首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Phenol bioconversion by Pseudomonas stutzeri OX1 using either free or immobilized cells was investigated with the aim of searching for optimal operating conditions of a continuous bioconversion process. The study was developed by analyzing: (a) free-cell growth and products of phenol bioconversion by batch cultures of P. stutzeri; (b) growth of P. stutzeri cells immobilized on carrier particles; (c) bioconversion of phenol-bearing liquid streams and the establishment and growth of an active bacterial biofilm during continuous operation of an internal-loop airlift bioreactor. We have confirmed that free Pseudomonas cultures are able to transform phenol through the classical meta pathway for the degradation of aromatic molecules. Data indicate that bacterial growth is substrate-inhibited, with a limiting phenol concentration of about 600 mg/L. Immobilization tests revealed that a stable bacterial biofilm can be formed on various types of solid carriers (silica sand, tuff, and activated carbon), but not on alumina. Entrapment in alginate beads also proved to be effective for P. stutzeri immobilization. Continuous bioconversion of phenol-bearing liquid streams was successfully obtained in a biofilm reactor operated in the internal-circulation airlift mode. Phenol conversion exceeded 95%. Biofilm formation and growth during continuous operation of the airlift bioreactor were quantitatively and qualitatively assessed.  相似文献   

2.
A new method for the immobilization of microbial cells has been developed. Whole cells of Escherichia coli with aspartase activity were immobilized by capture on the surface of cross-linked poly(N-benzyl-4-vinylpyridinium bromide) containing styrene (BVPS resin), an insoluble pyridinium-type resin. When a suspension of the bacterial cells in buffer solution was passed through a glass column containing beads of BVPS resin, the cells were captured on the resin surface and formed an immobilized cell system. A fixed-bed column reactor containing 300 mg of the bacterial cells immobilized by capture on 10 g of BVPS resin beads was used for the preparation of L-aspartic acid from ammonium fumarate. Continuous operation of tne bioreactor produced L-aspartic acid in a quantitative yield when the influent substrate concentration was 0.1M and the flow rate was 0.41-0.83 bed volumes per hour at pH 7.4-7.7 at 30 degrees C.  相似文献   

3.
A Panax notoginseng cell culture was successfully scaled up from shake flask to 1.0-L bubble column reactor and concentric-tube airlift reactor. High-density bioreactor batch cultivation was carried out using a modified MS medium. The maximum cell density in batch cultures reached 20.1, 21.0 and 24.1 g/L in the shake flask, bubble column and airlift reactors, respectively, and their corresponding biomass productivity was 950, 1140 and 1350 mg/(L x d) for each. The productivity of ginseng saponin was 70, 96 and 99 mg/(L x d) in the flask, bubble column and airlift reactors, respectively; and the polysaccharide productivity reached 104, 119 and 151 mg/(L x d) for each. Furthermore, a fed-batch cultivation strategy was developed on the basis of specific oxygen uptake rate (SOUR), i.e., sucrose feeding before a sharp decrease of SOUR, and the highest cell density of 29.7 g/L was successfully achieved in the airlift bioreactor on day 17 with a very high biomass productivity of 1520 mg/(L x d). The concentrations of ginseng saponin and polysaccharide reached about 2.1 and 3.0 g/L, respectively, and their productivity was 106 (saponin) and 158 mg/(L x d) (polysaccharide). This work successfully demonstrated the high-density bioreactor cultivation of P. notoginseng cells in pneumatically agitated bioreactors and the reproduction of the shake flask culture results in bioreactors. The cell density, biomass productivity, production titer and productivity of both ginseng saponin and polysaccharide obtained here were the highest that have been reported on a reactor scale for all the ginseng species.  相似文献   

4.
螺旋纤维床固定化生物反应器同时产酶降解壳聚糖的研究   总被引:4,自引:0,他引:4  
采用多孔聚酯泡沫固定里氏木霉,在鼓泡柱固定化反应器中同时产酶降解壳聚糖。结果表明通过控制降解时间可以得到不同平均聚合度的降解产物。在28℃,pH4.8,通气量3vvm条件下,利用固定化反应器,在30d内连续进行10批同时产酶降解试验,结果发现壳聚糖酶活力和壳聚糖降解率能保持稳定。每批产生的壳聚糖酶活力平均达到0.15u/mL以上,壳聚糖平均降解率为73%。  相似文献   

5.
To develop a feasible enzymatic process for d-tagatose production, a thermostable l-arabinose isomerase, Gali152, was immobilized in alginate, and the galactose isomerization reaction conditions were optimized. The pH and temperature for the maximal galactose isomerization reaction were pH 8.0 and 65 degrees C in the immobilized enzyme system and pH 7.5 and 60 degrees C in the free enzyme system. The presence of manganese ion enhanced galactose isomerization to tagatose in both the free and immobilized enzyme systems. The immobilized enzyme was more stable than the free enzyme at the same pH and temperature. Under stable conditions of pH 8.0 and 60 degrees C, the immobilized enzyme produced 58 g/L of tagatose from 100 g/L galactose in 90 h by batch reaction, whereas the free enzyme produced 37 g/L tagatose due to its lower stability. A packed-bed bioreactor with immobilized Gali152 in alginate beads produced 50 g/L tagatose from 100 g/L galactose in 168 h, with a productivity of 13.3 (g of tagatose)/(L-reactor.h) in continuous mode. The bioreactor produced 230 g/L tagatose from 500 g/L galactose in continuous recycling mode, with a productivity of 9.6 g/(L.h) and a conversion yield of 46%.  相似文献   

6.
Summary The contribution of immobilized cells and free cells released from gel beads to ethanol production by the salt-tolerant yeastsZygosaccharomyces rouxii andCandida versatilis, and 4-ethylguaiacol (4-EG) production byC. versatilis were investigated using an airlift reactor. The amounts of ethanol produced by free cells were about 65% and about 90% of total ethanol in the reactor forZ. rouxii andC. versatilis, respectively. It was found that immobilized cells gave a much lower specific productivity of ethanol (ethanol production per hour per cell) than free cells of both yeasts, especially ofC. versatilis. 4-EG was produced mainly by immobilized cells ofC. versatilis; the amount of 4-EG produced by free cells was about 20% of the total 4-EG, in contrast to the results of ethanol production. However, the specific productivity of 4-EG (4-EG production per hour per cell) by immobilized and free cells was fairly similar.  相似文献   

7.
In fed-batch fermentation, cells of L. mesenteroides immobilized on three types of Celite were used to produce dextransucrase (DS) followed by production of dextran. A layer of calcium alginate on the porous Celite R630 particles improved their mechanical stability, increased the amount of soluble DS produced and decreased the cell leakage from the highly porous support. Enzyme production with the immobilized cell cultures was significantly affected by both pore and particle size. Immobilized cultures using Celite R648 (average particle radius of 200 mum and pore size of 0.14 mum) produced the highest total enzymatic activity, followed by Celite R633, alginate-coated Celite R630, Celite R630, and then calcium alginate beads. Culture of free cells produced about 18% more total enzymatic activity than immobilized cells in calcium alginate beads, but about 64% less than immobilized cells on Celite R630. It is expected that larger amounts of enzymatic activity than measured are immobilized inside the alginate-coated Celite R630 and calcium alginate beads due to the mass transfer limitation conferred by the dextran product formed therein. The dextran yield from conversion of sucrose to dextran and fructose with all such enzyme-enriched, immobilized-cell cultures was higher than that obtained from free-cell culture under similar conditions.  相似文献   

8.
Summary Glucoamylase production by Aureobasidium pollulans A-124 was compared in free-living cells, cells immobilized in calcium alginate gel beads aerated on a rotary shaker (agitation rate 150 rpm), and immobilized cells aerated in an air bubble column reactor. Fermentation conditions in the bioreactor were established for bead concentration, substrate (starch) concentration, calcium chloride addition to the fermentation medium, and rate of aeration. Production of glucoamylase was optimized at approximately 1.5 units of enzyme activity/ml medium in the bioreactor under the following conditions: aeration rate, 2.0 vol air per working volume of the bioreactor (280 ml) per minute; gel bead concentration, 30% of the working volume; substrate (starch) concentration, at 0.3% (w/v); addition of calcium chloride to the medium at a final concentration of 0.01 M. Productivity levels were stabilized through the equivalent of ten batches of medium with the original inoculum of immobilized beads. Offprint requests to: M. Petruccioli  相似文献   

9.
利用基因工程菌HC01固定化细胞转化生产D-对羟基苯甘氨酸   总被引:1,自引:0,他引:1  
对一菌两酶工程菌HC01转化底物DL-对羟基苯海因(DL-HPH)的最适条件及其细胞固定化进行了研究,HC01游离细胞转化DL-HPH的最适条件为40°C、pH7.5。通过对固定化细胞酶活力测定,确定细胞固定化的最优条件为海藻酸钠浓度2.5%、细胞浓度0.029g/mL、钙离子浓度3%。固定化HC01的热稳定性比游离细胞高5°C,二价金属离子Mn2+、Mg2+、Cu2+、Co2+和Ni2+在浓度为0.1mmol/L时对固定化细胞中D-海因酶(HYD)和N-氨甲酰-D-氨基酸酰胺水解酶(CAB)两酶的活力无显著影响,Mn2+和Mg2+可分别使游离细胞中CAB活力提高至原来的2.1和2.7倍。在氮气保护下,当初始pH为9.0、转化温度为40°C、转速为80r/min,利用固定化HC01转化30g/L的DL-HPH时,36h后转化率可达97%左右,产物D-HPG经纯化后光学纯度达到99.7%,得率可达85%。  相似文献   

10.
Cells of Leuconostoc mesenteroides immobilized in calcium alginate beads were used to produce dextransucrase (DS) in three sequential cycles of semicontinuous fed-batch fermentations. Each cycle consisted of a fed-batch DS production period of 24 h followed by a batch dextran production period for another 24 h. Free, suspended cells were used in only one cycle of fed-batch DS production followed by a dextran production period. It was impractically tedious to separate and reuse free cells. Increasing sucrose feed rate from 5 to 10 g/L h led to increases of the total enzymatic activity by about 88% with immobilized cells and by about 100% with free cells. In DS fed-batch semicontinuous fermentation, total enzymatic activity produced by immobilized cells was 1.35 and 1.56 times greater than that produced by free cells with respective sucrose feeding rates of 10 and 5 g/L h. These increases in enzyme productivity with immobilized cells, however, required total overall operating times three times longer (three cycles) than with free cells (one cycle). Growing the microorganism at optimum conditions for DS production also increased the dextran yield and shortened the time of conversion of sucrose to dextran, regardless of whether the cells were free or immobilized. Moreover, during three cycles of semicontinuous operation (144 h) immobilized cells produced more than three times as much dextran as free cells during one cycle (24 h).  相似文献   

11.
Summary A high penicillin-producing Penicillium chrysogenum strain immobilized in calcium alginate beads was used for continuous penicillin fermentation in a bubble column and in a conical bubble fermentor. The fermentation was limited by the growth rate, dilution rates and the stability of the alginate beads. The immobilized cells lost their ability to produce penicillin in the bubble column after 48 h from beginning of the continuous fermentation. In the conical bubble fermentor the immobilized cells remained active for more than 7 days. This bioreactor ensured a good distribution of nutrients and oxygen as well as a higher mechanical stability of the alginate beads.  相似文献   

12.
Acid proteinase production using filamentous fungus Humicola lutea 120-5 was studied under batch and continuous fermentation conditions in an airlift bioreactor. A comparison with proteinase production by fungal cells, cultivated in stirred tank bioreactor was made. The process performance in both fermentation devices was similar with respect to substrate utilization, biomass, and enzyme concentration. Continuous acid proteinase production was achieved for 14 days at an optimal dilution rate of 0.05/h with maximum specific activity of 90 U/mg DW of mycelia and yield of 38 U/mg glucose. The volumetric productivity (50 U/ml. h) was approximately 3 times higher than this of the batch system. All continuous experiments were carried out without any bacterial contamination, due to the low pH (3.0-3.5) during the process. The "pellet" type growth of the fungus in the airlift reactor prevented the system from plugging with filaments.  相似文献   

13.
The immobilization of Acidithiobacillus ferrooxidans cells on chitosan and cross-linked chitosan beads and the biooxidation of ferrous iron to ferric iron in a packed-bed bioreactor were studied. The biofilm formation was carried out by using a glass column reactor loaded with chitosan or cross-linked chitosan beads and 9 K medium previously inoculated with A. ferrooxidans cells. The immobilization cycles on the carrier matrix with the bioreactor operating in batch mode were compared. Then, the reactor was operated using a continuous flow of 9 K medium at different dilution rates. The results indicate that the packed-bed reactor allowed increasing the flow rate of medium approximately two fold (chitosan) and eight fold (chitosan cross-linked) without cells washout, compared to a free cell suspension reactor used as control, and to reach ferric iron productivities as high as 1100 and 1500 mg l(-1) h(-1) respectively. Scanning electron microscopy micrographs of the beads, infrared spectroscopy and the X-ray diffraction patterns of precipitates on the chitosan beads were also investigated.  相似文献   

14.
Bioconversion of hydrogen sulfide to elementary sulfur by the photosynthetic bacterium Chlorobium thiosulfatophilum was studied in immobilized-cell and sulfur-settling free-cell recycle reactors. The cells immobilized in strontium alginate beads excreted elementary sulfur and accumulated it as crystal in the bead matrices, which made it possible that the reactor broth remained clear and the light penetrated the reactor deeper than with the free cells. In comparison with the free cells, the immobilized cells required 30% less light energy at a H2S removal rate of 2 mM/(L.h) and showed an activity of 2.4 times that of the free cells. However, in 40 h after the reaction the deterioration of the H2S removal efficiency became significant due to the accumulation of sulfur in the beads. The scanning electron micrograph (SEM) and energy-dispersive X-ray spectrometer (EDS) studies showed that the sulfur in the beads existed within a layer of 0.4 mm from the bead surface. In the sulfur-settling free-cell recycle reactor, about 80% of the sulfur excreted by the free cells could be removed in a settler. The 4-L fed batch reactor with the settler improved the light transmission to result in a H2S removal rate of 3 mumol/(mg of protein.h), 50% higher than that without it. The settling recycle reactor was much better in the removal of H2S than the immobilized-cell reactor because the former was a continuous system with the constant removal of sulfur particles by settling and of spent medium by supplying fresh medium at the same rate as the filtering rate of the reactor broth, while the latter was essentially a batch system where toxic metabolites and produced sulfur could not be removed.  相似文献   

15.
Immobilized cells of Actinoplanes teichomyceticus ATCC 31121 were used to selectively cleave the acyl group of A40926 yielding the deacylated form of the molecule. The feasibility of this particular biotransformation in a series of three perfectly mixed airlift bioreactors with immobilized cells was examined. A continuously operated airlift cascade was designed using a model for a series of reactors with immobilized biocatalyst beads obeying Michaelis–Menten kinetics. In independent experimental runs the cascade bioreactor system was operated continuously for 56 days with an overall conversion of 99%. Model estimates for reactor volumes and relative conversions were found to be in a good agreement with the experimental results.  相似文献   

16.
Conditions were established for optimizing the surfactant (SDS)-degrading activity of Pseudomonas C12B immobilized in polyacrylamide gel beads. Optimum activity was obtained by using immobilized cells derived from stationary phase of batch cultures and incubating with SDS at 30°C at pH 6.5. Half-saturation of the degradation system was achieved at an SDS concentration of 0.23 m . Biocatalyst stability was highest for beads maintained in basal salts medium, retaining 91% of initial activity after 161 d. In Tris/HCl buffer or distilled water, the stability was much lower, although in all cases the stability of immobilized cells was higher than that of free cells under equivalent conditions. Biocatalyst beads “inactivated” by sequential incubation in three batches of distilled water containing only SDS could be reactivated by transferring beads to nutrient medium. Beads packed in a glass column and operated in a continuous up-flow mode using SDS/basal salts eluant produced 100% hydrolysis when run at retention times above 60 min. The system was highly stable in the continuous flow mode; when operated at a residence time of 55 min (initially giving 98% degradation), the extent of degradation decreased only slightly to 93% over a continuous operation period of 3 weeks.  相似文献   

17.
The objective of this work was to develop a hydrogel-coated monolith for the entrapment of penicillin G acylase (E. coli, PGA). After screening of different hydrogels, chitosan was chosen as the carrier material for the preparation of monolithic biocatalysts. This protocol leads to active immobilized biocatalysts for the enzymatic hydrolysis of penicillin G (PenG). The monolithic biocatalyst was tested in a monolith loop reactor (MLR) and compared with conventional reactor systems using free PGA, and a commercially available immobilized PGA. The optimal immobilization protocol was found to be 5 g l(-1) PGA, 1% chitosan, 1.1% glutaraldehyde and pH 7. Final PGA loading on glass plates was 29 mg ml(-1) gel. For 400 cpsi monoliths, the final PGA loading on functionalized monoliths was 36 mg ml(-1) gel. The observed volumetric reaction rate in the MLR was 0.79 mol s(-1) m(-3) (monolith). Apart from an initial drop in activity due to wash out of PGA at higher ionic strength, no decrease in activity was observed after five subsequent activity test runs. The storage stability of the biocatalysts is at least a month without loss of activity. Although the monolithic biocatalyst as used in the MLR is still outperformed by the current industrial catalyst (immobilized preparation of PGA, 4.5 mol s(-1) m(-3) (catalyst)), the rate per gel volume is slightly higher for monolithic catalysts. Good activity and improved mechanical strength make the monolithic bioreactor an interesting alternative that deserves further investigation for this application. Although moderate internal diffusion limitations have been observed inside the gel beads and in the gel layer on the monolith channel, this is not the main reason for the large differences in reactor performance that were observed. The pH drop over the reactor as a result of the chosen method for pH control results in a decreased performance of both the MLR and the packed bed reactor compared to the batch system. A different reactor configuration including an optimal pH profile is required to increase the reactor performance. The monolithic stirrer reactor would be an interesting alternative to improve the performance of the monolith-PGA combination.  相似文献   

18.
Escherichia coli B 10, which has high activity of tryptophan synthetase, was grown in a 50-L batch culture in order to determine in which growth phase the cells have the highest specific tryptophan productivity. Accordingly, whole cells of the stationary phase were used for immobilization in polyacrylamide beads. After immobilization, these immobilized cells had 56% activity of tryptophan synthetase compared with that of free cells. First, the properties of immobilized cells were investigated. Next, discontinuous productions of L-tryptophan were carried out by using immobilized cells. In discontinuous production of L-tryptophan by the batch, the activity remaining of immobilized cells was 76-79% after 30 times batchwise use. In continuous production of L-tryptophan with a continuous stirred tank reactor (CSTR), the activity remaining of the immobilized cells was 80% after continuous use for 50 days. The maximum productivity of L-tryptophan in this CSTR system was 0.12 g tryptophan L(-1) h(-1).  相似文献   

19.
E. coli K12 with multicopy plasmid (lambda PR-promoter and temperature-sensitive lambda cI 857 repressor) was cultivated in 60-l bubble column and airlift tower loop reactors. The medium composition, cell concentration, and intracellulary enzyme activity were monitored on-line during batch, fed-batch, and continuous cultivations. The specific growth rates, cell mass yield coefficients, plasmid stabilities, productivities of the amount of active fusion protein (beta-galactosidase activity), concentrations and yields of acetic acid, and volumetric oxygen transfer coefficient were evaluated for different medium compositions and cultivation conditions. The enzyme activity was also monitored during the temperature induction. The results evaluated in the 60-l bubble column and airlift tower loop reactors are compared with those evaluated in a 1-1 stirred-tank reactor.  相似文献   

20.
A dichloromethane (DCM)-degrading bacterium, Ralstonia metallidurans PD11 NBRC 101272, was immobilized in a polyvinyl alcohol (PVA) gel to use in a bioreactor for DCM treatment. After 4-month incubation of PVA gel beads with R. metallidurans PD11 and DCM in a mineral salt medium, the cells were tightly packed in the mesh of the gel. Forty beads of the gel in 10 ml of a batch system model showed effective activity degrading 500 and 1,000 mg l−1 DCM within 2 and 3 h, respectively. Although reduction of pH due to accumulation of chloride ion liberated from DCM decreased the activity, it was recovered by adjustment to neutral pH. The activity of the immobilized cells was not affected by addition of nutrients which were preferentially utilized by R. metallidurans PD11, unlike the activity of the free-living cells. A continuous flow system with a column was more effective for rapid degradation of DCM. Thus, the PVA gel–immobilized cell of R. metallidurans PD11 is thought to be a prospective candidate to develop the bioreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号