing the location of positive cells to magnetic disk. The user can then "replay" each positive cell under computer control for either visual confirmation or analysis using other fluorescent probes. The computer requires 24 min to scan a cytoprep of 2 million cells, while playback for visual confirmation by the user averages 5 min. Using Hoechst-33342 premarked cells seeded into bone marrow as a model system, we found that the DIM system reliably detects one target cell per million marrow cells. With appropriate immunological markers, this system will aid in evaluating bone marrow purged of tumor cells prior to transplantation and should also be useful for detection of minimal residual disease in blood or bone marrow from patients with leukemia or solid tumors.  相似文献   

16.
Certain root-colonizing fluorescent pseudomonads have been shown to promote plant growth and prevent plant disease in part through the production of siderophores. However, these favorable results have not been reproduced consistently from the laboratory to the greenhouse or from the greenhouse to the field. In some circumstances siderophores appear to play no role in disease prevention. In order to understand the dynamics of competition for iron in the rhizosphere it is essential that the localization and concentration of siderophores produced by both biocontrol agents and plant pathogens be determined. We have produced monoclonal antibodies (MAbs) to ferric pseudobactin, the siderophore of plant growth-promoting Pseudomonas B10. Three IgG1 MAbs cross-react with certain ferric pseudobactins but not with others. A competitive ELISA has been developed to detect and quantify ferric pseudobactin.  相似文献   

17.
Scanning DNA sequences for polymorphisms and mutations often involve the mismatch specific cleavage by endonucleases at the mismatch sites and subsequent analysis of the digested product for mutation discovery. One of the limitations of using enzymatic mutation detection methods are the cost and availability of a mismatch specific endonuclease. We report the establishment of Nicotiana tabacum L. Cv. Bright Yellow 2 cells stably expressing the truncated ENDO1 (tENDO1) mismatch specific endonuclease. The 5′-Untranslated region of N. tabacum alcohol dehydrogenase gene (NtADH 5′-UTR) under the control of cauliflower mosaic virus (CaMV 35S) promoter was employed to improve the tENDO1 protein yield. To ease the purification process, tENDO1 was secreted into the culture medium and isolated using nickel affinity chromatography. The tENDO1 was estimated to be stably produced in an average of 0.7–0.9 % total soluble protein. Functional test on tENDO1 for mismatch detection demonstrated that tENDO1 retained mismatch specific endonuclease activity resembles its native protein. Further biochemical analysis showed that tENDO1 exhibited mismatch detection specificity and efficiency comparable to other commonly used endonucleases.  相似文献   

18.
High-throughput DNA sensors capable of detecting single-base mismatches are required for the routine screening of genetic mutations and disease. A new strategy for the electrochemical detection of single-base mismatches in DNA has been developed based upon charge transport through DNA films. Double-helical DNA films on gold surfaces have been prepared and used to detect DNA mismatches electrochemically. The signals obtained from redox-active intercalators bound to DNA-modified gold surfaces display a marked sensitivity to the presence of base mismatches within the immobilized duplexes. Differential mismatch detection was accomplished irrespective of DNA sequence composition and mismatch identity. Single-base changes in sequences hybridized at the electrode surface are also detected accurately. Coupling the redox reactions of intercalated species to electrocatalytic processes in solution considerably increases the sensitivity of this assay. Reporting on the electronic structure of DNA, as opposed to the hybridization energetics of single-stranded oligonucleotides, electrochemical sensors based on charge transport may offer fundamental advantages in both scope and sensitivity.  相似文献   

19.
mRNA from a postmortem liver sample of a patient with classical phenylketonuria was examined using the chemical cleavage of mismatch (CCM) method to search for mutations in phenylalanine hydroxylase. Initial screening identified a heterozygous alteration in exon 2 which changed the encoded amino acid from phenylalanine (TTC) to leucine (TTG) at codon 39 and a polymorphism at codon 430 where the change from CTG to CTC did not alter the encoded leucine. Use of the CCM technique also revealed that the control reference clone differed from the published sequence by having a substitution of isoleucine (ATT) for methionine (ATG) at codon 276 and CAA rather than CAG as the codon for glutamine 232. By using the mRNA from the patient instead of the control as the source for the radiolabeled probe for the CCM technique, a second previously undetected alteration was identified in exon 10 where the change from TCA to CCA at codon 349 altered the amino acid from serine to arginine. Judicious choice of probes gives the CCM method the potential to detect close to 100% of single base mutations.  相似文献   

20.
In this study, a colorimetric whole-cell biosensor for cadmium (Cd) was designed using a genetically engineered red pigment producing bacterium, Deinococcus radiodurans. Based on the previous microarray data, putative promoter regions of highly Cd-inducible genes (DR_0070, DR_0659, DR_0745, and DR_2626) were screened and used for construction of lacZ reporter gene cassettes. The resultant reporter cassettes were introduced into D. radiodurans R1 to evaluate promoter activity and specificity. Among the promoters, the one derived from DR_0659 showed the highest specificity, sensitivity, and activity in response to Cd. The Cd-inducible activity was retained in the 393-bp deletion fragment (P0659-1) of the P0569 promoter, but the expression pattern of the putative promoter fragments inferred its complex regulation. The detection range was from 10 to 1 mM of Cd. The LacZ expression was increased up to 100 μM of Cd, but sharply decreased at higher concentrations. For macroscopic detection, the sensor plasmid (pRADI-P0659-1) containing crtI as a reporter gene under the control of P0659-1 was introduced into a crtI-deleted mutant strain of D. radiodurans (KDH018). The color of this sensor strain (KDH081) changed from light yellow to red by the addition of Cd and had no significant response to other metals. Color change by the red pigment synthesis could be clearly recognized in a day with the naked eye and the detection range was from 50 nM to 1 mM of Cd. These results indicate that genetically engineered D. radiodurans (KDH081) can be used to monitor the presence of Cd macroscopically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号