首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chromosomal virulence gene, acvB, of Agrobacterium tumefaciens [J. Bacteriol., 175, 3208–3212 (1993)] was over-expressed in Escherichia coil. A 47-kDa protein was produced and localized in the periplasmic space of E. coli. Amino acid sequence analysis of its N-terminal demonstrated that a signal peptide of 24 amino acids was cleaved from the pre AcvB protein to produce the mature 47-kDa protein. Western-blot analysis using the antiserum against the AcvB protein detected a 47-kDa protein in the periplasmic space only with strain A208 (acvB +). The amount of AcvB protein synthesized was not increased in strain A208 by induction with acetosyringone (100 μm). There was observed no significant difference in induction by acetosyringone of virB:: lacZ, virD:: lacZ, and virE:: lacZ fusion genes regardless of the presence or absence of the acvB gene. The T-strand (lower strand of T-DNA) was detected in strains A208 as well as B119 (acvB?) which were cultured in induction medium containing acetosyringone. AcvB protein bound to single-stranded DNAs with no apparent sequence specificity. The results suggest that AcvB protein binds to the T-strand in periplasm and mediates the transfer of the T-strand from A. tumefaciens to the host plant cell.  相似文献   

2.
The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR1 and its target mRNA atu2422, which codes for the substrate binding protein of an ABC transporter taking up proline and γ-aminobutyric acid (GABA). Several other ABC transporter components were overproduced in an hfq mutant compared to their levels in the parental strain, suggesting that Hfq plays a major role in controlling the uptake systems and metabolic versatility of A. tumefaciens. The hfq mutant showed delayed growth, altered cell morphology, and reduced motility. Although the DNA-transferring type IV secretion system was produced, tumor formation by the mutant strain was attenuated, demonstrating an important contribution of Hfq to plant transformation by A. tumefaciens.  相似文献   

3.
Virulence of Agrobacterium tumefaciens Strain A281 on Legumes   总被引:3,自引:3,他引:0  
This study addresses the basis of host range on legumes of Agrobacterium tumefaciens strain A281, an l,l-succinamopine strain. We tested virulence of T-DNA and vir region constructs from this tumor-inducing (Ti) plasmid with complementary Ti plasmid regions from heterologous nopaline and octopine strains.  相似文献   

4.
ChvE is a chromosomally encoded protein in Agrobacterium tumefaciens that mediates a sugar-induced increase in virulence (vir) gene expression through the activities of the VirA/VirG two-component system and has also been suggested to be involved in sugar utilization. The ChvE protein has homology to several bacterial periplasmic sugar-binding proteins, such as the ribose-binding protein and the galactose/glucose-binding protein of Escherichia coli. In this study, we provide direct evidence that ChvE specifically binds the vir gene-inducing sugar d-glucose with high affinity. Furthermore, ChvE mutations resulting in altered vir gene expression phenotypes have been isolated and characterized. Three distinct categories of mutants have been identified. Strains expressing the first class are defective in both virulence and d-glucose utilization as a result of mutations to residues lining the sugar-binding cleft. Strains expressing a second class of mutants are not adversely affected in sugar binding but are defective in virulence, presumably due to impaired interactions with the sensor kinase VirA. A subset of this second class of mutants includes variants of ChvE that also result in defective sugar utilization. We propose that these mutations affect not only interactions with VirA but also interactions with a sugar transport system. Examination of a homology model of ChvE shows that the mutated residues associated with the latter two phenotypes lie in two overlapping solvent-exposed sites adjacent to the sugar-binding cleft where conformational changes associated with the binding of sugar might have a maximal effect on ChvE''s interactions with its distinct protein partners.Virulent strains of Agrobacterium tumefaciens contain the tumor-inducing (Ti) plasmid that carries virulence (vir) operons. Products of vir operons are involved in infecting wound sites of dicotyledonous plants and initiating tumor formation. The expression of vir genes in A. tumefaciens is activated by plant-released signals, namely, phenolic derivatives, acidic pH, and monosaccharides (for a review, see reference 6), via the combined activities of the periplasmic protein ChvE and the VirA/VirG two-component regulatory system. Upon perception of these plant signals, autophosphorylated VirA, a transmembrane histidine kinase, transfers a phosphoryl group to VirG, a response regulator, and then the phosphorylated VirG activates the expression of vir genes by binding vir boxes in their promoters (8, 19, 24, 31, 52).Perception and transduction of the sugar signals is crucial to the virulence of A. tumefaciens: strains lacking ChvE, a chromosomally encoded putative sugar-binding protein, are significantly less virulent than wild-type strains (17, 18). Previous studies have shown that, in fact, sugar signaling is neither sufficient for nor absolutely required for vir gene expression. Rather, sugars vastly increase both the sensitivity of VirA to phenol derivatives, such as acetosyringone (AS), and the maximal levels of vir gene expression observed at saturating levels of such compounds (for a review, see reference 26). The periplasmic domain of VirA is required for transduction of the sugar and pH signals (7, 8, 16, 41), whereas the so-called “linker” domain, located in the cytoplasm between the second transmembrane domain and the kinase domain, is required for perception and transduction of the phenolic signals (8, 46, 47).A working model for the ChvE/sugar/VirA signaling pathway suggests that monosaccharide-bound ChvE interacts with the periplasmic domain of VirA to relieve periplasmic repression, resulting in maximal sensitivity of VirA to phenolic signals (7, 11, 32, 41). However, limited evidence has been presented to reveal how ChvE recognizes monosaccharides and how it interacts with the periplasmic domain of VirA. Shimoda et al. (41) identified a mutant chvE allele [chvE(T211M)] that is able to suppress a sugar-insensitive virA allele [virA(E210V)], thereby restoring the sugar-sensing ability. The suppressing effect of chvE(T211M) was then proposed to be the result of the specific restoration of the capacity of VirAE210V to bind ChvET211M. However, ChvET211M also activated wild-type VirA in the absence of sugars (32), suggesting that this mutant may not be a site-specific suppressor of VirAE210V. Based on a homology model of ChvE, a recent study (16) does predict, though, that the residue T211 is located on the surface of the ChvE protein, consistent with the model that T211 is in a position to interact with the periplasmic domain of VirA.Based on sequence similarity, ChvE is a member of the periplasmic sugar-binding protein (PSBP) family. The structures of some PSBPs, including two ChvE homologues in Escherichia coli, ribose-binding protein (RBP) and glucose/galactose-binding protein (GBP), have been solved. The family of PSBPs shares very similar structural features, and each of them contains two similar but distinct globular domains connected by a flexible hinge (38). A sugar-binding site is located at the cleft between the two domains. PSBPs play an important role in active sugar transport, and some of them also serve as an initial receptor for sugar chemotaxis (45). A wealth of evidence has demonstrated that some specialized regions located on the surfaces of PSBPs are important for transport and chemotactic functions. In the case of RBP, four distinct regions spanning the N-terminal and C-terminal domains are involved in interaction with its permease (a transport partner), its chemotransducer (a chemotactic partner), or both (5, 15). In GBP, one residue was identified as being specifically involved in chemotaxis but not transport (36, 49). For maltose-binding protein (MBP), which is also a member of the PSBP family, two well-defined regions located on each domain of the protein are involved in interaction with its chemotransducer (54). These regions partially overlap with the regions involved in interaction with its permease (25, 54). Structural analysis indicates that both domains of MBP have direct interactions with its transport partners (35).ChvE also appears to be a highly versatile protein: not only does it play an important role in virulence, but as in the case of the PSPBs described above, it has been indicated to be a primary receptor for transport of and chemotaxis toward some sugars (7). This raises important biological/biochemical questions. How can ChvE interact with three presumably different periplasmic components of systems that are respectively involved in virulence, sugar utilization, and chemotaxis? How are the interactions of ChvE with these periplasmic components structurally segregated: do the interactions occur on the same or different regions of ChvE? To address these issues, we employed genetic and biophysical approaches to identify the residues of ChvE involved in sugar utilization versus the residues involved in virulence. The residues of both groups were mapped onto a homology model of ChvE based on a high-resolution crystal structure of E. coli GBP (PDB ID, 2ipn). Our results identify an extended surface spanning both the N-terminal and C-terminal domains of ChvE that is essential for interacting with VirA and that partially overlaps the surface responsible for the interaction of ChvE with a putative ABC sugar transport protein.  相似文献   

5.
In vitro binding experiments were carried out using (32)P-labeled cells of the virulent Agrobacterium tumefaciens strain B6 and Datura innoxia cells from suspension culture. Binding kinetics showed that adherence of bacteria to Datura cells increased gradually during the first 60 minutes and attained a maximum level within 120 minutes of incubation. Maximum binding occurred at pH 6.0. The presence of Ca(2+) and Mg(2+) reduced binding slightly and EDTA had little effect at concentrations of 0.1 to 10 millimolar. The binding of bacteria to Datura cells was temperature-dependent. Escherichia coli, Salmonella typhimurium, Rhizobium japonicum, and Micrococcus lysodeikticus did not compete with virulent A. tumefaciens strain B6 for binding to Datura cells. The admixture of avirulent A. tumefaciens strain IIBNV6 enhanced adherence of virulent A. tumefaciens strain B6 to Datura cells. Octopine had no effect on the binding of virulent A. tumefaciens strain B6 to Datura cells, but 10 millimolar canavanine was inhibitory. Arginine enhanced the adherence of the bacteria at concentrations higher than 0.1 millimolar. Incubation with DNase, RNase, and lipase did not affect the binding, but protease stimulated the adherence of bacteria to Datura cells. Concanavaline A and soybean lectin had little effect whereas lecithin and lysolecithin enhanced binding slightly. Poly-l-lysine markedly stimulated the bacteria-plant cell adherence. Cells from suspension cultures of pea, vetch, and soybean had a 2- to 3-fold higher binding capacity than Datura cells, whereas cells from wheat, corn, rice, and sorghum had a considerably lower affinity for binding with virulent A. tumefaciens strain B6. Bacterial adherence to plant cells was confirmed by autoradiography and electron microscopy. Autoradiographic analysis showed that bacteria were associated with the cell wall, and that often binding of bacteria was localized. Electron micrographs clearly illustrated a tight association of virulent A. tumefaciens strain B6 cells to the Datura cell wall.  相似文献   

6.
农杆菌vir基因诱导因子研究进展   总被引:1,自引:0,他引:1  
在众多遗传转化法中,农杆菌(Agrobacterium tumefaciens)介导法以易操作、低费用、插入片段明确、拷贝数低等独特优点成为植物遗传转化的首选。然而,至今仍有许多物种不能被农杆菌转化。研究表明,农杆菌的转化能力是由位于染色体基因组之外Ti质粒上的vir基因决定的。在所有vir基因中,除virA和virG组成型表达外,其它vir基因的表达均需酚类化合物的诱导;糖类物质可增强酚类化合物对vir基因的诱导;低磷酸和酸性pH环境也可促进vir基因的诱导表达。文章论述了酚类化合物、糖类物质、低磷酸、酸性pH和培养温度等因素对农杆菌vir基因诱导表达的影响,以期为更好地利用这一天然载体及为提高转化效率提供依据。  相似文献   

7.
Phosphatidylcholine (PC, lecithin) has long been considered a solely eukaryotic membrane lipid. Only a minority of all bacteria is able to synthesize PC. The plant‐transforming bacterium Agrobacterium tumefaciens encodes two potential PC forming enzymes, a phospholipid N‐methyltransferase (PmtA) and a PC synthase (Pcs). We show that PC biosynthesis and tumour formation on Kalanchoë plants was impaired in the double mutant. The virulence defect was due to a complete lack of the type IV secretion machinery in the Agrobacterium PC mutant. Our results strongly suggest that PC in bacterial membranes is an important determinant for the establishment of host–microbe interactions.  相似文献   

8.
A transposon 5 (Tn5) insertion was introduced into the genome of A. tumefaciens (A-208 strain harbouring a nopaline type Ti-plasmid) using a conjugative pJB4JI plasmid containing Tn5. Five thousand transconjugants were assayed for virulence on carrot (Daucus carota L.) disks; 54 isolates were avirulent or very attenuated. The cellular localization (plasmid or chromosome) of the Tn5 insertion in those isolates were identified by Southern hybridization analysis. An avirulent- mutant (B-90 strain) with the Tn5 insertion in the chromosome was selected and characterized. The mutant had the same growth rate as that of the parent strain in L-broth. The mutant and the parent strain had similar attachment ability to carrot root cells. Tn5 was inserted into one site of the chromosome. The wild-type target chromosomal region (1281 base pairs) was cloned and sequenced. An open reading frame (ORF) consisting of 395 base pairs was identified. The wild-type DNA fragment (1.6 kb) containing the ORF introduced into B-90 strain complemented the avirulent phenotype of the strain. A soluble protein was predicted from the ORF. The Tn5 was inserted near the 3′-terminal of the ORF. Homology search of this ORF found no significant homology to known genes and proteins. Thus, the ORF identified in this paper seems to be a new chromosomal virulence gene of A. tu?efaciens.  相似文献   

9.
根癌农杆菌致病基因及其生物学功能分析   总被引:2,自引:0,他引:2  
用转座子标签技术克隆了位于农杆菌(A-208株)染色体上的致病基因acvB、abvA、chvA简单介绍克隆技术的研究思路和策略。染色体基因是农杆菌吸附到植物细胞表面所必需的基因,当某一基因发生突变时,就不能完成贴壁反应而失去毒性。由于转座子Tn5的插入,导致染色体毒性基因失活,最终使农杆菌感染后的受体细胞不能致瘤。用实验证据阐述各基因在T-DNA形成、转移、整合、表达等过程中担负的重要作用。对延宕至今的T-DNA穿壁问题作了推测:植物细胞壁表面可能存有T-DNA的天然穿壁孔道。  相似文献   

10.
Monosaccharides capable of serving as nutrients for the soil bacterium Agrobacterium tumefaciens are also inducers of the vir regulon present in the tumor-inducing (Ti) plasmid of this plant pathogen. One such monosaccharide is galacturonate, the predominant monomer of pectin found in plant cell walls. This ligand is recognized by the periplasmic sugar binding protein ChvE, which interacts with the VirA histidine kinase that controls vir gene expression. Although ChvE is also a member of the ChvE-MmsAB ABC transporter involved in the utilization of many neutral sugars, it is not involved in galacturonate utilization. In this study, a putative tripartite ATP-independent periplasmic (TRAP) transporter, GaaPQM, is shown to be essential for the utilization of galacturonic acid; we show that residue R169 in the predicted sugar binding site of the GaaP is required for activity. The gene upstream of gaaPQM (gaaR) encodes a member of the GntR family of regulators. GaaR is shown to repress the expression of gaaPQM, and the repression is relieved in the presence of the substrate for GaaPQM. Moreover, GaaR is shown to bind putative promoter regions in the sequences required for galacturonic acid utilization. Finally, A. tumefaciens strains carrying a deletion of gaaPQM are more sensitive to galacturonate as an inducer of vir gene expression, while the overexpression of gaaPQM results in strains being less sensitive to this vir inducer. This supports a model in which transporter activity is crucial in ensuring that vir gene expression occurs only at sites of high ligand concentration, such as those at a plant wound site.  相似文献   

11.
12.
Summary Brassica napus and Brassica juncea were infected with a number of Agrobacterium tumefaciens strains. Tumourigenesis was very rapid and extremely efficient on B. juncea with all but one of the strains. Tumourigenesis on B. napus varied widely. It was very efficient with the nopaline strains, was reduced with the succinamopine strain A281 and was very weak with the octopine strains. The latter observation was confirmed with six different B. napus rapeseed cultivars. The selectivity was due to differences in the virulence of Ti plasmids with B. napus, rather than the tumourigenicity of the T-DNA or virulence of the chromosomal genes associated with the strains. An exception was strain LBA4404. The virulence of the octopine strains was increased by coinfection with more virulent disarmed strains and by induction with acetosyringone.  相似文献   

13.
A simple system is described for detection of the transfer ofT-DNA from Agrobacterium cells to suspension-cultured tobaccoBY-2 cells. A modified reporter gene for rß-glucuronidase(GUS) that contained an intron sequence was introduced intothe T-DNA region such that the GUS protein could be synthesizedin plant cells only after transfer of the T-DNA to plant nuclei.When BY-2 cells were co-cultured with Agrobacterium cells thatcontained the modified reporter gene, transient synthesis ofGUS protein was observed between 36 and 48 h after the onsetof co-culture. The level of GUS activity reached a plateau withinas little as 48 h. This temporal profile of GUS activation suggeststhat the transient activity might have been due to expressionof the GUS gene in the T-DNA that had been transferred to theplant nuclei but had not yet been integrated into the plantchromosomes. Levels of transient GUS activity were also examinedwith various vir mutants of Agrobacterium and in a mutant withan altered chromosomal acvB gene, the gene for a protein thathas been postulated to function outside bacterial cells. Duringco-culture with virB, virD2, virD4 and acvB mutants, GUS activityremained at background levels, and the GUS activity in the caseof the virE2 mutant was thirty-fold lower than with the wildtype. On the basis of these results, we discuss the roles ofthese genes during infection by Agrobacterium of plant cells. 4Present address: Biochemistry Laboratory, Kanebo Ltd., 5-3-28Kotobuki-cho, Odawara, Kanagawa, 250 Japan  相似文献   

14.
生物脱硫菌根癌土壤杆菌UP-3的固定化研究   总被引:1,自引:0,他引:1  
生物脱硫催化剂固定化研究对生物脱硫技术的推广应用具有重要的意义。该文以筛选出的具有脱硫能力的根癌土壤杆菌UP-3为固定化研究对象,二苯并噻吩(DBT)为生物催化脱硫的模型化合物,主要考察了菌株UP-3的培养条件、固定化方法和载体、固定化操作条件和固定化细胞的使用条件。结果表明:以桑特斯培养基在30℃下培养28h的根癌土壤杆菌UP-3具有最佳活性。采用3wt%海藻酸钠水溶液为包埋载体,液菌比为20:1,在4℃下1wt%CaCl2水溶液中固定化24h,得到的固定化细胞脱硫性能最好。在30℃下,反应6d可将浓度为625mg/L的DBT降解60%以上。  相似文献   

15.
Morphological characteristics of thermoconditional mutant Agrobacterium tumefaciens F-502 were investigated in relation to growth, division, and synthesis of cellular components. As a result of a shift from 27 to 37 C, mutant cells altered their morphology from short rods to elongated and branched forms; in addition, division and deoxyribonucleic acid synthesis were inhibited at 37 C. At 37 C unidirectional cell growth and branch formation occurred at one end of a cell, and the elongation rate of a cell was proportional to cell length. A hypothetical model for branch formation is presented in which the maximal elongation rate, 1.8 mum/h, at one end of a cell is an essential factor for initiation of branch formation.  相似文献   

16.
A method has been developed for the regeneration of transformedplants of the commercially important crop sugarbeet (Beta vulgarisL.), using Agrobacterium tumefaciens. Binary vectors were used,carrying both screenable and selectable genes. Plant regenerationfrom shoot-base tissues was found to be relatively rapid andfrequent compared with petioles or leaf tissue. Inoculationof cultured shoot-base tissues resulted in the production oftransformed plants, as determined by (1) introduced resistanceto kanamycin, (2) introduced CAT or GUS activity, and (3) Southernblot analysis to show the integration of foreign DNA. The transformationfrequency was found to be dependent upon explant source, plantgenotype and selection conditions used. Key words: Agrobacterium tumefaciens, sugarbeet (Beta vulgaris L.), transformation.  相似文献   

17.
Agrobacterium tumefaciens C58 grown on acidic medium containing glucose and solidified with bacteriological agar expressed a virB::lacZ fusion. No expression of this fusion was observed on a similar medium which was solidified with purified agarose. The fraction from bacteriological agar which was responsible for vir gene induction was extracted with methanol and partially purified by preparative thin-layer chromatography.  相似文献   

18.
Lactuca sativa can be routinely transformed using Ti plasmids of Agrobacterium tumefaciens containing a chimeric kanamycin resistance gene (NOS.NPTII.NOS). Critical experimental variables were plant genotype, bacterial concentration, presence of a nurse culture and timing of transfers between tissue culture media. Transformation was confirmed by the ability to callus and root in the presence of kanamycin, nopaline production, and by hybridization in Southern blots. Transformation has been achieved with several Ti vectors. Several hundred transformed plants have been regenerated. Kanamycin resistance was inherited monogenically. Homozygotes can be selected by growing R2 seedlings on media containing G418.Abbreviations IAA indole acetic acid - KIN kinetin - BA benzyladenine - NOS nopaline synthase - NPTII neomycin phosphotransferase II - RMNO tobacco nutrient medium (Marton and Maliga, 1975) - SH Shenk & Hildebrandt nutrient medium (Shenk & Hildebrandt, 1972; Michelmore and Eash, 1985) Present address: Agriculture Canada, P.O. Box 457, St. Jean-sur-Richelieu, Quebec, Canada, J3B 6Z8  相似文献   

19.
A pectin-enriched soluble cell wall fraction (CWF) prepared from suspension cultured tomato cells inhibits binding of Agrobacterium tumefaciens to these cells. It was hypothesized that the CWF contains the plant surface binding site for A. tumefaciens (NT Neff, AN Binns 1985 Plant Physiol 77: 35-42). Experiments described here demonstrate that tomato CWF inhibited tumor formation on potato slices and Agrobacterium binding to intact tomato cells in a dose-dependent fashion. Boiling the fraction reduced both its binding and tumor inhibitory activities. Tumor inhibitory activity was titrated out by increased concentrations of bacterial inocula with no inhibition apparent at 1 × 108 bacteria per milliliter. These results indicate that a tomato CWF is enriched for a putative A. tumefaciens binding site which may also be involved in tumor formation in potato.  相似文献   

20.
Abstract An accession of Lotus alpinus Schleich. (2n=2x=12) from Turkey in which B chromosomes have been found was studied morphologically and karyologically. Chromosome numbers were observed in 519 cells from nine plants which all exhibited mixoploidy (2n=11, 12, 12 + 1B, 12 + 2B and over 20). Keel tip color, stem pubescence, and inflorescence size differed from a collection of this species from Switzerland. While the percentage of total lengths of the chromosome complements and the relative chromosome lengths in the two accessions were very similar, the total complement lengths differed considerably (23.14μm Turkey vs. 29.46μm Switzerland). This karyological difference is not considered to be the result of the presence of B chromosomes, but probably the result of hybridization between different genotypes. Aborted seed pods were observed which lent credibility to this hypothesis. Plants of this accession may have arisen as a result of hybridization between Lotus corniculatus and/or L. alpinus as both diploid and tetraploid cytotypes are reported in the Turkey collection for these species. The data would lend support for their hybrid origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号