首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the role of the ADP- ribosylation induced by brefeldin A (BFA) in the mechanisms controlling the architecture of the Golgi complex. BFA causes the rapid disassembly of this organelle into a network of tubules, prevents the association of coatomer and other proteins to Golgi membranes, and stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kD (GAPDH and BARS-50; De Matteis, M.A., M. DiGirolamo, A. Colanzi, M. Pallas, G. Di Tullio, L.J. McDonald, J. Moss, G. Santini, S. Bannykh, D. Corda, and A. Luini. 1994. Proc. Natl. Acad. Sci. USA. 91:1114–1118; Di Girolamo, M., M.G. Silletta, M.A. De Matteis, A. Braca, A. Colanzi, D. Pawlak, M.M. Rasenick, A. Luini, and D. Corda. 1995. Proc. Natl. Acad. Sci. USA. 92:7065–7069). To study the role of ADP-ribosylation, this reaction was inhibited by depletion of NAD+ (the ADP-ribose donor) or by using selective pharmacological blockers in permeabilized cells. In NAD+-depleted cells and in the presence of dialized cytosol, BFA detached coat proteins from Golgi membranes with normal potency but failed to alter the organelle's structure. Readdition of NAD+ triggered Golgi disassembly by BFA. This effect of NAD+ was mimicked by the use of pre–ADP- ribosylated cytosol. The further addition of extracts enriched in native BARS-50 abolished the ability of ADP-ribosylated cytosol to support the effect of BFA. Pharmacological blockers of the BFA-dependent ADP-ribosylation (Weigert, R., A. Colanzi, A. Mironov, R. Buccione, C. Cericola, M.G. Sciulli, G. Santini, S. Flati, A. Fusella, J. Donaldson, M. DiGirolamo, D. Corda, M.A. De Matteis, and A. Luini. 1997. J. Biol. Chem. 272:14200–14207) prevented Golgi disassembly by BFA in permeabilized cells. These inhibitors became inactive in the presence of pre–ADP-ribosylated cytosol, and their activity was rescued by supplementing the cytosol with a native BARS-50–enriched fraction. These results indicate that ADP-ribosylation plays a role in the Golgi disassembling activity of BFA, and suggest that the ADP-ribosylated substrates are components of the machinery controlling the structure of the Golgi apparatus.  相似文献   

2.
Brefeldin A (BFA) is a fungal metabolite that disassembles the Golgi apparatus into tubular networks and causes the dissociation of coatomer proteins from Golgi membranes. We have previously shown that an additional effect of BFA is to stimulate the ADP-ribosylation of two cytosolic proteins of 38 and 50 kDa (brefeldin A-ADP-riboslyated substrate (BARS)) and that this effect greatly facilitates the Golgi-disassembling activity of the toxin. In this study, BARS has been purified from rat brain cytosol and microsequenced, and the BARS cDNA has been cloned. BARS shares high homology with two known proteins, C-terminal-binding protein 1 (CtBP1) and CtBP2. It is therefore a third member of the CtBP family. The role of BARS in Golgi disassembly by BFA was verified in permeabilized cells. In the presence of dialyzed cytosol that had been previously depleted of BARS or treated with an anti-BARS antibody, BFA potently disassembled the Golgi. However, in cytosol complemented with purified BARS, or even in control cytosols containing physiological levels of BARS, the action of BFA on Golgi disassembly was strongly inhibited. These results suggest that BARS exerts a negative control on Golgi tubulation, with important consequences for the structure and function of the Golgi complex.  相似文献   

3.
We reported that an inhibitor of sphingolipid biosynthesis, D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), blocks brefeldin A (BFA)-induced retrograde membrane transport from the Golgi complex to the endoplasmic reticulum (ER) (Kok et al., 1998, J. Cell Biol. 142, 25-38). We now show that PDMP partially blocks the BFA-induced ADP-ribosylation of the cytosolic protein BARS-50. Moreover, PDMP does not interfere with the BFA-induced inhibition of the binding of ADP-ribosylation factor (ARF) and the coatomer component beta-coat protein to Golgi membranes. These results are consistent with a role of ADP-ribosylation in the action of BFA and with the involvement of BARS-50 in the regulation of membrane trafficking.  相似文献   

4.
A 41,000 Mr cytosolic protein (p41) in Dictyostelium discoideum was shown to be modified by ADP-ribosylation that was not regulated by nitric oxide (NO). This endogenous ADP-riboxylation was optimal at conditions distinct from those optimal for the NO-stimulated ADP-ribosylation of p41. These two activities were also differentially sensitive to reducing agents and modified different amino acids. The addition of haemoglobin, which sequesters NO, and 3 the NO synthase inhibitors failed to block the endogenous ADP-ribosylation. P41 was purified to homogeneity. The N-terminal sequence of the purified protein was shown to be highly homologous to glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Both endogenous and NO-stimulated activities ADP-ribosylated three isoforms of the protein, with pI values of 6.6., 6.8 and 7.0. In each case, the isoform with pI 6.8 was preferentially modified. Experiments using purified GAPDH indicate that both the endogenous and NO-stimulated ADP-ribosylation are self-catalysed modifications.  相似文献   

5.
Arginine-specific ADP-ribosylation is one of the posttranslational modifications of proteins by transferring one ADP-ribose moiety of NAD to arginine residues of target proteins. This modification, catalyzed by ADP-ribosyltransferase (Art), is reversed by ADP-ribosylarginine hydrolase (AAH).

In this study, we describe a new method combining an anti-ADP-ribosylarginine antibody (ADP-R-Arg Ab) and AAH for detection of the target protein of ADP-ribosylation. We have raised ADP-R-Arg Ab with ADP-ribosylated histone and examined the reactivity of the antibody with proteins treated by Art and/or AAH, as well as in situ ADP-ribosylation system with mouse T cells. Our results indicate that the detection of ADP-ribosylated protein with ADP-R-Arg Ab and AAH is a useful tool to explore the target proteins of ADP-ribosylation. We applied the method to search endogenously ADP-ribosylated protein in the rat, and detected possible target proteins in the skeletal muscle, which has high Art activity.  相似文献   


6.
Starvation of mouse hepatoma cells for essential amino acids or glucose results in the ADP-ribosylation of the molecular chaperone BiP/GRP78. Addition of the missing nutrient to the medium reverses the reaction. The signal mediating the response to environmental nutrients involves the translational efficiency. An inhibitor of proteins synthesis, cycloheximide, or reduced temperature, both of which reduce translational efficiency, stimulate the ADP-ribosylation of BiP/GRP78. Inhibition of N-linked glycosylation of proteins results in the overproduction of BiP/GRP78. The over produced protein is not ADP-ribosylated suggesting that this is the functional form of BiP/GRP78. The over produced BiP/GRP78 can, however, be ADP-ribosylated if the cells are starved for an essential amino acid. BiP/GRP78 resides in the lumen of the endoplasmic reticulum where it participates in the assembly of secretory and integral membrane proteins. ADP-ribosylation of BiP/GRP78 during starvation is probably part of a nutritional stress response which conserves limited nutrients by slowing flow through the secretory pathway.  相似文献   

7.
Brefeldin A (BFA) causes rapid redistribution of Golgi proteins into the ER, leaving no definable Golgi apparatus, and blocks transport of proteins into post-Golgi compartments in the cell. In this study we follow the disassembly of the Golgi apparatus in BFA-treated, living cells labeled with NBD-ceramide and demonstrate that forskolin can both inhibit and reverse this process. Long, tubular processes labeled with NBD-ceramide were observed emerging from Golgi elements and extending out to the cell periphery in cells treated with BFA for 5 min. With longer incubations in BFA, the NBD label was dispersed in a fine reticular pattern characteristic of the ER. Treatment with forskolin inhibited these effects of BFA as well as BFA's earliest morphologic effect on the Golgi apparatus: the redistribution to the cytosol of a 110-kD Golgi peripheral membrane protein. In addition, forskolin could reverse BFA's block in protein secretion. Forskolin inhibition of BFA's effects was dose dependent and reversible. High concentrations of BFA could overcome forskolin's inhibitory effect, suggesting forskolin and BFA interact in a competitive fashion. Remarkably, in cells already exposed to BFA, forskolin could reverse BFA's effects causing the 110-kD Golgi peripheral membrane protein to reassociate with Golgi membrane and juxtanuclear Golgi complexes to reassemble. Neither membrane permeant cAMP analogues nor cAMP phosphodiesterase inhibitors could replicate or enhance forskolin's inhibition of BFA. 1,9-Dideoxyforskolin, which does not activate adenylyl cyclase, was equally as effective as forskolin in antagonizing BFA. A derivative of forskolin, 7-HPP-forskolin, that is less potent than forskolin at binding to adenylyl cyclase, was also equally effective as forskolin in antagonizing BFA. In contrast a similar derivative, 6-HPP-forskolin, that is equipotent with forskolin at binding to adenylyl cyclase, did not inhibit BFA's effects. These results suggest that forskolin acts as a competitive antagonist to BFA, using a cAMP-independent mechanism to prevent and reverse the morphologic effects induced by BFA.  相似文献   

8.
The exoenzyme C3 produced byClostridium botulinum catalyzes ADP-ribosylation ofrho gene products which belong to a family of small molecular-weight GTP-binding proteins. The C3 enzyme-catalyzed ADP-ribosylation ofrho proteins partially purified from bovine brain was markedly activated by certain types of detergents or phospholipids and by endogenous factors present in the brain cytosol.Rho A protein that had been expressed inE. coli and subsequential purified was readily ADP-ribosylated by the C3 enzyme even in the absence of the activating factors. These results suggest that partially purifiedrho proteins contain an inhibitor, probablyrho GDI (GDP-dissociation inhibitor forrho p21), of C3-catalyzed ADP-ribosylation. The activity of an endogenous enzyme, having the same substrate as botulinum C3 enzyme, was also found in brain cytosol. The enzyme activity was partially purified and characterized. The enzyme appeared to have a molecular mass of appreximately 20,000 on a gel filtration and displayed unique properties similar to those observed with the botulinum C3 enzyme. The -subunits of -trimeric G proteins which served as the substrates of cholera or pertussis toxin were not ADP-ribosylated by the brain enzyme.  相似文献   

9.
We examined the effects of specific inhibitors, brefeldin A (BFA) and okadaic acid (OA), on the ultrastructural organization of the Golgi apparatus and distributions of amylase, Golgi-associated proteins, and cathepsin D in the rat parotid acinar cells. BFA induced a rapid regression of the Golgi stack into rudimentary Golgi clusters composed of tubulovesicules, in parallel with a redistribution of the Golgi-resident proteins and a coat protein (beta-COP) into the region of the rough endoplasmic reticulum (rER) or cytosol. The rapid disruption of the Golgi stack could also be induced by the effect of OA. However, redistribution of the Golgi proteins in rER or cytosol could not be observed and beta-COP was not dispersed but was retained on the rudimentary Golgi apparatus. These findings suggested that the mechanism of OA in inducing degeneration of the Golgi stack was markedly different from that of BFA. In addition, missorting of amylase, a Golgi protein, and cathepsin D into incorrect transport pathways is apparent in the course of the disruption of the Golgi stack by OA. These Golgi-disrupting effects are reversible and the reconstruction of the stacked structure of the Golgi apparatus started immediately after the removal of inhibitors. In the recovery processes, missorting was also observed until the integrated structure of the Golgi apparatus was completely reconstructed. This suggested that the integrated structure of the Golgi apparatus was quite necessary for the occurrence of normal secretory events, including proper sorting of molecules.  相似文献   

10.
Nitric oxide and nitric oxide-generating agents like 3-morpholinosydnonimine (SIN-1) stimulate the mono-ADP-ribosylation of a cytosolic, 39-kDa protein in various tissues. This protein was purified from human platelet cytosol by conventional and fast protein liquid chromatography techniques. N-terminal sequence analysis identified the isolated protein as the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Nitric oxide stimulates the auto-ADP-ribosylation of GAPDH in a time and concentration-dependent manner with maximal effects after about 60 min. Associated with ADP-ribosylation is a loss of enzymatic activity. NAD(+)-free enzyme is not inhibited by SIN-1, indicating the absolute requirement of NAD+ as the substrate of the ADP-ribosylation reaction. Inhibition of the glycolytic enzyme GAPDH may be relevant as a cytotoxic effect of NO complementary to its inhibitory actions on iron-sulfur enzymes like aconitase and electron transport proteins of the respiratory chain.  相似文献   

11.
The fungal metabolite brefeldin A (BFA) induces the disassembly of the Golgi complex in mammalian cells. The drug seems to accentuate tubule formation and causes the subsequent fusion with the endoplasmic reticulum (ER). To investigate the biochemical requirements and kinetics of BFA-induced Golgi disassembly, we have reconstituted the process of green fluorescent protein-tagged Golgi complex disassembly in streptolysin O-permeabilized semi-intact Chinese hamster ovary cells. For quantitative analysis of the morphological changes to the Golgi complex in semi-intact cells, we developed a novel morphometric analysis. Based on this analysis, we have dissected the BFA-induced Golgi disassembly process biochemically into two processes, Golgi tubule formation and fusion with the ER, and found that the formation is induced by only ATP and the residual factors in the cells and that the subsequent fusion is mediated in an N-ethylmaleimide-sensitive factor-dependent manner via Golgi tubules. Tubulation occurs by two pathways that depend on either microtubule integrity or exogenously added cytosol. In the presence of GTPgammaS, coat protein I inhibited the Golgi tubule fusion with the ER but showed no apparent effect on tubulation. Additionally, we analyzed the kinetics of tubulation and fusion independently in nocodazole-treated and -untreated semi-intact cells and found that tubulation is a rate-limiting step of the Golgi disassembly.  相似文献   

12.
ADP-ribosylation factors (ARFs) are members of a multigene family of 20-kDa guanine nucleotide-binding proteins that ate regulatory components in several pathways of intracellular vesicular trafficking. The relatively small (~180-amino acids) ARF proteins interact with a variety of molecules (in addition to GTP/GDP, of course). Cholera toxin was the first to be recognized, hence the name. Later it was shown that ARF also activates phospholipase D. Different parts of the molecule are responsible for activation of the two enzymes. In vesicular trafficking, ARF must interact with coatomer to recruit it to a membrane and thereby initiate vesicle budding. ARF function requires that it alternate between GTP- and GDP-bound forms, which involves interaction with regulatory proteins. Inactivation of ARF-GTP depends on a GTPase-activating protein or GAP. A guanine nucleotide-exchange protein or GEP accelerates release of bound GDP from inactive ARF-GDP to permit GTP binding. Inhibition of GEP by brefeldin A (BFA) blocks ARF activation and thereby vesicular transport. In cells, it causes apparent disintegration of Golgi structure. Both BFA-sensitive and insensitive GEPs are known. Sequences of peptides from a BFA-sensitive GEP purified in our laboratory revealed the presence of a Sec7 domain, a sequence of ~200 amino acids that resembles a region in the yeast Sec7 gene product, which is involved in Golgi vesicular transport. Other proteins of unknown function also contain Sec7 domains, among them a lymphocyte protein called cytohesin-1. To determine whether it had GEP activity, recombinant cytohesin-1 was synthesized in E. coli. It preferentially activated class I ARFs 1 and 3 and was not inhibited by BFA but failed to activate ARF5 (class II). There are now five Sec7 domain proteins known to have GEP activity toward class I ARFs. It remains to be determined whether there are other Sec7 domain proteins that are GEPs for ARFs 4, 5, or 6.  相似文献   

13.
V W Hsu  N Shah  R D Klausner 《Cell》1992,69(4):625-635
Brefeldin A (BFA) is a unique drug affecting the molecular mechanisms that regulate membrane traffic and organelle structure. BFA's ability to alter retrograde traffic from the Golgi to the endoplasmic reticulum (ER) led us to ask whether the ERD-2 retrieval receptor, proposed to return escaped ER resident proteins from the Golgi, might either interfere with or mimic the effects of the drug. When either human ERD-2 or a novel human homolog (referred to as ELP-1) is overexpressed in a variety of cell types, the effects are phenotypically indistinguishable from the addition of BFA. These include the redistribution of the Golgi coat protein, beta-COP, to the cytosol, the loss of the Golgi apparatus as a distinct organelle, the mixing of this organelle with the ER, the addition of complex oligosaccharides to resident ER glycoproteins, and the block of anterograde traffic. Thus, these receptors may provide signals that regulate retrograde traffic between the Golgi and the ER.  相似文献   

14.
An important role of protein ADP-ribosylation in bacterial morphogenesis has been proposed (J. Bacteriol. 178, 3785-3790; 178, 4935-4941). To clarify the detail of ADP-ribosylation, we identified a new kind of target protein for ADP-ribosylation in Streptomyces coelicolor A3(2) grown to the late growth phase. All four proteins (MalE, BldKB, a periplasmic protein for binding branched-chain amino-acids, and a periplasmic solute binding protein) were functionally similar and participated in the regulation of transport of metabolites or nutrients through the membrane. ADP-ribosylation was likely to occur on a cysteine residue, because the modification group was removed by mercuric chloride treatment. The modification site may be the site of lipoprotein modification necessary for protein export. This report is the first suggesting that certain proteins involved in membrane transport can be ADP-ribosylated.  相似文献   

15.
After binding, the protein toxins ricin, abrin, and modeccin are endocytosed and processed through the cell's vesicular system in a poorly understood fashion, prior to translocation to the cytosol. The role of the Golgi apparatus in toxin processing was studied using brefeldin-A (BFA), a fungal metabolite which blocks Golgi function. At concentrations that inhibit secretion of interleukin-2 (IL-2), BFA blocks ricin, modeccin, and abrin intoxication of a lymphocyte derived cell line (Jurkat). Paradoxically, BFA enhances the toxicity of two ricin A-chain immunotoxins targeted against distinct cell surface determinants. BFA concentrations which are optimal for immunotoxin enhancement are below those needed to affect ricin intoxication or IL-2 secretion. BFA blockade of ricin does not involve effects on ricin endocytosis, toxin translocation to the cytosol, or the enzymatic activity of toxin A-chain. In contrast, BFA has no effect on immunotoxin processing but does enhance the immunotoxin translocation step. It is concluded that: 1) intact Golgi function is required for holotoxin processing. 2) Intact Golgi function is not required for holotoxin translocation. 3) Golgi function is tightly linked to immunotoxin translocation. 4) BFA has effects on vesicular routing in addition to the block of Golgi function in secretion which has been reported.  相似文献   

16.
Brefeldin A (BFA) has been reported to block protein transport from the ER and cause disassembly of the Golgi complex. We have examined the effects of BFA on the transport and processing of the vesicular stomatitis virus G protein, a model integral membrane protein. Delivery of G protein to the cell surface was reversibly blocked by 6 micrograms/ml BFA. Pulse-label experiments revealed that in the presence of BFA, G protein became completely resistant to endoglycosidase H digestion. Addition of sialic acid, a trans-Golgi event, was not observed. Despite processing by cis- and medial Golgi enzymes, G protein was localized by indirect immunofluorescence to a reticular distribution characteristic of the ER. By preventing transport of G protein from the ER with the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone or by use of the temperature-sensitive mutant ts045, which is restricted to the ER at 40 degrees C, we showed that processing of G protein occurred in the ER and was not due to retention of newly synthesized Golgi enzymes. Rather, redistribution of preexisting cis and medial Golgi enzymes to the ER occurred as soon as 2.5 min after addition of BFA, and was complete by 10-15 min. Delivery of Golgi enzymes to the ER was energy dependent and occurred only at temperatures greater than or equal to 20 degrees C. BFA also induced retrograde transport of G protein from the medial Golgi to the ER. Golgi enzymes were completely recovered from the ER 10 min after removal of BFA. These findings demonstrate that BFA induces retrograde transport of both resident and itinerant Golgi proteins to the ER in a fully reversible manner.  相似文献   

17.
Brefeldin A (BFA) was shown in earlier studies of numerous cell types to inhibit secretion, induce enzymes of the Golgi stacks to redistribute into the ER, and to cause the Golgi cisternae to disappear. Here, we demonstrate that the PtK1 line of rat kangaroo kidney cells is resistant to BFA. The drug did not disrupt the morphology of the Golgi complex in PtK1 cells, as judged by immunofluorescence using antibodies to 58- (58K) and 110-kD (beta-COP) Golgi proteins, and by fluorescence microscopy of live cells labeled with C6-NBD-ceramide. In addition, BFA did not inhibit protein secretion, not alter the kinetics or extent of glycosylation of the vesicular stomatitis virus (VSV) glycoprotein (G-protein) in VSV-infected PtK1 cells. To explore the mechanism of resistance to BFA, PtK1 cells were fused with BFA-sensitive CV-1 cells that had been infected with a recombinant SV-40 strain containing the gene for VSV G-protein and, at various times following fusion, the cultures were exposed to BFA. Shortly after cell fusion, heterokaryons contained one Golgi complex associated with each nucleus. Golgi membranes derived from CV-1 cells were sensitive to BFA, whereas those of PtK1 origin were BFA resistant. A few hours after fusion, most heterokaryons contained a single, large Golgi apparatus that was resistant to BFA and contained CV-1 galactosyltransferase. In unfused cells that had been perforated using nitrocellulose filters, retention of beta-COP on the Golgi was optimal in the presence of cytosol, ATP, and GTP. In perforated cell models of the BFA-sensitive MA104 line, BFA caused beta-COP to be released from the Golgi complex in the presence of nucleotides, and either MA104 or PtK1 cytosol. In contrast, when perforated PtK1 cells were incubated with BFA, nucleotides, and cytosol from either cell type, beta-COP remained bound to the Golgi complex. We conclude that PtK1 cells contain a nondiffusible factor, which is located on or very close to the Golgi complex, and confers a dominant resistance to BFA. It is possible that this factor is homologous to the target of BFA in cells that are sensitive to the drug.  相似文献   

18.
An image-based phenotypic screen was developed to identify small molecule regulators of intracellular traffic. Using this screen we found that AG1478, a previously known inhibitor of epidermal growth factor receptor, had epidermal growth factor receptor-independent activity in inducing the disassembly of the Golgi in human cells. Similar to brefeldin A (BFA), a known disrupter of the Golgi, AG1478 inhibits the activity of small GTPase ADP-ribosylation factor. Unlike BFA, AG1478 exhibits low cytotoxicity and selectively targets the cis-Golgi without affecting endosomal compartment. We show that AG1478 inhibits GBF1, a large nucleotide exchange factor for the ADP-ribosylation factor, in a Sec7 domain-dependent manner and mimics the phenotype of a GBF1 mutant that has an inactive mutation. The treatment with AG1478 leads to the recruitment of GBF1 to the vesicular-tubular clusters adjacent to the endoplasmic reticulum exit sites, a step only transiently observed previously in the presence of BFA. We propose that the treatment with AG1478 delineates a membrane trafficking intermediate step that depends upon the Sec7 domain.  相似文献   

19.
A Driouich  G F Zhang    L A Staehelin 《Plant physiology》1993,101(4):1363-1373
Brefeldin A (BFA), a specific inhibitor of Golgi-mediated secretion in animal cells, has been used to study the organization of the secretory pathway and the function of the Golgi apparatus in plant cells. To this end, we have employed a combination of electron microscopical, immunocytochemical, and biochemical techniques to investigate the effects of this drug on the architecture of the Golgi apparatus as well as on the secretion of proteins and complex cell wall polysaccharides in sycamore maple (Acer pseudoplatanus) suspension-cultured cells. We have used 2.5 and 7.5 micrograms/mL of BFA, which is comparable to the 1 to 10 micrograms/mL used in experiments with animal cells. Electron micrographs of high-pressure frozen and freeze-substituted cells show that although BFA causes swelling of the endoplasmic reticulum cisternae, unlike in animal cells, it does not induce the disassembly of sycamore maple Golgi stacks. Instead, BFA induces the formation of large clusters of Golgi stacks, an increase in the number of trans-like Golgi cisternae, and the accumulation in the cytoplasm of very dense vesicles that appear to be derived from trans Golgi cisternae. These vesicles contain large amounts of xyloglucan (XG), the major hemicellulosic cell wall polysaccharide, as shown by immunocytochemical labeling with anti-XG antibodies. All of these structural changes disappear within 120 min after removal of the drug. In vivo labeling experiments using [3H]leucine demonstrate that protein secretion into the culture medium, but not protein synthesis, is inhibited by approximately 80% in the presence of BFA. In contrast, the incorporation of [3H]fucose into N-linked glycoproteins, which occurs in trans-Golgi cisternae, appears to be affected to a greater extent than the incorporation of [3H]xylose, which has been localized to medial Golgi cisternae. BFA also affects secretion of complex polysaccharides as evidenced by the approximate 50% drop in incorporation of [3H]xylose and [3H]fucose into cell wall hemicelluloses. Taken together, these findings suggest that at concentrations of 2.5 to 7.5 mu g/mL BFA causes the following major changes in the secretory pathway of sycamore maple cells: (a) it inhibits the transport of secretory proteins to the cell surface by about 80% and of hemicelluloses by about 50%; (b) it changes the patterns of glycosylation of N-linked glycoproteins and hemicelluloses; (c) it reduces traffic between trans Golgi cisternae and secretory vesicles; (d) it produces a major block in the transport of XG-containing, dense secretory vesicles to the cell surface; and (e) it induces the formation of large aggregates of Golgi apparatus of plant and animal cels share many functional and structural characteristics, the plant Golgi apparatus possesses properties that make its response to BFA unique.  相似文献   

20.
Activator protein supporting the botulinum ADP-ribosyltransferase reaction   总被引:2,自引:0,他引:2  
The ADP-ribosyl moiety of NAD was transferred to proteins with Mr values of 22,000 and 25,000 when bovine brain cytosol was incubated with a botulinum ADP-ribosyltransferase C3 (BT-C3) which was purified from the culture medium of a type C strain of Clostridium botulinum. Any protein fraction eluted from a chromatographic column to which the cytosol had been applied, however, was not significantly ADP-ribosylated by BT-C3, unless the reaction mixture was further supplemented with a small amount of the cytosol. Thus, substrate protein(s) could be partially purified based on their ability to be ADP-ribosylated by BT-C3 in the presence of the cytoplasmic activator(s). The rate of ADP-ribosylation of the substrates was extremely low by itself but was increased enormously and progressively when increasing amounts of cytosol were added, affording a reliable means for assay of the activator contained therein. The activator was separated from the substrate proteins and partially purified from the cytosol by sequential chromatography steps with an anion exchanger and a gel filtration column. The activity of the partially purified activator was heat-labile and protease-sensitive, suggesting that the activator was a protein or had a protein component necessary for activity. The action of the activator protein(s) was specific for BT-C3-catalyzed ADP-ribosylation; cholera toxin-catalyzed ADP-ribosylation of GTP-binding protein (Gs) was not supported by this activator. Thus, this is the first report to show that botulinum ADP-ribosyltransferase-catalyzed reaction can proceed significantly only in the presence of other protein factor(s), just as has been observed with an ADP-ribosylation factor required for cholera toxin-induced similar reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号