首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The amyloid A4 (or beta protein), a 4.2 kD polypeptide, is a major component of amyloid deposits in the brains of patients with Alzheimer's Disease (AD). The self-aggregating amyloid A4 protein of AD is encoded as part of three larger proteins by the amyloid A4 precursor gene. The corresponding proteins have 695, 751 and 770 amino acid residues. To investigate the utility of amyloid beta protein precursor (A beta PP) as a diagnostic marker for AD an antiserum against a synthetic peptide (175-186), predicted from cDNA sequence for A beta PP, was used. The immunoreactivity of A beta PP in normal and AD cerebrospinal fluid (CSF) was measured by Western blot and detected with radiolabeled protein A. A total of fifty-seven CSF samples (AD = 27 and normal = 30) were analyzed for A beta PP immunoreactivity. A polyclonal antibody detected two major protein bands with apparent molecular weights of 105kD and 90kD both in normal and AD CSF. The difference between normal and AD CSF was not significant. These results indicate that immunoreactivity of A beta PP is present both in normal and AD CSF, and that the difference is too small to be used as a diagnostic marker.  相似文献   

2.
T-kinin (Ile-Ser-Bradykinin) has been isolated only from the plasma of the rat and it is unclear whether the peptide, or its biosynthetic precursor, T-kininogen, circulates in the human. An NH2-terminally directed antiserum to T-kinin was raised in rabbits using an immunogen prepared by coupling the free -SH group of T-kinin extended from its COOH-terminus by a cysteinyl residue to an -NH2 group on human serum albumin. A radioimmunoassay was developed using this antiserum and 125I-labelled [Tyr10]T-kinin as tracer that was sensitive (least-detectable concentration 3 fmol/tube) and relatively specific for T-kinin (cross-reactivity with bradykinin and kallidin less than 1%). Treatment of rat plasma with an excess of trypsin in the presence of a kininase inhibitor generated T-kinin immunoreactivity equivalent to 455 +/- 71 pmol/ml (mean +/- S.E.M.; n = 9) and this immunoreactivity was eluted from a reversed-phase HPLC column as a single peak with the same retention time as synthetic T-kinin. In contrast, treatment of plasma from healthy human subjects (n = 8) and from patients (n = 8) with inflammation due to acute or chronic gastrointestinal disease under the same conditions did not generate any detectable T-kinin immunoreactivity. It is concluded, therefore, that T-kininogen, the biosynthetic precursor of T-kinin in the rat, is either absent from the plasma of human subjects or is present in a concentration less than 30 fmol/ml. Similarly, T-kininogen is probably not an acute phase reactant in humans.  相似文献   

3.
Abstract: The amyloid precursor protein may be processed by several different pathways, one of which produces the amyloid β-peptide βA4 present in the amyloid plaques characteristic of Alzheimer's disease. A recent report suggested that axonal-amyloid precursor protein is present in a membrane fraction "with caveolae-like properties." In the present study we have isolated detergent-insoluble, caveolae-like membranes from both mouse cerebellum and the human neuroblastoma cell line SH-SY5Y. Detergent-insoluble membranes from mouse cerebellum retained nearly all of the glycosylphosphatidylinositol-anchored proteins—alkaline phosphatase, 5'-nucleotidase, and the F3 protein—while excluding the majority of the plasmalemmal marker protein alkaline phosphodiesterase I. Although the inositol trisphosphate receptor was highly enriched in this detergent-insoluble fraction, neither amyloid precursor protein nor clathrin immunoreactivity could be detected. Similar results were obtained with SH-SY5Y cells, where 5'-nucleotidase activity was enriched at least 30-fold in the detergent-insoluble membranes, but no amyloid precursor protein or clathrin immunoreactivity could be detected. Caveolin could not be detected in microsomal membranes from either mouse cerebellum or SH-SY5Y cells. These observations suggest that amyloid precursor protein is not normally present in detergent-insoluble, caveolae-like membrane microdomains.  相似文献   

4.
Ernst A  Köhrle J  Bergmann A 《Peptides》2006,27(7):1835-1840
In this report, we describe a newly developed sandwich immunoassay using antibodies against the proenkephalin A 119-159 peptide (PENK A 119-159). PENK A 119-159 immunoreactivity was detectable in the circulation of human blood donors and in cerebrospinal fluid (CSF) of patients without a neurologic disorder. The concentration was about 100 times higher in CSF than in serum. Analytical reversed phase HPLC revealed that PENK A 119-159 is the main immunoreactivity in human circulation and CSF. Moreover, PENK A 119-159 is stable in vitro for at least 48 h at room temperature as compared to the low stability of the peptides methionine- and leucine-enkephalin. This suggests the use of PENK A 119-159 measurement as surrogate molecule for the release of the mature peptides derived from proenkephalin A.  相似文献   

5.
To study the putative precursor proteins (PreA4(695), PreA4(751), and PreA4(770] of Alzheimer's disease A4 amyloid protein, polyclonal and monoclonal antibodies were raised against a recombinant bacterial PreA4(695) fusion protein. These antibodies were used to identify the precursors in different cell lines as well as in human brain homogenates and cerebrospinal fluid (CSF). The precursors are tyrosine-sulfated, O- and N-glycosylated membrane proteins and have half-lives of 20-30 min in cells. Cells express the polypeptides at their surface but also secrete C-terminal truncated proteins into the medium. These proteins are also found in CSF of both Alzheimer's disease patients and normal individuals. The proteins are derived from their cognate membrane-associated forms by proteolysis and have apparently lost the cytoplasmic and the transmembrane domains. Since the latter contributes to the A4 amyloid sequence, it seems possible that this proteolytic cleavage represents the first step in the formation of A4 amyloid deposits.  相似文献   

6.
The multifunctional glycoprotein vitronectin, also called serum spreading factor and S-protein of complement, is a potent inducer of cell adhesion and spreading in vitro, and also has a regulatory function in the complement and coagulation pathways. It is present both in plasma and tissue. Recently, vitronectin immunoreactivity was demonstrated in the elastic fibres of normal human skin. Normal and amyloid kidney tissue was investigated for vitronectin immunoreactivity using polyclonal and monoclonal antibodies in an avidin-biotin-peroxidase complex technique and in an alkaline phosphatase anti-alkaline phosphatase complex technique. Vitronectin was found in the elastic layers of normal vessel walls, and in glomerular sclerotic lesions in cases of benign nephrosclerosis, but not in normal glomeruli. Strong specific vitronectin immunoreactivity was found in the amyloid deposits in kidneys from cases with amyloid A type amyloidosis, and in cases with amyloid light chain type amyloidosis. Structures immunostainable with anti-amyloid A antiserum were invariably immunostainable with anti-vitronectin. An antiserum against serum amyloid P component stained the same structures as did the anti-vitronectin antibodies, and in addition stained normal glomerular basement membranes. In conclusion, vitronectin immunoreactivity was demonstrated in elastic tissue, in amyloid deposits and in sclerotic lesions in human kidney.  相似文献   

7.
The beta-amyloid peptide is derived from a larger membrane bound protein and accumulates as amyloid in Alzheimer's diseased brains. beta-amyloid precursor protein (beta APP) proteolytically processed during constitutive secretion cannot be a source of deposited amyloid because this processing results in cleavage within the amyloidogenic peptide. To see if other secretory pathways could be responsible for generating potentially amyloidogenic molecules we tested the possibility that beta APP is targeted to the regulated secretory pathway. Stable AtT20 cell lines expressing exogenous human beta APP were genetically engineered. These cells were labeled with [35S]-methionine, and chased in the presence or absence of secretagogue. The beta APP both inside the cells and released from the cells was analyzed by immunoprecipitation and gel analysis. Quantitation of autoradiograms showed that virtually all of the synthesized beta APP was secreted by the constitutive pathway, and that no detectable (less than 1%) beta APP was targeted to the regulated secretory pathway.  相似文献   

8.
The present study demonstrates precursors of neurotensin-like immunoreactivity (NTLI) endogenous to human gastric tissue and plasma, and the existence of a gastric NTLI-generating enzyme system. The molecular size of the NTLI-precursors in plasma and gastric tissue were estimated by gel permeation chromatography to be ca 50,000-60,000 and 60,000-70,000 Da, respectively. The neurotensin-like peptide generated from the precursor was detected with a carboxyl-terminally directed antiserum but did not cross-react with an amino-terminally directed antiserum. A neurotensin-like peptide isolated from pepsin-treated human plasma was characterized by mass spectrometry and its amino acid sequence determined. This novel nonapeptide, referred to as kinetensin, failed to affect pentagastrin-stimulated acid secretion or blood pressure in the rat. Sequence homologies between neurotensin, kinetensin and proteins of the serum albumin family suggest a common evolutionary origin and raise questions regarding albumin-like proteins as precursors of regulatory peptides.  相似文献   

9.
Alzheimer's disease neuropathology is characterised by beta-amyloid plaques and neurofibrillary tangles. Inhibition of beta-amyloid accumulation may be essential for effective therapy in Alzheimer's disease. In this study we have treated transgenic mice carrying the Swedish mutation of human amyloid precursor protein [Tg(Hu.APP695.K670N-M671L)2576], which develop brain beta-amyloid deposits, with nicotine in drinking fluid (200 microg/mL) from 9-14.5 months of age (5.5 months). A significant reduction in amyloid beta peptide 1-42 positive plaques by more than 80% (p < 0.03) was observed in the brains of nicotine treated compared to sucrose treated transgenic mice. In addition, there was a selective reduction in extractable amyloid beta peptides in nicotine treated mice; cortical insoluble 1-40 and 1-42 peptide levels were lower by 48 and 60%, respectively (p < 0.005), whilst there was no significant change in soluble 1-40 or 1-42 levels. The expression of glial fibrillary acidic protein was not affected by nicotine treatment. These results indicate that nicotine may effectively reduce amyloid beta peptide aggregation in brain and that nicotinic drug treatment may be a novel protective therapy in Alzheimer's disease.  相似文献   

10.
C R Abraham  D J Selkoe  H Potter 《Cell》1988,52(4):487-501
Two approaches--molecular cloning and immunochemical analysis--have identified one of the components of Alzheimer's disease amyloid deposits as the serine protease inhibitor alpha 1-antichymotrypsin. An antiserum against isolated Alzheimer amyloid deposits detected immunoreactivity in normal liver. The antiserum was then used to screen a liver cDNA expression library, yielding three related clones. DNA sequence analysis showed that these clones code for alpha 1-antichymotrypsin. Antisera against purified alpha 1-antichymotrypsin stained Alzheimer amyloid deposits, both in situ and after detergent extraction from brain. The anti-amyloid antiserum recognizes at least two distinct epitopes in alpha 1-antichymotrypsin, further supporting the presence of this protein in Alzheimer amyloid deposits. In addition to being produced in the liver and released into the serum, alpha 1-antichymotrypsin is expressed in Alzheimer brain, particularly in areas that develop amyloid lesions. Models by which alpha 1-antichymotrypsin could contribute to the development of Alzheimer amyloid deposits are discussed.  相似文献   

11.
A large body of data suggests that the Alzheimer's amyloid peptide (Abeta) causes degeneration and death of neurons by mechanisms that involve reactive oxygen species. The pathways involved in Abeta-mediated oxidative injury are only partially understood. We theorized that abnormal microaggregates and/or pathological conformations of Abeta peptides may behave as xenobiotics and trigger the induction of NADPH cytochrome P450 reductase (CP450r), an enzyme which, if induced by non-physiological substrates (such as xenobiotics like drugs or other 'foreign molecules'), is known to cause oxidative stress. In order to test this hypothesis, i.e. that Abeta can increase the expression of CP450r, SK-N-SH human neuroblastoma cells were exposed to Abeta25-35 and Abeta1-42 and then examined for induction of this enzyme in immunoblots, using specific antibodies. Following exposure to Abeta peptides, neuroblastoma cells showed a clear-cut induction of CP450r. To determine whether this mechanism is operational in vivo, we investigated the expression of CP450r in a transgenic mouse model of Alzheimer's disease (AD) and in brains from patients afflicted with AD, using an immunocytochemical approach. Tissue sections from brains of transgenic mice exhibited strong immunoreactivity for CP450r, surrounding amyloid deposits. The pattern of expression of CP450r was similar to that exhibited by neuritic and oxidative stress markers. Sections from non-transgenic mice showed no detectable immunoreactivity. Immunostaining of sections from four brains with neuropathologically confirmed AD showed a pattern of abnormality different from transgenic mice that was characterized by abnormal immunoreactivity for CP450r within the cytoplasm of cortical neurons. No labeling was seen in sections from aged-matched control brains. The data showed that CP450r is induced by Alzheimer amyloid peptide and that such a response must be considered as one possible mechanism whereby Abeta causes oxidative stress.  相似文献   

12.
Alzheimer's disease (AD) is characterized by the cerebral deposition of fibrillar aggregates of the amyloid A4 protein. Complementary DNA's coding for the precursor of the amyloid A4 protein have been described. In order to identify the structure of the precursor gene relevant clones from several human genomic libraries were isolated. Sequence analysis of the various clones revealed 16 exons to encode the 695 residue precursor protein (PreA4(695] of Alzheimer's disease amyloid A4 protein. The DNA sequence coding for the amyloid A4 protein is interrupted by an intron. This finding supports the idea that amyloid A4 protein arises by incomplete proteolysis of a larger precursor, and not by aberrant splicing.  相似文献   

13.
Recent studies indicated that the formation of a major constituent of Alzheimer's disease (AD) senile plaques, called beta A4-peptide, does not result from normal processing of its precursor, amyloid precursor protein (APP). Since proteolytic cleavage of APP inside its beta A4 sequence was found to be part of APP processing the formation of the beta A4-peptide seems to be prevented under normal conditions. We considered whether in AD one of the endogenous proteinase inhibitors might interfere with APP processing. After we had recently found that cultured human neuronal cells synthesize the most potent of the known human proteinase inhibitors, alpha-2-macroglobulin (alpha 2M), upon stimulation with the inflammatory mediator interleukin-6 (IL-6) we now investigated whether alpha 2M and IL-6 could be detected in AD brains. Here we report that AD cortical senile plaques display strong alpha 2M and IL-6 immunoreactivity while no such immunoreactivity was found in age-matched control brains. Strong perinuclear alpha 2M immunoreactivity in hippocampal CA1 neurons of Alzheimer's disease brains indicates that neuronal cells are the site of alpha 2M synthesis in AD brains. We did not detect elevated IL-6 or alpha 2M levels in the cerebrospinal fluid of AD patients. Our data indicate that a sequence of immunological events which seem to be restricted to the local cortical environment is part of AD pathology.  相似文献   

14.
BACKGROUND: The amyloid beta (Abeta) peptide is a key molecule in the pathogenesis of Alzheimer's disease. Reliable methods to detect and quantify soluble forms of this peptide in human biological fluids and in model systems, such as cell cultures and transgenic animals, are of great importance for further understanding the disease mechanisms. In this study, the application of new and highly specific ELISA systems for quantification of Abeta40 and Abeta42 (Abeta peptides ending at residues 40 or 42, respectively) in human cerebrospinal fluid (CSF) are presented. MATERIALS AND METHODS: Monoclonal antibodies WO-2, G2-10 and G2-11 were thoroughly characterized by (SPOT) epitope mapping and immunoprecipitation/mass spectrometry. We determined whether aggregation affected the binding capacities of the antibodies to synthetic peptides and whether components of the CSF affected the ability of the antibodies to bind synthetic Abeta1-40 and Abeta1-42 peptides. The stability of Abeta40 and Abeta42 in CSF during different temperature conditions was also studied to optimize sample handling from lumbar puncture to Abeta assay. RESULTS: The detection range for the ELISAs were 20-250 pM. The intra-assay variations were 2% and 3%, and the inter-assay variations were 2% and 10% for Abeta40 and Abeta42, respectively. The antibodies specifically detected the expected peptides with equal affinity for soluble and fibrillar forms of the peptide. The presence of CSF obstructed the recognition of synthetic peptides by the antibodies and the immunoreactivity of endogenous CSF Abeta decreased with increasing storage time and temperature. CONCLUSIONS: This study describes highly sensitive ELISAs with thoroughly characterized antibodies for quantification of Abeta40 and Abeta42, an important tool for the understanding of the pathogenesis of Alzheimer's disease. Our results pinpoint some of the difficulties associated with Abeta quantification and emphasize the importance of using a well-documented assay.  相似文献   

15.
Cell culture studies have shown that the Alzheimer amyloid precursor protein (APP) is secreted after full-length APP is cleaved by a putative secretase at the Lys16-Leu17 bond (secretase cleavage I) of the amyloid peptide sequence. Because this cleavage event is incompatible with amyloid production, it has been assumed that secreted APP cannot serve as a precursor of the amyloid depositions observed in Alzheimer's disease. Here we show that in neuronally differentiated PC12 cells and human kidney 293 cell cultures a portion of the secreted extracytoplasmic APP reacted specifically with both a monoclonal antibody recognizing amyloid protein residues Leu17-Val24 and a polyclonal antiserum directed against amyloid protein residues Ala21-Lys28. Furthermore, this APP failed to react with antisera recognizing the cytoplasmic domain of the full-length protein. These data indicate the presence of an alternative APP secretase cleavage site (secretase cleavage II), C-terminal to the predominant secretase cleavage I. Depending on the exact location of cleavage site II, potentially amyloidogenic secreted APP species may be produced.  相似文献   

16.
The putative precursor of A4 amyloid protein associated with Alzheimer's disease is known to have a domain with an amino acid sequence characteristic of a Kunitz-type serine protease inhibitor. Human serum inter-alpha-trypsin inhibitor (ITI) is the most similar inhibitor. We screened brain tissues with senile dementia of the Alzheimer type in an attempt to detect ITI immunoreactivity employing immunohistochemical methods. For this purpose, we used the antibody raised against acid-stable proteinase inhibitor (ASPI) which is an active component of ITI. ASPI immunoreactivity was found to be localized in diffuse type senile plaques, the perivascular area and subpial layer. Reactive astrocytes with intense ASPI immunoreactivity were present in the pyramidal layer of the parahippocampus, where loss of neurons was observed. These findings suggest that ITI may be related to the pathogenesis of Alzheimer type dementia.  相似文献   

17.
The proteins of lumbar CSF have been investigated by two-dimensional gel electrophoresis, and their patterns have been compared with the corresponding serum protein patterns. Serum proteins in CSF have been identified by electroblotting and immunoreaction with antiserum against total human serum proteins. Proteins derived from brain have been identified with antiserum against human brain proteins. The most prominent CSF protein group has been identified as a multiple form of apolipoprotein E. The correct position of the glial fibrillary acidic protein has also been determined. The prefractionation of CSF proteins by size exclusion chromatography or by affinity chromatography followed by two-dimensional electrophoresis has facilitated the detection of trace components in CSF and the corresponding serum.  相似文献   

18.
Passive immunotherapy using fibril-reactive mAbs has been shown experimentally to reduce amyloid formation and also accelerate amyloidolysis. We now report that human sera, as well as various sources of pooled human IgG, including pharmacologic formulations of immune globulin i.v. (IGIV), contain Abs that specifically recognize fibrils formed from light chains and other amyloidogenic precursor proteins, including serum amyloid A, transthyretin, islet amyloid polypeptide, and amyloid beta 1-40 peptide, but notably, do not react with these molecules in their native nonfibrillar forms. After isolation of the Abs from IGIV via fibril-conjugated affinity column chromatography, the EC50-binding value for light chains and amyloid beta 1-40 peptide fibrils was approximately 15 nM-a magnitude approximately 200 and 70 times less than that of the unbound fraction and unfractionated product, respectively. Comparable reactivity was found in the case of those formed from serum amyloid A, transthyretin, and islet amyloid polypeptide. The purified Abs immunostained human amyloid tissue deposits and could inhibit fibrillogenesis, as shown in fibril formation and extension assays. Most importantly, in vivo reactivity was evidenced in a murine model when the enriched Abs were used to image amyloid, as well as expedite its removal. These promising experimental results suggest that fibril affinity-purified IGIV has potential as a diagnostic and therapeutic agent for patients with amyloid-associated disease.  相似文献   

19.
Abstract: No single protease has emerged that possesses all the expected properties for β-secretase, including brain localization, appropriate peptide cleavage specificity, and the ability to cleave amyloid precursor protein exactly at the amino-terminus of β-amyloid peptide. We have isolated and purified a brain-derived activity that cleaves the synthetic peptide substrate SEVKMDAEF between methionine and aspartate residues, as required to generate the amino-terminus of β-amyloid peptide. Its molecular size of 55–60 kDa and inhibitory profile indicate that we have purified the metalloprotease EC 3.4.24.15. We have compared the sequence specificity of EC 3.4.24.15, cathepsin D, and cathepsin G for their ability to cleave the model peptide SEVKMDAEF or related peptides that contain substitutions reported to modulate β-amyloid peptide production. We have also tested the ability of these enzymes to form carboxy-terminal fragments from full-length, membrane-embedded amyloid precursor protein substrate or amyloid precursor protein that contains the Swedish KM → NL mutation. The correct cleavage was tested with an antibody specific for the free amino-terminus of β-amyloid peptide. Our results exclude EC 3.4.24.15 as a candidate β-secretase. Although cathepsin G cleaves the model peptide correctly, it displays poor ability to cleave the Swedish KM → NL peptide and does not generate carboxy-terminal fragments that are immunoreactive with amino-terminal-specific antiserum. Cathepsin D does not cleave the model peptide or show specificity for wild-type amyloid precursor protein; however, it cleaves the Swedish "NL peptide" and "NL precursor" substrates appropriately. Our results suggest that cathepsin D could act as β-secretase in the Swedish type of familial Alzheimer's disease and demonstrate the importance of using full-length substrate to verify the sequence specificity of candidate proteases.  相似文献   

20.
A principal neuropathological hallmark of Alzheimer's disease is deposition of beta-amyloid, composed primarily of a 4 kD peptide, A beta. This peptide is derived from larger amyloid precursor proteins. The mechanisms that are responsible for A beta formation in vivo are unknown. Recently, transgenic strategies have been employed to test several hypothetical mechanisms in order to reproduce Alzheimer's disease-specific pathology in rodents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号