共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Ebihara H Takada A Kobasa D Jones S Neumann G Theriault S Bray M Feldmann H Kawaoka Y 《PLoS pathogens》2006,2(7):e73
Zaire ebolavirus (ZEBOV) causes severe hemorrhagic fever in humans and nonhuman primates, with fatality rates in humans of up to 90%. The molecular basis for the extreme virulence of ZEBOV remains elusive. While adult mice resist ZEBOV infection, the Mayinga strain of the virus has been adapted to cause lethal infection in these animals. To understand the pathogenesis underlying the extreme virulence of Ebola virus (EBOV), here we identified the mutations responsible for the acquisition of the high virulence of the adapted Mayinga strain in mice, by using reverse genetics. We found that mutations in viral protein 24 and in the nucleoprotein were primarily responsible for the acquisition of high virulence. Moreover, the role of these proteins in virulence correlated with their ability to evade type I interferon-stimulated antiviral responses. These findings suggest a critical role for overcoming the interferon-induced antiviral state in the pathogenicity of EBOV and offer new insights into the pathogenesis of EBOV infection. 相似文献
3.
S Lustig A C Jackson C S Hahn D E Griffin E G Strauss J H Strauss 《Journal of virology》1988,62(7):2329-2336
We examined a variety of strains of Sindbis virus for the genetic changes responsible for differences in neurovirulence in mice. SV1A (a low passage of the AR339 strain of Sindbis virus), a neuroadapted Sindbis virus (NSV), and two laboratory strains of Sindbis virus (HRSP and Toto1101) were examined. NSV causes severe encephalomyelitis with hind-limb paralysis and high mortality after intracerebral inoculation in weanling mice. In contrast, SV1A causes only mild, nonfatal disease in weanling mice; however, in suckling mice, SV1A causes a fatal encephalomyelitis after either intracerebral or subcutaneous inoculation. The two laboratory strains used have a greatly reduced neurovirulence for suckling mice and are avirulent for weanling mice. The nucleotide sequences and encoded amino acid sequences of the structural glycoproteins of these four strains were compared. Hybrid genomes were constructed by replacing restriction fragments in a full-length cDNA clone of Sindbis virus, from which infectious RNA can be transcribed in vitro, with fragments from cDNA clones of the various strains. These recombinant viruses allowed us to test the importance of each amino acid difference between the various strains for neurovirulence in weanling and suckling mice. Glycoproteins E2 and E1 were of paramount importance for neurovirulence in adult mice. Recombinant viruses containing the nonstructural protein region and the capsid protein region from an avirulent strain and the E1 and E2 glycoprotein regions from NSV were virulent, although they were less virulent than NSV. Furthermore, changes in either E2 (His-55 in NSV to Gln in SV1A) or E1 (Ala-72 in NSV to Val in SV1A and Asp-313 in NSV to Gly in SV1A) reduced virulence. For virulence in suckling mice, we found that a number of changes in E2 and E1 can lead to decreased virulence and that in fact, a gradient of virulence exists. 相似文献
4.
Sindbis virus mutations which coordinately affect glycoprotein processing, penetration, and virulence in mice 总被引:5,自引:14,他引:5 下载免费PDF全文
Rapid penetration of baby hamster kidney cells was used as a selective pressure for the isolation of pathogenesis mutants of the S.A.AR86 strain of Sindbis virus. Unlike most Sindbis virus strains, S.A.AR86 is virulent in adult as well as neonatal mice. Two classes of mutants were defined. One class was attenuated in adult mice inoculated intracerebrally as well as in neonatal mice inoculated either intracerebrally or subcutaneously. Sequence analysis of the glycoprotein genes of the parent virus and three such mutant strains revealed a single point mutation which resulted in an amino acid change at position 1 in the E2 glycoprotein. The change from a serine in S.A.AR86 to an asparagine in the mutants created a new site for N-linked glycosylation which appeared to be utilized. This mutation did not retard release of infectious particles; however, mutant virions contained the E2 precursor protein (PE2) rather than the E2 glycoprotein itself. The mutants also lost the ability to bind two E2-specific monoclonal antibodies, R6 and R13. A second class of mutants was attenuated in neonatal mice upon subcutaneous inoculation but remained virulent in adults and in neonates when inoculated intracerebrally. Sequence analysis of three such strains revealed the substitution of an arginine residue for a serine at position 114 in the E2 glycoprotein. Reactivity with monoclonal antibodies R6 and R13 was reduced, yet members of this mutant class were more susceptible than S.A.AR86 to neutralization by these antibodies. 相似文献
5.
The amino-terminal residue of Sindbis virus glycoprotein E2 influences virus maturation, specific infectivity for BHK cells, and virulence in mice. 下载免费PDF全文
The E2 glycoprotein of Sindbis virus is synthesized as a precursor, PE2, which is cleaved by furin or a furin-like host cell protease at a late stage of maturation. The four-residue PE2 cleavage signal conforms to the basic amino acid-X-basic-basic motif which is present in many other viral and cellular glycoproteins which are processed by the cellular enzyme(s). In this report, we present evidence that the amino acid which immediately follows the signal, the N-terminal residue of E2, can influence protease recognition, binding, and/or cleavage of PE2. Constructs encoding nine different amino acids at E2 position 1 (E2 1) were produced by site-directed mutagenesis of the full-length cDNA clone of our laboratory strain of Sindbis virus AR339 (pTRSB). Viruses derived from clones encoding Arg (TRSB), Asp, Ser, Phe, His, and Asn in a nonglycosylated form at E2 1 contained predominantly E2. Viruses encoding Ile, Leu, or Val at E2 1 contained the uncleaved form of PE2. The specific infectivity of TRSB (E2 Arg-1) for baby hamster kidney (BHK-21) cells was from 5- to greater than 100-fold higher than those of isogenic constructs with other residues at E2 1, suggesting that E2 Arg-1 represents a BHK-21 cell adaptive mutation in our laboratory strain. In newborn CD-1 mice, TRSB was more virulent than the PE2-containing viruses but less virulent than other PE2-cleaving viruses with alternative amino acids at E2 1. These results indicate that in TRSB, E2 Arg-1 increased the efficiency of virus-cell interactions in cultured BHK-21 cells but simultaneously decreased the ability of virus to mediate in vivo virus-cell interactions critical for the induction of disease. This suggests that the N terminus of E2 may participate in or be associated with virion domains which mediate these viral functions. 相似文献
6.
7.
Retrovirus transmission via direct cell-cell contact is more efficient than diffusion through the extracellular milieu. This is believed to be due to the ability of viruses to efficiently coordinate several steps of the retroviral life cycle at cell-cell contact sites (D. C. Johnson et al., J. Virol. 76:1-8, 2002; D. M. Phillips, AIDS 8:719-731, 1994; Q. Sattenau, Nat. Rev. Microbiol. 6:815-826, 2008). Using the murine leukemia virus (MLV) as a model retrovirus, we have previously shown that interaction between viral envelope (Env) and receptor directs viral assembly to cell-cell contact sites to promote efficient viral spreading (J. Jin et al., PLoS Biol. 7:e1000163, 2009). In addressing the underlying mechanism, we observed that Env cytoplasmic tail directs this contact-induced polarized assembly. We present here the viral determinants in the Env cytoplasmic tail and Gag that are important in this process. A tyrosine residue within the cytoplasmic tail of Env was identified, which directs polarized assembly. MLV matrix-mediated membrane targeting is required for Gag recruitment to sites of cell-cell contact. Our results suggest that MLV polarized assembly is mediated by a direct or indirect interaction between both domains, thereby coupling Gag recruitment and virus assembly to Env accumulation at the cell-cell interface. In contrast, HIV Gag that assembles outside of cell-cell interfaces can subsequently be drawn into contact zones mediated by MLV Env and receptor, a finding that is consistent with the previously observed lateral movement of HIV into the virological synapse (W. Hubner et al., Science 323:1743-1747, 2009; D. Rudnicka et al., J. Virol. 83:6234-6246, 2009). As such, we observed two distinct modes of virus cell-to-cell transmission that involve either polarized or nonpolarized assembly, but both result in virus transmission. 相似文献
8.
9.
10.
Mouse-adapted dengue type 4 virus (DEN4) strain H241 is highly neurovirulent for mice, whereas its non-mouse-adapted parent is rarely neurovirulent. The genetic basis for the neurovirulence of the mouse-adapted mutant was studied by comparing intratypic chimeric viruses that contained the three structural protein genes from the parental virus or the neurovirulent mutant in the background sequence of nonneurovirulent DEN4 strain 814669. The chimera that contained the three structural protein genes from mouse neurovirulent DEN4 strain H241 proved to be highly neurovirulent in mice, whereas the chimera that contained the corresponding genes from its non-mouse-adapted parent was not neurovirulent. This finding indicates that most of the genetic loci for the neurovirulence of the DEN4 mutant lie within the structural protein genes. A comparison of the amino acid sequences of the parent and its mouse neurovirulent mutant proteins revealed that there were only five amino acid differences in the structural protein region, and three of these were located in the envelope (E) glycoprotein. Analysis of chimeras which contained one or two of the variant amino acids of the mutant E sequence substituting for the corresponding sequence of the parental virus identified two of these amino acid changes as important determinants of mouse neurovirulence. First, the single substitution of Ile for Thr-155 which ablated one of the two conserved glycosylation sites in parental E yielded a virus that was almost as neurovirulent as the mouse-adapted mutant. Thus, the loss of an E glycosylation site appears to play a role in DEN4 neurovirulence. Second, the substitution of Leu for Phe-401 also yielded a neurovirulent virus, but it was less neurovirulent than the glycosylation mutant. These findings indicate that at least two of the genetic loci responsible for DEN4 mouse neurovirulence map within the structural protein genes. 相似文献
11.
12.
Identification of adult mouse neurovirulence determinants of the Sindbis virus strain AR86 下载免费PDF全文
Sindbis virus infection of mice has provided valuable insight into viral and host factors that contribute to virus-induced neurologic disease. In an effort to further define the viral genetic elements that contribute to adult mouse neurovirulence, the neurovirulent Sindbis virus strain AR86 was compared to the closely related (22 single amino acid coding changes and the presence or absence of an 18-amino-acid sequence in nsP3 [positions 386 to 403]) but avirulent Girdwood strain. Initial studies using chimeric viruses demonstrated that genetic elements within the nonstructural and structural coding regions contributed to AR86 neurovirulence. Detailed mapping studies identified three major determinants in the nonstructural region, at nsP1 538 (Ile to Thr; avirulent to virulent), an 18-amino-acid deletion in nsP3 (positions 386 to 403), and nsP3 537 (opal to Cys; avirulent to virulent), as well as a single determinant in the structural genes at E2 243 (Leu to Ser; avirulent to virulent), which were essential for AR86 adult mouse neurovirulence. Replacing these codons in AR86 with those found in Girdwood resulted in the attenuation of AR86, while the four corresponding AR86 changes in the Girdwood genetic background increased virulence to the level of wild-type AR86. The attenuating mutations did not adversely affect viral replication in vitro, and the attenuated viruses established infection in the brain and spinal cord as efficiently as the virulent viruses. However, the virus containing the four virulence determinants grew to higher levels in the spinal cord at late times postinfection, suggesting that the virus containing the four attenuating determinants either failed to spread or was cleared more efficiently than the wild-type virus. 相似文献
13.
Cucumber mosaic virus: viral genes as virulence determinants 总被引:1,自引:0,他引:1
TAXONOMIC RELATIONSHIPS: Cucumber mosaic virus (CMV) is the type species of the genus Cucumovirus in the family Bromoviridae, which also encompasses the Peanut stunt virus (PSV) and the Tomato aspermy virus (TAV). Nucleotide sequence similarity among these three cucumoviruses is 60%-65%. CMV strains are divided into three subgroups, IA, IB and II, based on the sequence of the 5' untranslated region of the genomic RNA 3. Overall nucleotide sequence similarity among CMV strains is approximately 70%-98%. GEOGRAPHICAL DISTRIBUTION, HOST RANGE AND SYMPTOMATOLOGY: CMV is distributed worldwide, primarily in temperate to tropical climate zones. CMV infects more than 1200 species of 100 plant families, including monocot and dicot plants. Symptoms caused by CMV infection vary with the host species and/or CMV strain, and include mosaic, stunt, chlorosis, dwarfing, leaf malformation and systemic necrosis. CMV disease is spread primarily by aphid transmission in a nonpersistent manner. PHYSICAL PROPERTIES: In tobacco sap, the thermal inactivation point of the viral infectivity is approximately 70 °C (10 min), the dilution end-point is approximately 10(-4) and viral infectivity is lost after a few days of exposure to 20 °C. Viral infectivity can be retained in freeze-dried tissues and in the form of virions purified using 5 mm sodium borate, 0.5 mm ethylenediaminetetraacetic acid and 50% glycerol (pH 9.0) at -20 °C. CMV particles are isometric, approximately 28-30 nm in diameter and are composed of 180 capsid subunits arranged in pentamer-hexamer clusters with T= 3 symmetry. The sedimentation coefficient (s(20) ,(w) ) is c. 98 S and the particle weight is (5.8-6.7) × 10(6) Da. The virions contain 18% RNA. The RNA-protein interactions that stabilize the CMV virions are readily disrupted by sodium dodecylsulphate or neutral chloride salts. GENOMIC PROPERTIES: The genomic RNAs are single-stranded messenger sense RNAs with 5' cap and 3' tRNA-like structures containing at least five open reading frames. The viral RNA consists of three genomic RNAs, RNA 1 (c. 3.3 kb), RNA 2 (c. 3.0 kb) and RNA 3 (c. 2.2 kb), and two subgenomic RNAs, RNA 4 (c. 1.0 kb) and RNA 4A (c. 0.7 kb). The 3' untranslated regions are conserved across all viral RNAs. CMV is often accompanied by satellite, noncoding, small, linear RNA that is nonhomologous to the helper CMV. 相似文献
14.
15.
Antibodies clear Sindbis virus from infected animals through an unknown mechanism. To determine whether interferon-induced pathways are required for this clearance, we examined mice which are unable to respond to alpha/beta interferon or gamma interferon. Although extremely susceptible to infection, such mice survived and completely cleared virus if antibodies against Sindbis virus were given. 相似文献
16.
Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus 总被引:30,自引:0,他引:30 下载免费PDF全文
In 1997, a devastating outbreak of foot-and-mouth disease (FMD) in Taiwan was caused by a serotype O virus (referred to here as OTai) with atypical virulence. It produced high morbidity and mortality in swine but did not affect cattle. We have defined the genetic basis of the species specificity of OTai by evaluating the properties of genetically engineered chimeric viruses created from OTai and a bovine-virulent FMD virus. These studies have shown that an altered nonstructural protein, 3A, is a primary determinant of restricted growth on bovine cells in vitro and significantly contributes to bovine attenuation of OTai in vivo. 相似文献
17.
18.
Viral determinants of simian immunodeficiency virus (SIV) virulence in rhesus macaques assessed by using attenuated and pathogenic molecular clones of SIVmac. 总被引:5,自引:13,他引:5 下载免费PDF全文
M L Marthas R A Ramos B L Lohman K K Van Rompay R E Unger C J Miller B Banapour N C Pedersen P A Luciw 《Journal of virology》1993,67(10):6047-6055
To identify viral determinants of simian immunodeficiency virus (SIV) virulence, two pairs of reciprocal recombinants constructed from a pathogenic (SIVmac239) and a nonpathogenic (SIVmac1A11) molecular clone of SIV were tested in rhesus macaques. A large 6.2-kb fragment containing gag, pol, env, and the regulatory genes from each of the cloned (parental) viruses was exchanged to produce one pair of recombinant viruses (designated SIVmac1A11/239gag-env/1A11 and SIVmac239/1A11gag-env/239 to indicate the genetic origins of the 5'/internal/3' regions, respectively, of the virus). A smaller 1.4-kb fragment containing the external env domain of each of the parental viruses was exchanged to create the second pair (SIVmac1A11/239env/1A11 and SIVmac239/1A11env/239) of recombinant viruses. Each of the two parental and four recombinant viruses was inoculated intravenously into four rhesus macaques, and all 24 animals were viremic by 4 weeks postinoculation (p.i.). Virus could not be isolated from peripheral blood mononuclear cells (PBMC) of any animals infected with SIVmac1A11 after 6 weeks p.i. but was consistently isolated from all macaques inoculated with SIVmac239 for 92 weeks p.i. Virus isolation was variable from animals infected with recombinant viruses; SIVmac1A11/239gag-env/1A11 and SIVmac239/1A11env/239 were isolated most frequently. Animals inoculated with SIVmac239 had 10 to 100 times more virus-infected PBMC than those infected with recombinant viruses. Three animals infected with SIVmac239 died with simian AIDS (SAIDS) during the 2-year observation period after inoculation, and the fourth SIVmac239-infected animal had clinical signs of SAIDS. Two animals infected with recombinant viruses died with SAIDS; one was infected with SIVmac239/1A11gag-env/239, and the other was infected with SIVmac1A11/239gag-env/1A11. The remaining 18 macaques remained healthy by 2 years p.i., and 13 were aviremic. One year after inoculation, peripheral lymph nodes of some of these healthy, aviremic animals harbored infected cells. All animals seroconverted within the first few weeks of infection, and the magnitude of antibody response to SIV was proportional to the levels and duration of viremia. Virus-suppressive PBMC were detected within 2 to 4 weeks p.i. in all animals but tended to decline as viremia disappeared. There was no association of levels of cell-mediated virus-suppressive activity and either virus load or disease progression. Taken together, these results indicate that differences in more than one region of the viral genome are responsible for the lack of virulence of SIVmac1A11. 相似文献
19.
20.
Macrophages and age-dependent resistance to Herpes simplex virus in mice 总被引:70,自引:0,他引:70
M S Hirsch B Zisman A C Allison 《Journal of immunology (Baltimore, Md. : 1950)》1970,104(5):1160-1165